
Scandinavian Journal of Information Systems

Volume 13 | Issue 1 Article 5

2001

Assessing Software Processes: Low Maturity or
Sensible Practice
Peter Axel Nielsen
Aalborg University, Denmark, pan@cs.aau.dk

Jacob Nørbjerg
Copenhagen University, jmen@diku.dk

Follow this and additional works at: http://aisel.aisnet.org/sjis

This material is brought to you by the Journals at AIS Electronic Library (AISeL). It has been accepted for inclusion in Scandinavian Journal of
Information Systems by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

Recommended Citation
Nielsen, Peter Axel and Nørbjerg, Jacob (2001) "Assessing Software Processes: Low Maturity or Sensible Practice," Scandinavian
Journal of Information Systems: Vol. 13 : Iss. 1 , Article 5.
Available at: http://aisel.aisnet.org/sjis/vol13/iss1/5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301357907?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org/sjis?utm_source=aisel.aisnet.org%2Fsjis%2Fvol13%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sjis/vol13?utm_source=aisel.aisnet.org%2Fsjis%2Fvol13%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sjis/vol13/iss1?utm_source=aisel.aisnet.org%2Fsjis%2Fvol13%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sjis/vol13/iss1/5?utm_source=aisel.aisnet.org%2Fsjis%2Fvol13%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sjis?utm_source=aisel.aisnet.org%2Fsjis%2Fvol13%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sjis/vol13/iss1/5?utm_source=aisel.aisnet.org%2Fsjis%2Fvol13%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

21© Scandinavian Journal of Information Systems, 2001, 13: 21-34

Assessing Software
Processes:
Low Maturity or Sensible Practice

Peter Axel Nielsena and Jacob Nørbjergb

Department of Computer Science, University of Aalborga

Department of Informatics, Copenhagen Business Schoolb

Abstract
Software Process Improvement efforts rely heavily on the use of software capability maturity
models. These models are used to identify problems in an organization’s software processes and
point to, and prioritize, necessary improvements. Using models for this purpose will, however,
automatically turn our attention to certain problems and issues and ignore others. In this paper we
argue that the maturity models provide only one perspective on software processes and software
process problems. We demonstrate how we, by looking at the organizational context of and the
conflicts and uncertainties facing software projects may uncover alternative interpretations of
software practices, and identify other problems. The implications for SPI and for the use of
maturity models are discussed.

Keywords:
Software process improvement, CMM, organizational change, organizational politics.

1

Nielsen and Nørbjerg: Assessing Software Processes: Low Maturity or Sensible Practice

Published by AIS Electronic Library (AISeL), 2001

© Scandinavian Journal of Information Systems, 2001, 13: 21-3422

SPECIAL ISSUE ARTICLE - Asessing Software Processes

23© Scandinavian Journal of Information Systems, 2001, 13: 21-34

Asessing Software Processes - SPECIAL ISSUE ARTICLE

1.Introduction
Organizations developing computer-based information
systems struggle with unexpected incidents, unstable
requirements, staff shortages, rapid technological
developments, unclear or conflicting statements
from users and customers. These and other problems
contribute to uncontrollable projects, runaway
budgets, and delayed products of inferior quality.

Over the years software professionals have come to
accept this as unavoidable conditions for information
systems development but they have also realized that
systems development organizations must improve
their ability to control these risks and uncertainties
and manage their software projects. As a consequence
the field of Software Process Improvement (SPI)
developed. Integrated in SPI is the concept of -
software process - maturity; a measure or expression
of the strengths and weaknesses of an organization’s
software development and management practices.
Maturity is defined through so-called maturity models;
e.g. the Capability Maturity Model or CMM (Paulk
et.al. 1993) and Bootstrap (Kuvaja et. al. 1994). The
models define maturity in terms of levels, where each
level is described through a specific set of management
and development practices and procedures. The
higher the maturity level, the better the expected,
overall performance in terms of accuracy of schedules
and budgets, product quality, and productivity. The
models support SPI initiatives in two ways: First, they
can be used to assess an organization’s maturity level
by comparing the organization’s development and
management practices with the model, and second
they can help prioritize improvement initiatives by
pinpointing the changes needed to reach a higher
maturity level.

The idea of software process maturity emerged
at the Software Engineering Institute (SEI) in the
early 1980s (Humphrey 1989), and the institute’s
Capability Maturity Model (CMM) is among the first
and most influential of the maturity models. The CMM
describes maturity in terms of five levels, from level
1 (Initial), characterized by the absence of even basic
project management practices to level 5 (Optimizing)
with organization-wide management and development
practices and extensive use of process and product
measurements to monitor and continuously improve
performance. The model, which describes the levels
in great detail to reduce ambiguity, was developed by

the SEI in close collaboration with the US software
industry. It is accompanied by training programs for
assessors as well as detailed guidelines and procedures
for assessments and maturity evaluations (Dunaway &
Masters 1996, Paulk et.al. 1993).

The significant contribution of the CMM is its
embodiment of an improvement strategy. According
to the CMM an organization at a certain level shall
focus on the improvements needed to reach the next
higher level first; thus, an organization at level 1 should
implement the basic project management practices
specified at level 2, before attempting to undertake
the more demanding implementation of organization-
wide development and management standards required
to reach level 3 and so on.

The SEI developed the CMM on a direct contract
from the U.S. Department of Defense (DoD) that
wanted an instrument to evaluate potential contractors,
and the DoD now requires software vendors to be at
level 3 or higher for large or complex projects before
they can be considered for DoD projects (Saiedian &
Kuzara 1995). This has of course created much interest
in the CMM especially in the US software industry,
particularly as early assessments indicated that over
80% of US software organizations were below this
level (Goldenson & Herbsleb 1995).

Other organizations in the US and elsewhere who
are not involved in DoD contracts are, however, also
using maturity models as a way to improve their
software process capability. This, in turn, has lead to
increased interest in maturity models and a number of
competing models have emerged during the 1990’s;
e.g., the Bootstrap project funded by the European
Union (Kuvaja et. al. 1994), and the SPICE model
(Enam et. al. 1998), intended to encompass all previous
models. SEI’s CMM has had significant influence on
the concept of maturity and all the subsequent models,
however, and we will use this model as our “reference”
in the rest of this article.

Considering the size and importance of the software
industry, it is no wonder that there is considerable
debate and research about the concept of maturity in
general and the maturity models in particular. Some
researchers suggest to improve the maturity models
by adding new sets of practices and procedures; e.g.
Sawyer et. al. (1997), suggest a three-level maturity
model for requirements processes, and others suggest
to include organizational learning and knowledge
management capabilities in the models, since these

2

Scandinavian Journal of Information Systems, Vol. 13 [2001], Iss. 1, Art. 5

http://aisel.aisnet.org/sjis/vol13/iss1/5

© Scandinavian Journal of Information Systems, 2001, 13: 21-3422

SPECIAL ISSUE ARTICLE - Asessing Software Processes

23© Scandinavian Journal of Information Systems, 2001, 13: 21-34

Asessing Software Processes - SPECIAL ISSUE ARTICLE

seem to be related to software process maturity
(Baskerville & Pries-Heje 1998) or to the success of
improvement projects (Stelzer et al. 1998).

Another – more fundamental – discussion concerns
how maturity models and maturity assessments are
used to guide SPI. The maturity assessment process
may itself be flawed due to immature assessment
techniques, the questions used or the training of
assessors (Bollinger & McGowan 1991, Smith et. al
1994, O’Connel & Saiedian 2000) and maturity models
may not be applicable across different types of software
producing organizations or in all countries (Baskerville
& Pries-Heje 1998, Edgar-Newill 1994, Mathiassen &
Sørensen 1996, Sharp et al. 1999, Velden et al. 1996).
Some authors have gone even further and challenged
the maturity idea as such. High maturity levels require,
according to the founding fathers of the models,
documented processes and extensive use of process and
product metrics to control and continuously improve
performance, but some critics argue that today’s
successful software production depends on innovative
capability, creativity and the ability to adapt to a rapidly
changing environment, not on standardized processes
and detailed measurements. Hence higher maturity
levels may actually be harmful instead of beneficial to
a software organization (Bollinger & McGowan 1991,
Bach 1994, Bach 1995, Kohoutek 1996).

The debate about the maturity models and the
maturity concept has, however, suffered from a
general lack of systematic research into the theoretical
and empirical foundations of the maturity concept
and the maturity models. Such research should aim
at establishing the models’ applicability and validity
more firmly.

In this paper we will show how the maturity
models represent only one possible perspective
on software processes The models embody basic
software engineering ideas of sound development
and management practices which can be found in
any textbook on software engineering; e.g. (Pressman
2000, Sommerville 2001). Thus, a maturity model
based assessment of an organization’s software
processes, will focus on the presence – or absence – of
these practices and ignore other aspects of software
processes. We will argue, however, that by looking at
the software processes in their organizational context
and drawing on theories of organizational conflicts
and politics we can draw another – and equally valid
– picture of an organization’s software processes and

how to improve them.
We evaluated the practices of a group of software

project managers (PM) in a small software producing
organization from the point of view of the CMM. This
did not constitute a complete maturity assessment of
the organization but the PMs’ accounts of their own
practices are sufficiently complete to allow us to
assess their practices as immature (level 1) using the
concepts and criteria from the CMM. If we include the
organizational and technical conditions under which
the PMs work in our evaluation of their practices,
however, then we come to see these as both sensible
and rational ways to cope with the contradictions and
uncertainties the PMs must deal with in their day-to-
day effort to complete their projects.

By further relating our observations to other studies
of organizational behaviour in software development
we show that the PMs’ practices, and the organizational
conditions underlying them, are by no means local or
incidental but caused by fundamental structural
conflicts and contradictions that can be found in
most organizations. By drawing on general theories
of organizational conflicts and politics we finally
argue that this organizational perspective on software
practice questions the feasibility of the improvements
recommended in the CMM based evaluation.

2.The research approach
The research results presented here build on data
collected through a three year action research project
in a Danish software organization. Action research
is an approach that through active intervention
simultaneously attempts to achieve practical value
for a client organization and to contribute to scientific
knowledge (for more details about action research,
see f. ex. Checkland (1991) or Avison et al. (1999)).
The project lasted from 1997 to 1999 and through this
period the authors, together with other researchers
and external consultants were engaged in the
organization’s SPI project. We participated in regular
meetings in the internal group responsible for the SPI
project and cooperated with developers and project
managers in specific improvement initiatives. We
have documented the research by tape-recordings and
minutes of all meetings where we have been present,
by tape-recorded interviews with project managers and
middle managers, and in field notes and diary entries.
The documentation also consists of reflective papers

3

Nielsen and Nørbjerg: Assessing Software Processes: Low Maturity or Sensible Practice

Published by AIS Electronic Library (AISeL), 2001

© Scandinavian Journal of Information Systems, 2001, 13: 21-3424

SPECIAL ISSUE ARTICLE - Asessing Software Processes

25© Scandinavian Journal of Information Systems, 2001, 13: 21-34

Asessing Software Processes - SPECIAL ISSUE ARTICLE

written during the action research project (e.g., Iversen
et al. 1999).

The primary data source for this article are interviews
with 7 out of 10 project managers about their software
development practices. The interviews took place
from June to August 1997. Following Patton’s (1990)
techniques for qualitative interviewing we used an
open-ended interview guide and the interviews were
tape-recorded and subsequently transcribed. The
original purpose of the interviews was to identify the
project managers’ perceptions about the company’s
software process problems (Iversen et al. 1999) and
much of the interview text therefore deals directly
with process problems. Our present focus is however
on the organizational and political aspects of software
processes and we have therefore re-read the interviews
from this perspective, working closely with the text
trying to let it speak for itself. Each of us has carefully
read the text and noted what we found to be significant.
We have compared our notes and settled on categories
of issues. We have then read the text again looking for
quotes confirming or disconfirming our categories. The
final categories and the quotes illustrating the categories
form now the basis of the case description. We will not
claim that this resembles an impartial grounded theory
approach as put forward by Strauss & Corbin (1990),
because our long-time engagement with the company
may well have lead us to form interpretations that
others would not have been able to.

Secondary data sources come from our continued
action research effort after the interviews. This has
allowed us to closely observe the project managers
in other situations, to view their actions in a long-term
perspective, and to work with several viewpoints on
how to interpret their perceptions and their actions.
We have at many occasions tried to influence project
managers and others; e.g. top-management as well as
developers and this serves as a context against which
we judge our interpretation of the interview text. The
context helps us to triangulate our findings and it
provides a broader perspective for making sense of the
project managers’ statements.

3.The Case
The interviews took place in the development
department of a company that develops leading edge
measurement instruments and systems. A typical
product consists of one or more measurement
instruments - microphone, thermometer, accellerometer

or other, sometimes with embedded software
– connected to a PC with analysis and presentation
software. Most projects have both a hardware and a
software part but they are run as integrated projects
under a common project manager. Larger projects can
be divided into separate hardware and software sub-
projects, each with their own project manager.

The department is managed by a technical director
who reports directly to the board. The department and
the projects work closely together with marketing,
sales, and production departments.

 The company had been through a long re-
orientation and downsizing process due to increased
competition and set-backs in one of the company’s
major markets, prior to our engagement. Immediately
before our entry the development division went through
a Bootstrap assessment where it was concluded that
most of the company’s software process problems
concerned project management, configuration
management, testing, the development process model,
and requirement specification.

In the following descriptions of the project managers’
practices we will focus on three broad process areas:
estimation and planning, resource allocation, and
requirements management. These areas include a major
part of the project managers’ responsibilities, they are
discussed in depth in most of the interviews and they
vividly illustrate the uncertainties and organizational
contradictions they must cope with.

3.1 Estimates and Planning
The company does not maintain a database of hard
experience data to support the estimation and planning
of the projects. The project managers therefore base
their estimates and plans on past experience and the
judgment and estimates of team members. The project
managers use the plans to get an overview and control
over activities and deadlines. They do not, however,
expect schedules to hold and they know they have to
reschedule often.

The planning process is however often disturbed
by directives from management, time pressure and
uncertainty about the requirements as illustrated in this
extract from an interview with an experienced project
manager:

“The time schedule was decided
beforehand: We had to finish by
a certain month so I really didn’t
have [estimation and planning]

4

Scandinavian Journal of Information Systems, Vol. 13 [2001], Iss. 1, Art. 5

http://aisel.aisnet.org/sjis/vol13/iss1/5

© Scandinavian Journal of Information Systems, 2001, 13: 21-3424

SPECIAL ISSUE ARTICLE - Asessing Software Processes

25© Scandinavian Journal of Information Systems, 2001, 13: 21-34

Asessing Software Processes - SPECIAL ISSUE ARTICLE

problems. I made some rough
plans for the requirement
specification phase. [Some] were
right, others were completely
wrong. So I stopped doing that.
The requirement specification
phase has been much longer than
planned. We should have been
ready by April/May but were
not completely finished until
August. … I’ve used a lot of time
on setting up schedules in this
project; [we’ve] agreed on some
rough plans; and then we’ve tried
to navigate from those [plans].”

This project manager might not agree with the original
schedule set by management, but he did not openly
discuss it. Furthermore, his own original estimates for
the requirements specification phase proved to be far
too optimistic. He managed, however, to re-schedule
and control the project anyway and at the time of the
interview he was confident that he would deliver
within one month after the originally set date. This
estimate proved to be right.

Other project managers are less fortunate and
struggle continuously with unrealistic schedules:

“We got five days to write the
requirements specification for
[X]. That sort of set the stage
for the whole project. We had
thought of at least four months
to [investigate] different types of
users and verify concepts; but no,
[the management] thought that
we could save a lot of time by
declaring ‘You’ve five days’.”

The project actually did manage to write a specification
in five days, but it was very superficial and the project
never came to believe completely in it, according to
the project manager.

Project X was originally scheduled to produce a
version 1.0 of the product in 10 months. It took the
project group 16 months to produce a beta-version and
another three months to complete version 1.0.

The above examples show that the estimation
and planning processes are heavily influenced by
the product delivery plan produced by the technical
director together with the other directors. The plan
outlines features of next years’ products and tells

the sales department when demo versions of new
products are to be ready, when they can begin selling
the product, and when delivery actually will take place.
The schedule lists the products’ general features and a
first step in a project is to write a more detailed product
description based on this feature list. The following
extract from an interview with a project manager shows
an important aspect of this.

“... [management] announces
next year’s products before there
is a requirements specification
or anything. That means that we
launch projects based on mere

headlines because we have to.”

The project managers realize that this is a perfectly
reasonable approach from a marketing and sales
point of view. Without a launch schedule the sales
representatives would be unable to plan their sales
efforts and cater for the customers’ needs and demands.
It is a difficult situation to bring the project managers
in, however. On the one hand they understand the
need for a product launch schedule, but they cannot
make their project plans based on it. Even worse, they
are required to estimate a development project from
product feature “headlines” only.

When a project is underway, there is immense
pressure to deliver on time. The technical director is
under pressure from the other divisions and from top
management and he presses the projects to deliver
as expected. The sales representatives on their side
are under pressure from the market because of their
commitments to deliver to the customers according to
the launch schedule.

Summarizing the above we can say that the project
managers really try to estimate and schedule their
projects; they know basic planning and management
techniques and estimate, as well as possible, based on
past experience, but they find that this doesn’t help
them cope with the management problems they face.
The result can be a rather cynical attitude towards
planning as expressed in the following quote from a
manager of a delayed project:

“You gave your best shot and
after some time you’re “beyond
time schedules” because it didn’t

matter, you just had to complete.”

5

Nielsen and Nørbjerg: Assessing Software Processes: Low Maturity or Sensible Practice

Published by AIS Electronic Library (AISeL), 2001

© Scandinavian Journal of Information Systems, 2001, 13: 21-3426

SPECIAL ISSUE ARTICLE - Asessing Software Processes

27© Scandinavian Journal of Information Systems, 2001, 13: 21-34

Asessing Software Processes - SPECIAL ISSUE ARTICLE

3.2 Resource Allocation
Resource allocation in the company concerns two
issues: what projects to start and the allocation or
removal of manpower called resources to or from
projects.

The company faces a severe shortage of software
developers with the specialized knowledge about
measurement instruments and analysis algorithms
required to develop the company’s products. There
is therefore an ongoing struggle between project
managers to have enough developers with the right
qualifications allocated to projects.

“When we started we were
two technical project managers
… one for Windows software
and one for [signal processing]
software. There were eight
[developers] on Windows
software and five on [signal
processing]. That was 20 less
than what we’d asked for.”

Project managers find other ways to deal with the
shortage. Developers cannot be allocated to a project
that is not officially started, but some project managers
are nevertheless able to create so called ‘drawer
projects’. A ‘drawer project’ is a project initiated by
a project manager without explicit approval from the
technical director. If the project manager eventually
succeeds to obtain formal support for the project
it will emerge from the project managers drawer
and officially start. Several of the project managers
we interviewed reported that their – now officially
approved – projects were begun as drawer projects.

“It has been running since … it’s
one of the political spheres …
in principle … officially it was
started a month ago [July 1997].
Unofficially, it … started in late
February.”

It is of course almost impossible to apply proper
processes in drawer projects as they are a cover-up of
what is actually going on.

It is not clear how project managers manage to
allocate resources to drawer projects, but it appears
that at least some of these projects have been able to
obtain a semi-official status. The following extract

concerns a project that had been running for years and
had produced several versions of the product without
being officially defined as a project, and without a plan
and estimates:

“Interviewer: To go on with
this project you needed
project team members with
particular qualifications. These
qualifications were not available
in the market and you couldn’t
move people around in the
company. You then [hired] new
people and trained them for half
a year. Then they were ready to
enter the project.
Project manager: That’s exactly
the situation here.”

The project managers perceive the resource allocation
process as sometimes arbitrary. One project manager
reports about his difficulties getting his project
underway:

“You see, it was a direct order
from management on how to
prioritize.[Unfortunately], our
key programmer was tied up in
maintenance work ... so there was
very little work done until after
summer.”

To overcome this problem the project manager had to
convince the technical director to reallocate developers
from other projects. This is always a problematic thing
to do partly because it may hurt relations to other
project managers, partly because the developer himself
may resent being moved.

A final quotation illustrates what another project
manager perceives as a paradox concerning resource
allocation: producing an estimate requires manpower
that he can’t get without an estimate.

“[Getting resources] ... it is like
a vicious circle. If there isn’t
anybody on the project, then ...it’s
hard to make an estimate. And
without an estimate you don’t get
any people, right?”

6

Scandinavian Journal of Information Systems, Vol. 13 [2001], Iss. 1, Art. 5

http://aisel.aisnet.org/sjis/vol13/iss1/5

© Scandinavian Journal of Information Systems, 2001, 13: 21-3426

SPECIAL ISSUE ARTICLE - Asessing Software Processes

27© Scandinavian Journal of Information Systems, 2001, 13: 21-34

Asessing Software Processes - SPECIAL ISSUE ARTICLE

3.3 Requirements definition and manage-
ment
The company’s official project model prescribes
that projects produce a requirements specification
to be approved by the project’s steering committee.
This committee is also supposed to approve all
later changes to requirements. There is, however,
considerable variation in how individual projects find,
describe, and later change and manage requirements.
At the time of the interviews a few projects were in
the process of adapting a new requirements definition
process with systematic use of scenarios, use cases and
prototypes. This approach spread gradually to other
projects over the following years and was incorporated
in the company’s quality system by 1999. At its best
therefore, requirements definition is based on project
seminars to brainstorm ideas, peer reviews, visits to
customers, and testing prototypes internally and at
customer sites. The project managers reported that this
could be a time consuming process, but that it resulted
in detailed, and very useful specifications.

Other projects take requirement specification more
lightly:

“It has been characteristic for
this project from day one that it
has been absolutely informal. It
is probably the biggest ‘drawer
project’ ever. … [Through
the whole project] there has
been no formal requirement
specification.”

The project concerns a system to support certification
of audio devices according to five different national
standards. It never produced a requirements
specification, but used the national certification
standards as a substitute and managed to produce
several releases of the system. The standards do not,
however, mention central aspects of a computerized
system, e.g., the user interface.

The pressures put on the projects to meet deadlines
mean that they are not always able to systematically
manage requirements. They perceive themselves as
being under the combined pressure from the technical
director who wants them to meet the set dead-line and
a marketing department that tries to push as many
features as possible into the product without concern
for time and development costs. For the project

managers it becomes more important to meet deadlines
with a functioning product than implementing all
requirements and they are therefore prepared to simply
strip requirements.

“Interviewer: What happens when
you approach the dead-line?
Project manager: You’ll have to
adjust your own ambitions for the
project. How many nice-to-have
features do you throw away?”

Requirements changes are formally approved in
the steering committee as noted above. In practice,
however, the project managers assume responsibility
for requirements changes, eventually with subsequent
approval in the committee. The following project
manager thus displays extreme confidence in his
overview of the market and his ability to make the
right decisions regarding requirements:

“No, [the changes] are approved
by the project manager. I take
the decision. I don’t necessarily
go out and ask a large part of the
market … OK, I have the insight
into market needs that it requires.
“

The project managers partly blame this practice on the
delays inflicted by the slow and bureaucratic approval
process. To avoid these delays the project managers
might also simply postpone the formal requirements
review and sign-off procedure for as long as possible.

4. Evaluating practice
The practices described above are no doubt
problematic. However, as we will show in this section,
the interpretation of the practices, the problems
identified, and the solutions suggested, depend heavily
on the framework used to assess them.

4.1 A CMM perspective
The CMM defines maturity in terms of five levels
as described earlier. Each level describes a set of
development practices and management procedures
that must be in place and followed for an organization
to qualify for that maturity level. CMM level 2

7

Nielsen and Nørbjerg: Assessing Software Processes: Low Maturity or Sensible Practice

Published by AIS Electronic Library (AISeL), 2001

© Scandinavian Journal of Information Systems, 2001, 13: 21-3428

SPECIAL ISSUE ARTICLE - Asessing Software Processes

29© Scandinavian Journal of Information Systems, 2001, 13: 21-34

Asessing Software Processes - SPECIAL ISSUE ARTICLE

describes processes within the following six general
areas

• software project planning

• requirements management

• software project tracking and oversight

• software configuration management

• sub-contractor management

• software quality assurance.

The descriptions of the project managers’ practices in
the previous section fall within the first two of these
and a comparison with the specification of CMM level
2 reveals severe weaknesses within both areas - the
following evaluation is based on Paulk et al. (1993),
pp. 59-60):

Software Project Planning
The CMM requires that projects follow a systematic
and documented estimation and planning process,
and that all parties commit themselves to approved
plans and schedules. The plan and the schedule should
include available and allocated resources.

This requirement is, as we saw above, not met
in the company’s software projects. The project
managers do make estimates and plans, but they see
their effort as being confounded by fixed delivery
dates, and insufficient resources, both with regard to
time and people, to perform requirements analysis
and subsequent estimation and planning in a proper
way. Furthermore, resource allocation seems to be
ad hoc and political and not linked to estimates and
schedules.

As a result, the project managers themselves don’t
believe in the – documented – plans, but simply try to
deliver as soon as, and when possible. In this process
they may rely on their own, unofficial development
plan and their agreements with developers.

Requirements Management
Software requirements should be documented and
approved and all changes to requirements should be
carefully controlled, according to the CMM. Changes
to requirements should be reflected in plans and
schedules.

We described above how not all projects document
and control requirements. Some projects don’t have

a requirements specification while others keep the
specification fluid for as long as possible. Requirements
may be changed or removed at the project manager’s
discretion without previous approval from the steering
committee.

Thus, a CMM assessment of the company’s
software processes would result in recommendations
for considerable changes within these two areas [1].
One thing in particular would need to be improved:
namely the way commitments are established and
maintained. The concept of commitment forms the
basis for several of the CMM’s recommendations and
is intended to capture the mutual agreements about; e.g.
plans, resources, schedules etc. that actors in software
development projects make. Humphrey explains the
elements of making a commitment in this way:

1. The person making the commitment does so
willingly.

2. The commitment is not made lightly; that
is, the work involved, the resources, and the
schedule are carefully considered.

3. There is agreement between the parties on what
is to be done, by whom, and when.

4. The commitment is openly and publicly stated.

5. The person responsible tries to meet the com-
mitment under all circumstances, even if help
is needed.

6. Prior to the committed date, if it is clear that
it cannot be met, advance notice is given and
a new commitment is negotiated (Humphrey
1989, p.70)

In the CMM these elements are operationalized in the
form of several practices and procedures. It is obvious
that commitments are not made and maintained in
this way in the company. The project managers are
for example ready to accept a fixed delivery date or
a project schedule based on “shaky grounds” and to
work according to their own ’unofficial’ plan until it
becomes obvious that the ‘official’ plan is unrealistic.
Upper management, on the other hand, will not commit
itself to the project managers’ schedules but enforces a
fixed deadline.

4.2 Organizational practice
The CMM’s assessment and advice is sensible and
useful from a pure software engineering perspective:

8

Scandinavian Journal of Information Systems, Vol. 13 [2001], Iss. 1, Art. 5

http://aisel.aisnet.org/sjis/vol13/iss1/5

© Scandinavian Journal of Information Systems, 2001, 13: 21-3428

SPECIAL ISSUE ARTICLE - Asessing Software Processes

29© Scandinavian Journal of Information Systems, 2001, 13: 21-34

Asessing Software Processes - SPECIAL ISSUE ARTICLE

The company’s projects do suffer from time and
budget overruns and there are defects in the products.
So there is room for improvements. Our involvement
with the organization makes us, however, question the
CMM assessment and the feasibility of the ensuing
recommendations.

Through the interviews and through our intervention
into the company we have come to see it as an
organization characterized by: contradictory demands,
structural conflicts, limited resources, uncertainty and
change, and we will argue that other, more complex
explanations of the process problems are needed
in order to properly identify feasible and sensible
solutions, if such solutions exist at all in all cases.
We will now discuss how the specific organizational
conditions in the company make the project managers
behave in the unsystematic and seemingly irrational
way described above.

The project managers face contradictory demands.
They are for example under considerable pressure
from the marketing and sales departments and the
technical director to deliver according to the launch
schedule already communicated to the sales force. On
the other hand, everybody wants fault-free code with
high usability that meets the complex needs of the
customers. These requirements are contradictory in
the sense that they cannot be fulfilled simultaneously
by all projects. To the project managers, the products’
quality depends on their ability to experiment with the
technology and the requirements, but experimentation
creates planning uncertainties, and they are therefore
less comfortable with a fixed delivery date.

“Interviewer: Can one say that
there is a contradiction between
you and your need to experiment
and management’s need to have a
[delivery] date.
Project manager: Yes, that’s the
paradox.”

Project managers consequently understand estimates
as political statements and delivery dates as something
to be continuously negotiated. Some even – in their
own words – “collect excuses” in case something goes
wrong in their project.

There are conflicting interests in the organization;
particularly concerning the limited development
resources. It is in the interest of the project managers

to have adequate resources. This will effectively enable
them to handle some of the other uncertainties they
face. The technical director, on the other hand, wants to
provide the projects with as few resources as possible
in order to be able to start more projects or reduce
costs. It is in the interest of the project managers to
have developers with specific competencies allocated
to their projects, but the technical director needs to
maintain a flexible work force where competence can
be moved around depending on need.

The limited resources create conflicts among
the project managers and between them and upper
management. The project managers’ competition for
available resources takes both subtle and outspoken
forms. When the competition is latent the project
managers will try to influence the technical director’s
decisions about staffing of projects. It is not uncommon
that the technical director has promised a project
manager a developer, but no developer is available.
When the competition is more manifest a project
manager might go to the technical director and argue
that he should have a developer from another project
under less pressure.

There is uncertainty in any development process. A
promising new, but crucial technology may be delayed
or it turns out to be less useful than anticipated. Some
requirements may turn out to be much more complex
to realize than expected. The marketing department
might change its mind; it proves impossible to find and
hire needed resources, etc. The project managers live
with these uncertainties and they attempt to be on top
of the situation, but they are often taken by surprise. To
reduce uncertainty they need time to experiment and
systematically search for new and relevant information,
but this collides with the processes defined in the
company’s quality system and the demand to deliver
on time:

“It is impossible to follow the
models in practice. Instead you
do what comes natural – to make
a kind of ... iterative prototype
development. This should be
legalized instead of turning [us]
into some kind of criminal – a

‘closet criminal’.”

There is change in the projects’ environment. The
organizational structure is changing when new

9

Nielsen and Nørbjerg: Assessing Software Processes: Low Maturity or Sensible Practice

Published by AIS Electronic Library (AISeL), 2001

© Scandinavian Journal of Information Systems, 2001, 13: 21-3430

SPECIAL ISSUE ARTICLE - Asessing Software Processes

31© Scandinavian Journal of Information Systems, 2001, 13: 21-34

Asessing Software Processes - SPECIAL ISSUE ARTICLE

managers are hired and others leave. Project creation
or termination leads to changes in the development
department and fluctuations in product sales or size
of market segments may reshape the whole company.
To a project manager significant changes also occur
when resources and thereby knowledge leaves the
company.

“Almost all knowledge [relevant
to this project] had disappeared
from the company [by] January
1997. For a long time in the
beginning of 1997 there were
literally no development
activities [in the project].
New personnel, without deep
knowledge of [the application
domain] were hired in the second
quarter. Training them was a
major effort ...”

From this perspective we come to see the project
managers as competent actors in a highly contradictory
and complex organizational environment. They want
to produce usable products without too many defects,
and reasonably close to an acceptable delivery date.
Fluid or incomplete requirements, ‘drawer projects’,
illicit prototypes, and rough, missing or outdated
plans are, in this light, not simply immature software
practices, but can be understood as strategies to
protect their project and themselves and to ensure
the success of the projects they are responsible for
in an environment of uncertainty, contradiction, and
conflict.

4.3 Organizational politics
Above we interpreted the project managers’ practices
as means to steer their project through contradictory
demands, organizational conflicts and uncertainties
regarding product features, technology and staffing.
Thus we saw the practices as symptoms of underlying
causes embedded in the company.

What we have described may be seen as irrational
behaviour from individual project managers or others
in the company. We will argue, however, that what we
have seen in “the company” is merely the outcome of
organizational processes that can be found in many
software organizations. Studying at these processes
and the theories that explain them can give us a deeper
understanding of the project managers’ practices and

also reveal problems and limitations in the CMM’s and
other maturity models’ perspective on organizations.

In a recent study Linberg (1999) observes that
developers find that management sends conflicting
signals about the relative importance of schedule,
time, quality, and cost in software projects. Kautz
et al. (2001) present a similar example where such a
problem situation was resolved by a strategy which is
not included in the CMM. The developers in Linberg’s
study also report about deliberate initial underestimation
of projects in order to secure project approval. The
inevitable ensuing delays and cost overruns therefore
came as no surprise to the developers. The study further
shows that the developers and managers do not agree
on what it means for a project to be successful. When
asked to assess the success or failure of a project, the
developers considered factors such as interesting and
challenging work and the quality of the end-product, at
least as important as meeting budgets and deadlines.

Keil & Robey (1999) have interviewed IS auditors
about the handling of troubled IS projects. To
handle troubled IS projects requires that somebody
communicates the bad news to somebody else who can
do something about it, but the message may be delayed
because nobody wants to transmit or act upon news
of a troubled project out of fear of the consequences.
“Blowing the whistle” – as Keil & Robey call it – or
terminating a troubled project may be perceived as
“career suicide” because of the vested interest and
prestige in the project, and the bad news may simply
be ignored by managers with the power needed to act
on troubled projects.

“The would-be whistle blower
must wield sufficient power to
challenge [the] conviction [that
project completion is critical].”
(Keil & Robey 1999, p. 83)

Both Linberg’s and Keil & Robey’s studies supplement
our interpretation of the project managers’ practices. In
each their way they open up for alternative explanations
of the project managers’ practices, than those offered
by a maturity assessment. Following Linberg we can
see how different actors in the company hold different
views on projects and how to manage them; i.e. the
PMs and management do not agree upon how to
schedule a project or how to handle uncertainties.
Following Keil & Robey we can also see that bad

10

Scandinavian Journal of Information Systems, Vol. 13 [2001], Iss. 1, Art. 5

http://aisel.aisnet.org/sjis/vol13/iss1/5

© Scandinavian Journal of Information Systems, 2001, 13: 21-3430

SPECIAL ISSUE ARTICLE - Asessing Software Processes

31© Scandinavian Journal of Information Systems, 2001, 13: 21-34

Asessing Software Processes - SPECIAL ISSUE ARTICLE

news are rarely communicated in the company and
that differences of opinion are rarely voiced in front of
the technical director. In fact, there is a cover-up of the
different perceptions in form of the ‘drawer projects’
and some project managers collect excuses to defend
their self interest and their projects.

The question is what causes this kind of behaviour
and what – if anything – can be done to change it. The
concept of commitment discussed above is certainly
one way to explain the behaviour. Most of our
observations in the company, as well as those reported
by Linberg, resp. Keil & Robey can be explained
through reference to lack of commitment to an open
and rational planning and management process. In
the case of the company it is obvious that a dedication
to open and shared commitments and an agreement
on goals and ways to meet them are necessary
prerequisites for improvements.

This interpretation of the situation is however
based on a conventional notion of commitment
assuming that commitment among others is an all
positive phenomenon - as discussed and challenged
by Abrahamson (2001) - and leaves open the
question of what lies behind the missing dedication
to commitments. This question cannot be explained
within the framework offered by maturity models. We
need to turn to other, more complex perspectives on
organizations and organizational behaviour.

We find that the concept of organizational
politics, though broad and without clear and concise
definitions, can offer some explanations. Drory &
Romm (1990) write that theories on organizational
politics “indicate that formal organizational processes
such as decision and policy making, goal setting, and
resource distribution are not conducted predominantly
by rational considerations which represent the best
interests of the organization.” (p. 1133). They draw
a comprehensive picture of organizational politics
encompassing such elements as self-serving behaviour,
acting against organizational goals, concealment of
motives, informal behaviour, uncertainty in decision
making, and organizational conflicts.

Through an extensive literature survey Drory &
Romm (1990, p. 1147) come to define organizational
politics as a combination of the following three
elements: influence, informal means, and conflict.
Our descriptions of the practices of the PMs clearly
demonstrate the presence of all three elements of
organizational politics.

We can go even further based on Knights & Murray’s
(1994) study of conflicting management priorities
in information systems development. Knights &
Murray argue that IS organizations are dominated by:
competing, politicizing, and conflicting groups. The
conflicts are, however, not caused by simple power
struggles, personal ambitions or ‘turf guarding’, but
are the results of conflicting views on what is best for
the organization. These views influence and are at the
same time shaped by personal ambition, departmental
loyalties, different world views, and structural conflicts
over priorities

“… it is impossible and
misleading to separate off the
albeit problematic pursuit of self
or sectional interests from those
of the organization itself. Rather,
it is through the construction,
negotiation and reappraisal of
self, collective and organizational
interests that the fragile reality
of an organization is sustained,
reproduced and changed.”
(Knights & Murray 1994, p. 29)

Therefore – according to Knights and Murray – there
can be no right or universally valid organizational goal
or strategy. Broken down to the day-to-day business
of producing software and information systems, this
means that there is no over-all goal within which to
define and prioritize work; there is only an ongoing
political struggle.

In this light then, we can argue that the project
managers in the company see themselves as perfectably
capable to determine what is in the best interest of
the company and their environments behaviour as
obstacles for successful projects. Other actors; e.g.
the technical director, the marketing department etc.
may have other ideas of what is ‘best’ and are therefore
not necessarily ready and willing to accept the project
managers’ views, priorities, actions etc.

For the project managers it is therefore important to
do what they can to maintain and enlarge the space in
which they have the power to act in what they see as
the best interest of the company in more or less open
conflict with other actors; i.e. they invent ‘drawer
projects’ to create a space for exploring exciting
new possibilities, they circumscribe or short circuit
‘bureaucratic’ approval and change control procedures

11

Nielsen and Nørbjerg: Assessing Software Processes: Low Maturity or Sensible Practice

Published by AIS Electronic Library (AISeL), 2001

© Scandinavian Journal of Information Systems, 2001, 13: 21-3432

SPECIAL ISSUE ARTICLE - Asessing Software Processes

33© Scandinavian Journal of Information Systems, 2001, 13: 21-34

Asessing Software Processes - SPECIAL ISSUE ARTICLE

to maintain project momentum, and they use whatever
means possible to get the resources they need for their
project.

4.4 Changing practice
This is not to say that there isn’t room for
improvements in the company’s software processes.
But how can the situation be improved? The PMs’
strategies are simplistic and serve to obscure the
underlying problems rather than expose and improve
them. A maturity assessment on the other hand will
just point to a number of weak processes and produce
a prioritized list of necessary improvements.

In our view the uncertainties and structural conflicts
facing the project managers must be surfaced and
removed as a precondition for implementing any
change. Kautz et al. (2001) demonstrate how this may
be done when process consultants consciously assume
the role of political agents. However this approach
may not always be feasible.

Furthermore, from Knights and Murray’s (1994)
perspective on organizational politics we can interpret
CMM-inspired improvements as a way to make
development projects more transparent to, e.g., higher
levels of management and thus reduce the scope of the
project manager’s control. To willingly accept such a
change requires that the project managers trust other
groups in the company to accept their perception of
what is ‘best’ for their projects. Based on previous
experience, however, the project managers may
assume that this is not the case, and that any sign of
openness therefore will be exploited by others at the
project managers’ expense. Adopting this perspective
we may therefore expect that improvement initiatives
will be accompanied by new attempts to maintain
project control as manifested by ‘drawer projects’,
uncontrolled requirements changes, withholding of
information and other strategies.

5. Conclusion
Models of software process maturity provide a
particular way to assess software processes with a
focus on the lack of maturity and lack of rationality. In
this article we have shown that by seeing organizations
as political, rather than rational, we can provide an
explanation of software – and in particular project
management – practices that is different from the one
offered by the CMM and similar maturity models.

It is not easy to base advice for SPI from our
analysis. One approach could be to supplement a
traditional maturity assessment with an investigation
of the organizational contexts of software practices
to uncover and remove ‘organizational causes’ and
obstacles for improvement. Even this approach may,
however, be problematic. From a political perspective
SPI itself can be seen as a way to change the balance of
power in a software producing organization, a change
which may inspire new struggle over the control of
software projects.

The purpose of maturity models is to guide
assessments and change of software practices. They
are based on a traditional software engineering
perspective and like any model, they rest upon certain
assumptions about reality, exposing certain aspects of
software processes and organizations at the expense
of others. Thus, using the maturity models to assess
software organizations will turn our attention to certain
problems and recommendations and leave out others.
We have demonstrated, through an example, that some
of the issues overlooked in a maturity assessment, but
surfaced by looking at the software practices from
another perspective, may prove to be severe obstacles
for the implementation of improvements. This does
not falsify the CMM or similar maturity models, but
does, in our view, underline the need for more research
aiming at understanding the theoretical underpinnings
of the maturity models and their practical implications
to better understand under which conditions we can use
the models to guide improvement efforts.

Notes

[1] A complete CMM assessment falls outside the scope of this paper, but it would expose weaknesses within several of the
other level 2 areas too.

12

Scandinavian Journal of Information Systems, Vol. 13 [2001], Iss. 1, Art. 5

http://aisel.aisnet.org/sjis/vol13/iss1/5

© Scandinavian Journal of Information Systems, 2001, 13: 21-3432

SPECIAL ISSUE ARTICLE - Asessing Software Processes

33© Scandinavian Journal of Information Systems, 2001, 13: 21-34

Asessing Software Processes - SPECIAL ISSUE ARTICLE

References

Abrahamson, P.(2001). Rethinking the Concept of Commitment in Software Process Improvement, in this volume.

Avison, D.,. Lau, F., Nielsen, P. A, M. Myers, M. (1999). Action Research. Comm. ACM.

Bach, J. (1994). The Immaturity of the CMM. American Programmer, 7(9), pp. 13-18.

Bach, J. (1995). Enough about Process: What We need are Heroes. IEEE Software, 12 (March), pp. 96-98.

Baskerville, R. and Pries-Heje, J. (1998). Managing Knowledge Capability and Maturity. In: Larsen, T.J., Levine, L. and
DeGross, J.I. (eds.) Information Systems: Current Issues and Future Changes, IFIP, Laxenburg: pp.175-196.

Bollinger, T.B. and McGowan, C. (1991). A Critical Look at Software Capability Evaluations. IEEE Software, 8 (4), pp. 25-
41.

Checkland, P. (1991). „From Framework Through Experience to Learning: The Essential Nature of Action Research,“ in
Information Systems Research: Contemporary Approaches and Emergent Traditions (ed. H.E. Nissen et al.), Elsevier,
North-Holland, pp. 397–403.

Drory, A. and Romm, T. (1990). The Definition of Organizational Politics: A Review, Human Relations, vol. 43, no. 11, p.
1133-1154.

Dunaway, D. K. and Masters, S. (1996). CMM-Based Appraisal for internal process Improvement (CBA IPI): Method
Description. Technical Report: CMU/SEI-96-TR-007, Software Engineering Institute, Pittsburgh, Pennsylvania.

Edgar-Nevill, V.M.A. (1994). Evaluation of the SEI software capability model within an information systems context; in
pursuit of software quality. In: Ross, M., Brebbia, C.A., Staples, G. and Stapleton, J. (eds.) Software Quality Management
II. Managing Quality Systems. Vol.1, Comput. Mech. Publications, pp.263-278.

Enam, K. E., Drouin, J.-N., and Melo, W. (1998). The Theory and Practice of Software Process Improvement and Capability
Determination, Los Alamitos, CA: IEEE Computer Society Press.

Goldenson, D. R. and Herbsleb, J. D. (1995). After the Appraisal: A Systematic Survey of Process Improvement, its Benefits,
and Factors that Influence Success, Technical Report: CMU/SEI-95-TR-009, Software Engineering Institute, Pittsburgh,
Pennsylvania.

Humphrey, W.S. (1989). Managing the Software Process. Addison-Wesley, Pittsburgh, Pennsylvania.

Iversen, J.I., Nielsen, P.A. and Nørbjerg, J. (1999). Situated Assessments of Problems in Software Development, DATA
BASE for Advances in Information Systems, vol 30, no 2, p. 66- 81.

Kautz, K. Hansen, H. W. and Thaysen, K.(2001). Understanding and Changing Software Organisations: An Exploration of
Four Perspectives on Software Process Improvement, in this volume

Keil, M. and Robey, D. (1999): Turning Around Troubled Software Projects: An Exploratory Study of the Deescalation of
Commitment to Failing Courses of Action, Journal of Management Information Systems, vol. 15, no 4, pp. 63-87

Knights, D. and Murray, F. (1994). Managers Divided, John Wiley & Sons, Chichester.

13

Nielsen and Nørbjerg: Assessing Software Processes: Low Maturity or Sensible Practice

Published by AIS Electronic Library (AISeL), 2001

© Scandinavian Journal of Information Systems, 2001, 13: 21-3434

SPECIAL ISSUE ARTICLE - Asessing Software Processes

Kohoutek, H.J. (1996). Reflections on the capability and maturity models of engineering processes. Quality and Reliability
Engineering International, 12 (3), pp. 147-155.

Kuvaja, P., Similä, J., Krzanik, L., Bicego, W., Saukkonen, S., and Koch, G.(1994). Software Process Assessment and
Improvement: The Bootstrap Approach, Oxford: Blackwell Publishers.

Linberg, K.R. (1999). Software Developer Perceptions about Software Project Failure: A Case Study, The Journal of Systems
and Software, 49, pp. 177-192.

Mathiassen, L. and Sørensen, C. (1996). The capability maturity model and CASE. Information Systems Journal, 6, pp. 195-
208.

O’Connel, E. and Saiedian, H. (2000). Can You Trust Software Capability Evaluations, IEEE Computer, vol 33, no 2, pp. 28
–35.

Patton, M.Q. (1990). Qualitative Evaluation and Research Methods. Sage Publications, New York, 2nd edition.

Paulk, M.C., Curtis, B., Chrissis, M.B., and Weber, C.V. (1993). Capability Maturity Model for Software, Version 1.1. 93-TR-
024. Software Engineering Institute, Pittsburgh, Pennsylvania.

Saiedian, H. and Kuzara, R. (1995): SEI Capability Model’s Impact on Contractors, IEEE Computer, 28, pp. 16 – 26.

Sawyer, P., Sommerville, I. and Viller, S. (1997). Requirements Process Improvement Through the Phased Introduction of
Good Practice. Software Process – Improvement and Practice, 3, pp. 19-34.

Sharp, H., Woodman, M., Hovenden, F. and Robinson, H. (1999). The role of ‘culture’ in successful software process
improvement. In: Proceedings 25th EUROMICRO Conference. Informatics: Theory and Practice for the New
Millennium, IEEE Computing Society, pp.170-176.

Smith, W.L., Fletcher, R.I., Gray, E.M. and Hunter, R.B. (1994). Software process improvement: the route to software
quality? In: Ross, M., Brebbia, C.A., Staples, G. and Stapleton, J. (eds.) Software Quality Management II. Managing
Quality Systems. Vol.1, Comput. Mech. Publications, pp.193-211.

Stelzer, D., Mellis, W. and Herzwurm, G. (1998). Technology Diffusion in Software Development Processes: The
Contribution of Organizational Learning to Software Process Improvement. In: Larsen, T.J. and McGuire, E. (eds.)
Information Systems Innovation and Diffusion: Issues and Directions, Idea Group Publishing, Hershey, USA: pp.297-
344.

Strauss, A., Corbin, J. (1990). Basics of Qualitative Research. Grounded Theory Procedures and Techniques. Sage
Publications, Beverly Hills, CA, USA.

Velden, M.J.v.d., Vreke, J., Wal, B.v.d. and Symons, A. (1996). Experiences with the Capability Maturity Model in a research
environment. Software Quality Journal, 5, pp. 87-95.

14

Scandinavian Journal of Information Systems, Vol. 13 [2001], Iss. 1, Art. 5

http://aisel.aisnet.org/sjis/vol13/iss1/5

	Scandinavian Journal of Information Systems
	2001

	Assessing Software Processes: Low Maturity or Sensible Practice
	Peter Axel Nielsen
	Jacob Nørbjerg
	Recommended Citation

	tmp.1258132801.pdf.cb0sV

