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Abstract
This paper exemplifies how better knowledge about  human judgement strategies known as 
heuristics can be used to improve software processes, especially estimation and prediction 
processes. Human judgement heuristics work well when they exploit a fit between their structure 
and the structure of the environment in which they are used. This use of environmental fit may 
lead to amazingly good judgements based on little information and simple computations compared 
with more formal approaches. Sometimes, however, the heuristics may lead to poor judgements. 
Knowing more about the strengths and weaknesses of human judgement heuristics we may be 
able to (1) know when to use formal process improvement approaches and when to use less 
expensive expert judgements, (2) support the experts in situations where the experts’ judgements 
strategies are known to perform poorly, (3) improve the formal processes with elements from the 
experts’ strategies, and (4) train the experts in the use of more optimal judgement strategies. A 
small-scale experiment was carried out to evaluate the use of the representativeness heuristic in 
a software development effort estimation context. The results indicate that the actual use of the 
representativeness heuristic differed very much among the estimators and was not always based 
on an awareness of fit between the structure of the heuristic and the structure of the environment. 
Estimation strategies only appropriate in low uncertainty development environments were used 
in high uncertainty environments. A possible consequence of this finding is that expert estimators 
should be trained in assessing how well previous software projects predict new software projects, 
i.e., the uncertainty of the environment, and how this uncertainty should impact the estimation 
strategy.

Key words: 
Software process improvement, human judgement heuristics, expert judgement, software effort 
estimation.
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1. Introduction
An important principle of Scientific Management, 
Taylorism, is to decrease the reliance on expert 
judgement and to increase the use of well-defined 
work processes derived from measurement and 
statistical analyses. In fact, the main purpose 
of Taylor’s book The Principles of Scientific 
Management (Taylor, 1911) is “to show the enormous 
gains which would result from the substitution by our 
workmen of scientific for rule-of-thumb methods.”  
Implementation of this principle has typically had the 
following consequences:

•   A work process improvement group, process 
owners or the managers get the formal respon-
sibility for improvement of the process, not the 
workers.

•   The work processes are defined and measured.

•   The work process variance is controlled and 
analysed.

•   Work process changes are managed as con-
trolled experiment, with scientific analyses of 
the causes and/or impacts of process changes. 

The principle has, in spite of several anti-Tayloristic 
initiatives (Pruijt, 1997), proved to be persistent, and 
there are reasons to believe that it has had a strong 
influence on current software process improvement 
frameworks. For example, process owner, process 
measurement and statistical process control are 
important elements of the widely known process 
improvement frameworks Total Quality Management 
(Deming, 2000) and the Capability Maturity Model 
(Paulk et al., 1993). The increased reliance on 
scientific methods to improve software processes is, 
of course, only meaningful when it leads to better 
processes than the processes which were developed 
or evolved by applying informal expert judgement. 
We probably need both formal and informal software 
process improvement approaches. But we need to 
know the cost and benefits of different approaches. To 
do this we need to know how and how well software 
professionals judge. If we knew the judgement 
strategies used by software professionals, we may 
be able to:

•   know when to use formal process improve-
ment approaches and when to use - less expen-

sive - expert judgements,

•   support the experts in situations where the ex-
perts’ strategies are known to perform poorly,

•   improve the formal processes with elements 
from the experts’ strategies, and

•   train the software professionals in the use of 
more optimal judgement strategies.

Unfortunately, as far as we know, neither the Scientific 
Management literature nor the software process 
improvement literature describes how to achieve these 
goals. On the other hand, there have been a number of 
relevant psychological studies on human judgement. 
These studies are not referred to in the software process 
improvement literature. The purpose of this paper is, 
therefore, to exemplify how we may apply results from 
psychological studies on how people judge to improve 
software processes.

Our work is part of a Norwegian software process 
improvement research project: PROFIT (PROcess 
improvement For the IT industry). PROFIT is a 3 year 
project running from 2000 until 2003 and is funded by 
the Research Council of Norway (NFR). Its main goal 
is to increase the competitiveness and profitability 
of Norwegian IT-industry through systematic and 
continuous process improvement. An important 
aspect of PROFIT is to provide a means for academia 
and software industry to meet and share software 
process improvement experiences and research 
results. The research partners are University of Oslo 
(UiO), the Foundation for Scientific and Industrial 
Research at the Norwegian Institute of Technology 
(SINTEF) and the Norwegian University of Science 
and Technology (NTNU). Currently, 10 Norwegian 
software development organisations participate in 
the project. Through the participation in PROFIT we 
carry out software improvement studies in industrial 
environments to get feedback on the importance of the 
problems we study and on the validity of our research 
results. The results described in this paper are based 
on studies in co-operation with the PROFIT software 
development organisations and an experiment using 
computer science students.

Although this paper covers software process 
improvement in general, its main focus is on human 
judgement heuristics for software project effort 
estimation. Software project effort estimation is, in 
our opinion, a good example of a process that can be 
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improved using both formal and informal approaches 
when one knows more about the judgement strategies 
of software professionals. The empirical studies 
on software project effort estimation indicate that 
formal estimation models are not systematically more 
accurate than informal expert judgement (Conte et 
al., 1986, Finnie & Wittig, 1997, Kemerer, 1987, 
Myrtveit & Stensrud, 1999). On the other hand, there 
is evidence indicating that a combination of expert- 
and modelbased judgement provides more accurate 
effort estimates than expert and model estimates 
alone (Briand et al., 1998, Jørgensen, 1997, Myrtveit 
& Stensrud, 1999). Similar results are found in other 
domains, such as business forecasting (Blattberg & 
Hoch, 1990). A reason for the benefits of combining 
expert-based and model-based estimates is that they 
have different strengths and weaknesses. Potential 
strengths of formal estimation models are, for example, 
that they have less bias towards over-optimistic effort 
estimates (Jørgensen, 1997) and that the models’ effort 
estimates are less influenced by organisational and 
social pressure. An example of social pressure, is when 
a manager gives a project leader positive feedback on 
low effort estimates and negative feedback on high 
effort estimates. Potential strengths of an expert 
judgement are that experts can identify new variables 
relevant for the actual project effort estimate and 

can include “broken-leg” situations, i.e., very rare 
situations that are not meaningful to include in a 
formal estimation model. While we know much about 
the properties of estimation models, we do not have 
much knowledge about expert estimation strategies. 
According to Brown & Siegler (1993) psychological 
research on real-world quantitative estimation has not 
culiminated in any theory of estimation, not even in 
a coherent framework for thinking about the process. 
We believe that knowledge about the strategies used by 
expert estimators will enable better use of both expert 
estimates and estimation models, and ultimately lead to 
an improved software estimation process.

The remainder of this paper is organised as follows. 
Section 2 describes the term judgement heuristics 
and introduces two research approaches on human 
judgement heuristics, namely the so-called “Heuristics 
and Biases” and “Fast and Frugal” approaches. 
Sections 3 and 4 describe these two approaches, 
respectively. Section 5 illustrates their relevance 
for software processes. Section 6 describes and 
discusses a specific experiment analysing the use of 
the “representativeness heuristic” by computer science 
students when estimating software development 
productivity. Finally, Section 7 concludes and describes 
further work. Table 1 gives an overview of where the 
different heuristics are covered in this paper.

Table 1: Human judgement heuristics covered in this paper

Research
approach

Heuristic class: 
Instance

Description Software 
process
relevance

Representativeness Section Error!
Reference source 
not found.

Section Error!
Reference source not 
found.

Availability Section Error!
Reference source 
not found.

Section Error!
Reference source not 
found.

Heuristics
and biases 

Anchoring and adjustment Section Error!
Reference source 
not found.

Section Error!
Reference source not 
found.

Ignorance: Recognition Section Error!
Reference source 
not found.

Section Error!
Reference source not 
found.

One reason: Take The Best Section Error!
Reference source 
not found.

Section Error!
Reference source not 
found.

Elimination: QuickEst Section Error!
Reference source 
not found.

Section Error!
Reference source not 
found.

Fast and Frugal  

Elimination: Categorisation Section Error!
Reference source 
not found.

Section Error!
Reference source not 
found.
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2. Human Judgement Heuristics
The term heuristic is of Greek origin and means 
“to discover” (Collins, 1991). The term has several 
different interpretations, e.g.:

•   Useful, even indispensable cognitive processes 
for solving problems that cannot be handled by 
logic and probability theory (Groner, 1983).

•   A rule of thumb for solving a problem without 
the exhaustive application of an algorithm 
(Collins, 1991).

Our use of the term human judgement heuristics 
follows the interpretation in Gigerenzer et al. (1999): 
cognitive processes that do not necessarily lead to 
an optimal solution. The cognitive processes we are 
interested in are the strategies people use to reach 
decisions in complex environments without the use of 
sophisticated and computation intensive algorithms. 
These strategies have to be simple and sufficiently 
fast to be used by people in real-life situations, e.g., 
situations where decisions cannot wait until all relevant 
information is available and has been analysed. As we 
will illustrate in the next sections, these strategies 
may lead to biased judgements. On the other hand, 
they may perform amazingly well compared with 
much more sophisticated and computation intensive 
algorithms. 

Human judgement relies on indicators. An indicator, 
frequently described as a cue in the human judgement 
literature, is a variable with relevance for the 
judgement to be made. When for example estimating 
effort, the known software development project 
characteristics useful for effort estimation purposes are 
indicators of the actual effort of the project. Indicators 
can be more or less valid relative to a judgement, i.e., 
more or less useful for judgement purposes. Different 
heuristics use different definitions of validity. The 
criterion is the variable to be estimated, e.g., the effort 
needed in a software project.

In recent years a large amount of research studies 
have been devoted to uncover the human judgement 
heuristics, to analyse the contexts when heuristics 
are used, and to analyse how people learn and adapt 
heuristics. Overviews of these studies can be found 
in (Gigerenzer et al., 1999), (Kahnemann et al., 
1982) and (Plous, 1993). The research studies point 
at several heuristics that people may use or, at least, 

are simple and fast enough for people to be possible to 
use without any computational support. It is difficult to 
categorise and give an exhaustive review of the judge-
ment heuristics described in the research literature. 
The heuristics are not always well specified, with only 
general labels on a broad range of methods, they may 
be overlapping and they may be differently described 
in different research papers. To simplify the presenta-
tion, we have based the work in this paper mainly on 
two competing research approaches, respectively de-
scribed in (Kahnemann et al., 1982) and (Gigerenzer 
et al., 1999). 

The first approach builds upon an effort initiated by 
Tversky & Kahnemann (1974) and is known as the 
“Heuristics and Biases” approach. It emphasises how 
the use of heuristics may lead to non-optimal solutions 
compared with more scientific and statistically sound 
methods. As a reaction on the strong focus on how 
heuristics lead to judgement fallacies, the Adaptive 
Behaviour and Cognition Research Group (ABC 
Group)[1] lead by Gigerenzer was initiated (Gigerenzer 
& Goldstein, 1996). Their research has a more general 
focus on judgement heuristics, including a strong focus 
on how the heuristics make us “smart”, i.e., situations 
in which simple heuristics lead to accurate and useful 
judgements. Another difference between these two 
research approaches is that the ABC Group typically 
gives a more algorithmic description of the heuristics 
compared with the more informal descriptions of the 
Tversky-Kahneman tradition.

3. Heuristics and Biases
The three main heuristics described in (Kahnemann et 
al., 1982) are (1) the representativeness heuristic, (2) 
the availability heuristic, and (3) the adjustment and 
anchoring heuristic.

3.1. Representativeness
The representativeness heuristic describes a judgement 
process based on the assumption that similarity with 
respect to some properties means similarity with 
respect to other properties. Tversky and Kahneman 
make a distinction between four basic cases of 
representativeness. The following case descriptions 
are adapted from Tversky & Kahneman (1982):

1) M is a class and X is a value of a variable 
defined in this class. The most representative 
value will be close to the mean, median or 
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mode of the distribution of the relevant vari-
able in the class M. For example, the most 
representative family income (X) may be the 
mean family income of the class of families 
(M). Representativeness is mainly determined 
in this case by what the judge knows about the 
frequency distribution of the relevant variable.

2) M is a class and X is an instance of that class. 
There are two ways in which an element can 
be highly representative of a class. An element 
is highly representative of a class if it is typi-
cal or if it is an ideal type that embodies the 
essence of that class. For example, if we know 
a person that we believe is a typical industry 
worker (X), we may use the characteristics 
of that person to represent characteristics of a 
class of industry workers (M).

3) M is a class and X is a subset of M. The criteria 
of representativeness are not the same for a 
subset and for a single instance because an 
instance can only represent the central ten-
dency of attributes, whereas a subset can also 
represent range and variability. Similar to the 
previous example, we may know a group of 
industry workers (X), and use the characteris-
tics of that group, e.g., the variance in opinions 
on a subject, to represent characteristics of a 
larger class of industry workers (M).

4) M is a (causal) system and X is a (possible) 
consequence. Here, X is representative for 
M either because it is frequently associated 
with M or because people believe, correctly 
or incorrectly, that M causes X. For example, 
a high inflation (X) can be representative for 
certain types of economies (M).

Tversky & Kahneman (1982) claim that most of the 
available research studies support the hypothesis 
that intuitive predictions and probability judgements 
are highly sensitive to representativeness, although 
not completely dominated by it. A strong reliance 
to representativeness works well in most cases, 
similarity with respect to one property frequently 
means similarity with respect to other properties. In 
addition, reliance of representativeness simplifies 
the judgement compared with the use of statistical, 
probability based, models. On the other hand, the 
use of the representativeness heuristic can be a major 
source of error, as we show in Section 5.1. 

3.2. Availability

The availability heuristic is based on the assumption 
that we assess the frequency of a class or the 
probability of an event by the ease with which 
instances or occurrences can be brought to mind 
(Tversky & Kahneman, 1974). Usually, this heuristic 
works quite well, common events are more available 
than uncommon events. There are, however, situations 
where this heuristic leads to incorrect judgements. 
Some events are easier to remember because they are 
inherently easier to think of: because they have taken 
place recently or because they are highly emotional. 
Biases due to this heuristic may occur due to:

•    Own contribution. The availability of experi-
ence increases with the level of participation in 
the actions leading to the experience (Ross & 
Sicoly, 1979).

•    The retrievability of instances. For example, 
words starting with r are easier to retrieve than 
words with r as its third letter. Most people 
predict that words starting with r are more fre-
quent, although the opposite is true (Tversky & 
Kahneman, 1974).

•    The imaginability of instance. For example, 
if the potential problems of a software project 
are difficult to imagine, we will easily under-
estimate the risk. We will tend to do this even 
when we know from previous projects that 
there are many problems that we do not imag-
ine at the start of a project. On the other hand, 
if we easily imagine horrible scenarios, e.g., 
death by drowning, a low likelihood of these 
scenarios may still lead to an overestimation of 
the risk (Tversky & Kahneman, 1974).

•    Illusory correlation. For example, if we 
strongly believe that we can trust our intuition 
of when a software project will be a failure, 
confirming observations will be easier to recall 
than non-confirming observations. To scientifi-
cally test the quality of our intuition of project 
failure, we need to study all variants of the 
events A and B, where A = “We felt that the 
project would be a failure”, and B = “The proj-
ect was a failure”, i.e., the four situations: (i) A 
and B, (ii) A and not(B), (iii) not(A) and B, (iv) 
not(A) and not(B). Assume that we have not 
studied situation (iii), i.e., the situation where 
we did not feel that the project would be a fail-
ure and the project was a failure. Then, a situa-
tion where there frequently are project failures 
and we, now and then, feel that a project will 
be a failure may easily lead to an illusionary 
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belief in our predictions of project failures. Our 
intuition about project failure is, normally, not 
documented, and the we-knew-it-all-along bias 
may further increase the risk of a too high be-
lief in our intuitions.

The availability heuristic has recently been challenged 
by some researchers, for example, (Sedlmeier et 
al., 1998). A major problem with the evaluation 
of that heuristic seems to be the interpretation and 
measurement of the rather vague label “availability”. 
In addition, there may be other mechanisms that can 
explain the judgement biases, e.g., the letter frequency 
biases, better than the availability heuristic.

3.3. Anchoring and Adjustment
The anchoring-and-adjustment heuristic consists of 
two steps: 

1)  Make an initial judgement, i.e., an anchor.

2)  Adjust the initial judgement due to differences 
between current situation and the anchor situa-
tion. 

Studies by Tversky & Kahneman (1974) and Northcraft 
& Neale (1987) indicate that the adjustments are, most 
of the time, insufficient and that the anchor has an 
unexpected high impact on the final judgement. This 
can be illustrated by an example. In an experiment 
described in (Kahnemann et al., 1982), subjects were 
asked to estimate the percentage of African countries 
in the United Nations (UN). Before estimating, the 
subjects watched a wheel of fortune randomly stop 
at a number between 0 and 100. The subjects were 
instructed to indicate first whether that number was 
higher or lower than the percentage of African countries 
in UN, and then to estimate the percentage. The 
randomly generated number had an amazingly large 
impact on the estimated percentage. For example, the 
median estimates of the percentage of African countries 
in the UN were respectively 25 and 45 for groups that 
received 10 and 65 as starting points!

4. Fast and Frugal Heuristics
Gigerenzer et al. (1999) describe heuristics which they 
label “Fast and Frugal” heuristics; these are heuristics 
that are fast and computationally simple. Necessary 
conditions for a heuristic to be fast and frugal are 
that it is:

•   sufficiently simple to be used by people with-
out computational support and with realistic 
speed,

•   specified algorithmically and includes rules for 
search, stop and decision making, and

•   “ecological rational”, i.e., the heuristic exploits 
the structure of realistic environments and re-
sults in robust decision and learning models.

To assess the suitability of these heuristics they have 
to be evaluated with respect to, amongst others: 
performance compared with computationally more 
expensive strategies, e.g., regression based models, 
and the likelihood that people use these heuristics when 
learning and making judgements. If a fast and frugal 
heuristic performs well, and people do not use it, we 
may train people in when and how to use it. Therefore, 
an additional aspect is whether we can train people in 
using this heuristic correctly. 

This section presents fast and frugal heuristics of the 
following three classes: 

•   ignorance based heuristics, 

•   one-reason based heuristics, and

•   elimination based heuristics.

4.4. Ignorance
Ignorance based heuristics are based on the fact that 
there is implicit information in the failure to recognise 
something, i.e., there is information in the fact that we 
have no information about an object. An example of 
ignorance based heuristics is the recognition heuristic: 
If one of two objects is recognised and the other is not, 
then it is inferred that the recognised object has a higher 
value (Gigerenzer et al., 1999), meaning, for example, 
that the object is larger or better. The recognition 
heuristic is interesting for several reasons:

•   It is very simple, only based on our ability to 
recognise objects.

•   It is useful in situations where we have no other 
information than recognition and need a fast 
and frugal judgement.

•   There is evidence that in some situations a 
person using this heuristic will perform better 
than a person using more sophisticated heu-
ristics and knowing more about the objects. In 
an experiment, American students performed 
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better in predicting the larger of two German 
cites than the larger of two American cities. 
Gigerenzer et al. (1999) argue that this result is 
based on the fact that the students knew fewer 
German cities and thus benefited from a strat-
egy where they exploited the assumption that 
unknown cities were more likely to be smaller 
than recognised cities.

4.5. One Reason
One-reason based heuristics use only a single piece of 
information to decide between two alternatives, i.e., 
no combination of variable values is used to reach 
a decision. The three one-reason based heuristics 
described in (Gigerenzer et al., 1999), (1) minimalist, 
(2) take the best, and (3) take the last, differ only in 
how they search for information. Perhaps the most 
interesting of these heuristics is the Take The Best 
heuristic (TTB). TTB is used to select the object with 
the highest criterion value, e.g., the largest city, among 
a number of objects. TTB bases the selection on binary 
indicators, e.g., whether a city has an airport, whether 
it has a railway station, etc.. The indicator values of 
the objects are then compared pair-wise, starting with 
the most valid indicator. Indicator validity is for this 
heuristic defined as R/(R+W), where R is the number 
of observations where the object with the highest 
value of the indicator has the highest criterion value. 
For example, R equals the number of observations 
made where a city with a railway station is larger than 
a city without a railway station. W is the number of 
observations where this is not the case. The following 
example illustrates the use of indicator validity in the 
TTB in more detail. 

Assume that team A meets team B in a football match 
and that we want to predict whether A will win, i.e., our 
criterion is the outcome of the match. We have the two 
binary indicators with corresponding possible indicator 
values: I1 = {the team won the last match, the team did 
not win the last match}, and I2 = {the team is placed 
in the top 10% in the league, the team is not placed 
in the top 10% in the league}. We have 10 earlier 
observations connecting indicator and criterion values. 
In 6 (R) out of 10 (R+W) matches a win was followed 
by a win, and in 8 (R) out of 10 (R+W) matches the top 
10% team won the match. Consequently, the validity of 
indicator I1 is 6/(6+4) = 0.6 and the validity of indicator 
I2 is 8/(8+2) = 0.8, i.e., indicator I2 is more valid than 
indicator I1for the intended prediction

The TTB algorithm consists of the following steps:
Step 0 (Recognition): If applicable, use the 

recognition heuristic; if neither of the alternatives are 
recognised, then guess; if both are recognised, go to 
Step 1. 

For example, if we recognise only team A, we should 
according to the recognition heuristic predict that team 
A wins.

Step 1 (Search): In an ordered search choose the 
indicator with the highest validity that has not yet been 
tried for the choice selection process; then look up the 
indicator values of the two alternatives. 

In the football match example, this means that we 
should start our search by investigating the indicator 
values of I2 for the teams A and B.

Step 2 (Stopping rule): If one alternative has a 
positive value for the chosen indicator, while the other 
alternative has a negative or unknown value, then stop 
the search and go to Step 3; otherwise go back to Step 1 
and search for another indicator; if no further indicator 
is found, then guess. 

If football team A is among the top 10% teams of the 
league and team B is not, then we can stop our search. 
If A and B have the same indicator value, then we 
investigate (Step 1) and compare (Step 2) the values 
of indicator I1.

Step 3 (Decision rule): Predict that the alternative 
with the higher positive indicator value has the higher 
value on the criterion. Assuming that both team A and 
B belong to the top 10% and that only team A won 
its last match, we should predict that team A will win 
against B.

Few studies are reported that analyse whether people 
really use TTB. However, the performance of this 
heuristic has been compared with regression analysis 
and other formal decision models in a number of tasks 
(Gigerenzer et al., 1999). In most tasks TTB, in spite 
of its one-reason based decisions, performed as well or 
better than the competing formal decision models.

4.6.  Elimination
Elimination-based heuristics extend one-reason 
based heuristics to a broader class of applications. 
While one-reason based heuristics are appropriate for 
selection between options, elimination-based heuristics 
are also appropriate for classification and quantitative 
prediction purposes. In our description of elimination-
based heuristics below we explain the QuickEst 
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heuristic and the categorisation by elimination heuristic 
as presented by Gigerenzer et al. (1999).

4.6.1. QuickEst
QuickEst is used for quantitative prediction purposes. 
It assumes that an object has a set of variables and that 
we want to predict the value of one of these variables. 
The variable value to be predicted is, as before, called 
the criterion value. The object variables, when used for 
prediction purposes, are called indicators. QuickEst is 
based on, similar to the Take The Best heuristic, binary 
indicators. Here we label the two binary indicator 
values using a ‘-‘ and a ‘+’ sign. Further, we define si

- 
as the average criterion value for the objects with the 
value ‘-‘ on the indicator i and si

+ the other value. To 
simplify the algorithmic description we consequently 
use ‘-‘ on the values with the lowest criterion value, 
i.e., si

- is always less or equal than si
+. We define that 

the validity of indicator i is higher than the validity of 
indicator j if si

- is lower than sj
-. 

The prediction process starts with a comparison of 
values of the indicator with the highest validity, i.e., a 
comparison of the value of the most valid indicator of 
the object to be predicted with the ‘-‘ value of the same 
indicator. If these values are equal, we stop the search 
and use the value si

- as our predicted criterion value. If 
not, we proceed with less and less valid indicators until 
we find equal values. If no equal values are found, we 
use the highest si

- value. Note that starting with the 
lowest values leads to faster decisions if the criterion 
values belong to a distribution with many small values 
and few high values. If this is not the case, other 
starting points may be better.

In spite of the perhaps complicated description 
above, QuickEst itself is simple. Assume, for example, 
that we want to predict the number of medals won by 
Morocco in the Sydney Summer Olympics and that 
we will use QuickEst. Most countries win very few 
medals and we start investigating indicators that imply 
that Morocco won no medals. One such indicator is, 
we may believe, that small African countries seldom 
win medals in the Olympics. Morocco is, however, 
not a small African country. Moreover, we do not find 
other indicators that imply no medals. Therefore, we 
continue with indicators implying that Morocco won, 
for example, 1 to 3 medals, 4 to 8 medals, etc. until 
we find the first true indicator. If the first true indicator 
with corresponding average criterion value is that we 
believe that “African countries with 10 to 30 million 

inhabitants win on average 4 to 8 medals in the Summer 
Olympics”, our prediction is that Morocco won 4 to 8 
medals. Note that the indicators in this example are 
not based on actual indicators, but on what we might 
believe. It is, of course, possible to improve the use of 
QuickEst with actual historical indicator values.

An ongoing experiment carried out by the authors 
instructed the subjects to predict the number of 
medals won by Morocco and other countries in the 
Sydney Olympics. The analysis indicates, so far, 
that the subjects used strategies similar to QuickEst 
when the knowledge about the actual medals won 
was poor. Surprisingly, the subjects having more 
knowledge about the actual distribution of medals won 
in the Summer Olympics did not predict better than the 
subjects using a QuickEst similar strategy.

4.6.2. Categorisation
Categorisation by elimination is a heuristic used to 
predict which category an object belongs to. Similar 
to the earlier heuristics, we rank indicators according 
to validity. The most valid indicator in this heuristic is 
the indicator that, when used alone, makes the most 
correct category predictions. For example, assume that 
we have parked our car in a car park, have been away 
for a while and now want to find the car. We remember 
the colour (red), the type of the car (Volvo) and the area 
where we parked it (slot B1). The strategy we may use 
for finding our car is to eliminate all cars that cannot 
be ours, i.e., to determine whether a car belongs to the 
category “not our car”. To categorise cars into “our 
car” and “not our car”, we may use the indicators car 
colour, car type and car parking area. Assume that we 
believe that the indicator values in the car parking are 
distributed as shown in Table 2.

Indicator values Red NOT(red) Volvo NOT(Volvo) B1 NOT(B1) 

Our car 1 0 1 0  1 0 

Not our car 19 80 14 85 9 90 

Table 2: Indicator value distribution

From the indicator value distribution we can calculate 
that the indicator car colour predicts correctly in 81% 
of the cases, car type 86% and car parking area 91% 
of the cases. The most valid indicator is, therefore, car 
parking area, then, car type and, finally, car colour. In 
a realistic situation we would, probably, modify this 
validity measure to take the effort we need to identify 
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the different indicator values into account.
The categorisation by elimination heuristic follows 

the following algorithm:

1)  Let S be the whole set of categories. In the car 
parking example, S = {Our car, Not our car}

2)  Get next indicator I. Indicators are ordered with 
respect to categorisation validity. The most 
valid indicator in our example is the car park-
ing area, i.e., we start with I = car parking area.

3)  Set possible categories P to categories cor-
responding to indicator I’s value. Assume that 
the car we attempt to categorise is a red Saab, 
parked in B1. Starting with the most valid indi-
cator, P is set to {Our car, Not our car} because 
both our car and other cars are parked in B1.

4)  a) If S ∩ P contains only one category, then 
select this category. End.
b) If S ∩ P contains more than one category, let 
S = S ∩ P, go to 5)
c) If S ∩ P = ∅, go to 5).
In our example, the intersection between S and 
P contains two categories, i.e., we proceed with 
Step 5.

5)  a) If there are no more indicators available, se-
lect a category from S at random.
b) If there are more indicators available, go to 
2).
In our example, there are more indicators avail-
able, car type and car colour, and we proceed 
with Step 2 and start the second iteration of the 
algorithm. 

In the second iteration in the car parking example we 
use the second most valid indicator; I = car type. P 
is now set to {Not our car} since the car we observe 
is a Saab and our car is a Volvo. This means that the 
category Our car is eliminated. Hence, the intersection 
between S and P is {Not our car}. According to step 
4 we predict that the car is not our car and end the 
categorisation of that car.

In (Gigerenzer et al., 1999) this categorisation 
heuristic was applied to categorise flowers, wine and 
mushrooms. The simple heuristic performed almost as 
good as formal statistical methods on these data sets. 
In situations where there is a degree of uncertainty 
regarding the indicator values of the object we want 
to categorise, the heuristic may however be difficult 
to use. For example, assume that we were only 80% 
sure that we had parked our car in B1 and that we were 

unable to exclude any parking area completely. The 
validity of the parking area indicator would still be 
high, because the use of it leads to a high proportion of 
correct categorisations. On the other hand, observing a 
car in B5 we would be almost sure that the car is not 
ours, but the original heuristic would not allow us to 
use this information to exclude the category Our car. In 
other words, there may be only few situations where we 
actually use categorisation by elimination as described 
in this heuristic.

5. The Use of Heuristics in Software 
Processes

5.1.  Representativeness
Judgements relying on the representativeness heuristic, 
typically, search for the most representative elements 
from a class of elements. For example, a software 
development risk analysis of project A based on 
representativeness builds upon on a search for the most 
similar projects from a class of completed software 
projects. Then, the similar projects are used to draw 
conclusions about the risk of project A. Consequently, 
the heuristic may lead to poor judgement when more 
similar is not the same as more useful for prediction 
purposes.

The following example of high representativeness 
and relatively low prediction accuracy is described 
in more detail in (Jørgensen & Sjøberg, 2001b). This 
study indicates that software maintainers frequently 
use the representativeness heuristic together with the 
anchoring-and-adjustment heuristic when they carry 
out risk analyses of their tasks. The maintainers tried 
to remember the most representative tasks carried 
out recently and adjusted their risk assessment due 
to differences between the representative and the new 
task. Although the maintainers had detailed knowledge 
about the task they were supposed to complete, a 
simple judgement model based solely on whether 
the size of the task was small or medium/large made 
more accurate risk assessments than representativeness 
based assessments of the maintainers. Similar results 
on how a strong reliance of representativeness may 
lead to poor judgements are reported in, for example, 
(Dawes & Corrigan, 1974). 

To avoid the misuse of the representativeness 
heuristic, we must understand its limitations. For 
example, let us consider a new software project A, 
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which is very similar to a completed project B. Project 
B had an extremely high productivity. This extremely 
high productivity was, however, not only caused by the 
variables that made project A similar to project B, but also 
by other variables, such as an unusual degree of luck. 
Therefore, it is unlikely that project A will have as high a 
productivity as project B. due to the so-called statistical 
regression toward the mean effect - the same effect that 
explains why it is likely that children of tall parents will 
be smaller than their parents (Campbell & Kenny, 1999), 
(Jørgensen et al., 2001) - it would have been better to use 
less similar projects, i.e., more average projects, as a basis 
for the estimation of the productivity of project A. 

Software risk assessment and productivity predictions 
should be based on knowledge about when people tend 
to think too representatively. In these cases more formal 
data analysis may be necessary for accurate judgements. 
We further evaluate the use of the representativeness 
heuristic when estimating software project productivity 
in Section 6.

5.2. Availability
The availability heuristic aims at describing how people 
make judgements about frequency and probability. 
According to this heuristic, human judgements on 
frequency and probability are based on how easily 
they can recall objects or events. Objects or events that 
can easily be recalled are assumed to be more frequent 
than objects or events that are more difficult to recall. 
This heuristic may explain why we found that software 
maintenance managers assessed the proportion of effort 
spent by their maintenance team on enhancing and 
adapting software applications reasonably accurate, 
while the proportion of effort spent on error correction 
was highly over-estimated (Jørgensen, 1995b). Software 
corrections may receive more management attention 
compared with other types of maintenance work and 
are, therefore, easily overestimated according to the 
availability heuristic.

Knowledge about when the availability heuristic 
leads to biased judgements is an important input when 
a decision has to be taken on whether to trust frequency 
judgements based on expert judgement or whether to 
start a measurement program to collect and analyse data 
more objectively. If there are reasons to believe that there 
are significant differences in how easily people recall 
different events, more objective measurement may be 
necessary to get accurate judgements.

5.3.  Anchoring and Adjustment

The anchoring-and-adjustment heuristic is a two 
step judgement process. First, an initial judgement 
is made and its result is established as the anchor. 
Then, adjustments are made for differences between 
the current situation and the anchor situation. There 
are indications that the anchoring-and-adjustment 
heuristic is important when experts estimate software 
project effort and, sometimes, a significant reason for 
estimation inaccuracy (Jørgensen & Sjøberg, 2001a). 
Such indications were found both in industrial contexts 
using project experience reports and interviews 
as sources, and in an anchoring-and-adjustment 
experiment performed with 38 computer science 
students. Here, we will illustrate this experiment in 
more detail:

•   The students estimated how much effort they 
would use on a course in software engineering, 
i.e., they had to deliver an estimate of the effort 
for their own work. The estimation was carried 
out approximately 4 weeks after the course had 
started. The activities included in the estimate 
were: participation in the lectures, participation 
in the weekly exercises, work on the mandatory 
software development project and self-study on 
course topics. The students could use the activ-
ity category “Other activities” if an activity did 
not fit any of the activities above.

•   Before estimating the course effort in detail 
the students were asked whether they thought 
they would use more than X work-hours on 
the course. Half of the students were presented 
with X=200 work-hours and the other half with 
X=800 work-hours. While 200 work-hours 
was a possible effort usage, 800 work-hours 
would mean that the students used about 50 
hours each week on the course, i.e., a much too 
high effort estimate. The students were asked 
not to use more than 5 minutes on this initial 
estimation task and were informed that the X-
value was not based on historical data or what 
the course teachers believed was a reasonable 
amount of effort. We believed that the X-value 
would, in spite of this information, be used as 
an anchor and would have an impact on the 
activity estimates.

•   Then, the students were asked to give an effort 
estimate on each of the activities of the course. 
They were asked to estimate the minimum, av-
erage and maximum effort on each activity.

•   The average estimated effort for groups with 
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different X-values were finally compared. 

While the group presented with X=200, on average, 
estimated 202 work-hours, the group presented with 
X=800 estimated, on average, 303 work-hours, see 
Figure 1.

poorly when the anchor projects were different from the 
new project, i.e., there was an insufficient adjustment 
for the differences. Interestingly, the knowledge of the 
human characteristic that the differences to closest 
analogy is not sufficiently adjusted for, can be used 
to compensate for another human weakness, namely 
the tendency of planners to make too optimistic 
predictions. The compensation technique used by 
some project leaders is to start the estimation process 
with the most pessimistic effort estimate and then 
estimate the most likely and the most optimistic effort. 
The most pessimistic effort estimates will then function 
as the anchor value and lead to higher estimates of the 
most likely effort compared with an estimation process 
starting with the most likely effort estimates. Results 
supporting this compensating process are reported by 
Conolly & Dean (1997). 

5.4. Ignorance: Recognition
The recognition heuristic is based on the assumption 
that people, when choosing between two objects, 
prefer the object they know if they do not know the 
other object. In software process improvement work, 
the recognition heuristic may, for example, be used 
together with other heuristics when selecting software 
development tools. There is, typically, no empirical 
evaluation of the overall performance of a development 
tool to support such selections (Jørgensen et al., 1995). 
An important input for the selection process may, 
for this reason, be the strength of recognition of the 
tools. This example is based on an extension of the 
recognition algorithm described in Section 4.1. 

While the original recognition heuristic divides 
recognition into recognised and not recognised, our 
example is based on a more fine-grained scale of 
recognition. This extension is, in our opinion, natural, 
but lacks the preciseness of the original recognition 
heuristic since there is no commonly accepted fine-
grained scale for strength of recognition. The strength 
of development tool recognition is increased through 
information about other companies using the tool, tool 
advertisements, vendor presentations and other tool 
marketing initiatives. In our opinion, the recognition 
heuristic explains why many of the advertisements 
do not focus on informing the potential customers 
about the performance of the tool. Instead, they focus 
on increasing the strength of recognition. Strength of 
recognition may correlate with important performance 
characteristics and may be a useful strategy if a 
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Figure 1: Anchor and adjustment experiment

A statistical one-sided t-test with different variance gave 
p=0.003, which means the difference is significant. 
We asked the students whether they believed their 
estimate had been impacted by the X-value. In spite of 
a somewhat leading question: “Do you believe that you 
have been influenced ...”, less than half of the students 
believed that they had been influenced. An analysis of 
the data showed no significant difference in estimates 
between those that believed that they had been 
impacted and the others. This indicates that people are 
not always aware of the anchors used and their impact 
on the judgements. More details about this study can be 
found in (Jørgensen & Sjøberg, 2001a). 

When estimating software work it is, according 
to the results above, important that the estimation 
is carried out independently of non-informative or 
biased numbers. For example, if the software product 
customer has unrealistic expectations regarding the 
cost of a project, estimators aiming at realistic estimates 
should not know these expectations! As indicated by 
the experiment the estimators may otherwise believe 
that they have provided a realistic effort estimate, 
when in fact they have provided a much too optimistic 
estimate anchored in the customer expectations.

Similar results were found by Hoch & Schkade 
(1996), who reported that an estimation process based 
on anchoring-and-adjustment performed well compared 
with other estimation methods when the anchor projects 
were good predictors of the new project, and performed 
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fast decision is needed. Selecting less recognised 
development tools may, for example, imply smaller 
tool vendors with high risk of no further development 
of the tool. On the other hand, if our intuition, which 
many people may trust more than analytical models, is 
too much based on strength of recognition, a vendor 
with a poor development tool can compensate for this 
through demonstrations and advertisements. Therefore, 
the recognition heuristic can when used alone, lead to 
poor decisions.

5.5. One Reason: Take The Best
A decision process based on the heuristic Take The 
Best (TTB) investigates indicators according to their 
validity and stops when a difference between two 
alternatives is found. Take the following example, 
a project leader has decided to improve the project 
performance by introducing a code generating 
CASE (Computer Aided Software Engineering) tool. 
The project leader has collected information about 
two CASE tools, A and B, and has to choose one of 
them. Here, the original recognition heuristic cannot 
be used, since both A and B are recognised. Assume 
that the main criterion when choosing a CASE tool is 
project productivity and that the most valid indicators 
of productivity are (1) quality of generated code and 
(2) ease of CASE tool use. The project leader sorts the 
indicators according to their validity, i.e., how useful 
the indicators are believed to differentiate between the 
CASE tools. The search for differences starts with the 
indicator with the highest validity, and, if there are no 
significant differences between A and B concerning 
this indicator, continues with the second most valid 
indicator, and so on, until a difference is found. When 
a difference is found, the CASE tool with the highest 
value for this indicator is chosen. Note that TTB does 
not combine indicators and that less valid information 
is not considered at all if a significant difference on a 
more valid indicator is found.

When does TTB perform well, and is this heuristic 
actually used by people? Experiments described 
by Gigerenzer (1999) indicate that TTB potentially 
explains elements of human judgement and performs 
just as well as or better than more formal methods, 
e.g., regression based models and classification trees, 
when:

•   the number of objects per indicator is low, i.e., 
when there are many valid indicators and few 
observations to learn from, and

•   the information is relatively non-compensatory, 
i.e., the indicator validity is strongly decreas-
ing. Information is totally non-compensatory 
when each indicator is more valid than any 
combination of less valid indicators.

The former condition may be typical for software 
improvement decisions. In the CASE tool example 
above we may have only few observations that 
indicate the performance of the CASE tools and 
many indicators that are relevant for the performance 
of the tools. The second condition is less obvious. 
TTB will perform well if there is a strong decrease 
in indicator validity. This is the case if, for example, 
quality of CASE tool generated code is considered 
the most important characteristic and only very 
large differences regarding ease of use should alter a 
decision based on a difference in quality of generated 
code. On the other hand, TTB performs badly if there 
is important information in a combination of indicators, 
e.g., when weighting of indicators is necessary to make 
a good decision. We recommend the use of formalised 
decision procedures when there is no clear ranking of 
indicator validity or when the combination of indicator 
values are believed to contain important information. 
This recommendation is in accordance with the results 
described in (Dawes, 1988), where it is reported that 
people, on average, perform poorly in situations where 
two or more aspects of a situation have to be attended 
at once, i.e., situations where combination of indicators 
are important. However, if there is a clear ranking of 
indicator validity, i.e., the indicator validity is strongly 
decreasing, and there are few relevant observations 
available, a decision based on expert judgement may 
perform just as well or better than a formalised decision 
procedure.

5.6.  Elimination: QuickEst
The use of the QuickEST heuristic in a software 

process improvement context is best illustrated with 
an example. We demonstrate it by using it for the 
estimation of software productivity and  compare 
estimates with the actual effort. In the example, using 
QuickEst,software productivity is estimated measured 
in function points (Symons, 1991) per work-hour for 
a new project. The example uses a data set of real life, 
completed software projects as described in (Jeffery 
& Stathis, 1996). The productivity indicators and the 
corresponding indicator values are listed in Table 3.
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Table 3: Indicators and indicator values

For each indicator value we calculated the average 
productivity and ranked them according to this 
value. The indicator value with the lowest average 
productivity value was allocated the highest validity 
rank, the second lowest was allocated the second 
highest validity rank, etc. Table 4 shows the 5 most 
valid indicator values.

shows, QickEST is easy to learn and it should thus be 
not too difficult to train software professionals in using 
QuickEst when estimating the productivity, effort, or 
time usage of new projects.

5.7.  Elimination: Categorisation
We evaluated the categorisation by elimination 
heuristic using a data set of 109 maintenance tasks 
and asked software maintainers to sort these tasks into 
the following two categories: (C1) the task will have 
major unexpected problems and (C2) the task will not 
have major unexpected problems (for more detail, 
see Jørgensen, 1995a). The most valid indicators 
are described and ranked according to percentage of 
correct predictions in Table 5, as described in Section 
4.3.2.

Table 4: Validity ranked indicator values

There were additional indicator values in the data set, 
but these had no impact on the estimate when using 
QuickEst.  No other additional indicator values had 
to be applied to estimate the project productivity. 
Concerning f. ex. project size a project using 4GL as 
the programming language on a distributed platform, 
regardless of its actual size, results in a QuickEst 
productivity estimate of 0.13 function points per work-
hour in only two search steps. 

The prediction accuracy, defined as the mean 
value of the difference between the actual and the 
QuickEst predicted productivity relative to the actual 
productivity, was 38%. Neither estimation by analogy 
using clustering algorithms based on Euclidian 
distance nor linear regression achieved a better 
prediction accuracy than QuickEst. In addition, while 
the statistical approaches frequently over-fitted their 
model to the data - they developed a prediction model 
indicating the productivity of projects in the given set 
very well on the cost of the prediction of new projects-, 
QuickEst avoided this over-fitting to a large extent. 

Independently of whether expert estimators actually 
use a heuristic similar to QuickEst, this heuristic 
illustrates that fast and frugal heuristics can have 
a performance comparable to more sophisticated 
methods. QuickEst probably enables better integration 
with expert estimator knowledge than formal estimation 
models because the heuristic is easy to understand 
and the indicator values are easy to update with new 
experience. In addition, as the example hopefully 

Indicator Indicator values 
Programming language COBOL, C, 4GL, mixed 
Project type Distributed platform, centralised platform 
Project size Small, medium, large 

Rank Indicator values Average productivity value for indicator value 
1 Programming language = mixed 0.10 function points per work-hour 
2 Project type = distributed 0.13 function points per work-hour 
3 Programming language = C 0.21 function points per work-hour 
4 Programming language = COBOL 0.22 function points per work-hour 
5 Programming language = 4GL 0.25 function points per work-hour 

Table 5: Categorisation indicators sorted by validity

Unfortunately, none of these indicators eliminates 
categories. There are small tasks that have major 
unexpected problems, there are corrective tasks 
without major unexpected problems and there are 
tasks where the maintainers’ confidence is high that 
have major unexpected problems. Following the 
algorithm described in Section 4.3.2, we should then 
select category (C1) or (C2) at random. The original 
categorisation heuristics based on elimination may, 
therefore, not be very useful in situations like this, 
where we are unable to eliminate any alternatives 
based on the available information. In the above case, 
there is an obvious lack of fit between the heuristic and 
its environment. Hence, the heuristic Take The Best, for 
example, may be a better choice.

The main purpose of this example is to illustrate 
that to perform well, software process experts need a 
toolbox of heuristics, and knowledge about when there 
is a fit between the heuristics and their environments.

6. The Different Use of Heuristics

Rank Indicator Correctly predicted categories and prediction rule 
1 Size of change 62 % correct predictions. 

IF Size of change = small THEN predict C2 ELSE 
predict C1 

2 Type of change  58% correct predictions. 
IF Type of change = corrections THEN predict C1 
ELSE predict C2 

3 Confidence of 
maintainer 

57% correct predictions. 
IF Confidence of the maintainer = high THEN 
predict C2 ELSE predict C1 
The confidence of the maintainer is high if he/she 
believes to know how to solve the task when starting 
the maintenance task work. 
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The utilisation of human judgement heuristics differs 
however from person to person based upon, amongst 
other things, a person’s toolbox of heuristics and 
previous feedback on the usefulness of a heuristic. 
To illustrate this, we describe in this section how 
individuals vary in their use of the representativeness 
heuristic when estimating software development 
productivity. 

We here therefore come back to the experiment 
reported in section 5.3 which included 38 under-
graduate students who followed a course in software 
engineering at the University of Oslo. It might be 
argued that the use of students instead of software 
professionals may jeopardise to the validity of the 
results of this experiment. However, interviews with 
professional software developers indicate that they, 
typically, get no formal training in estimation and 
that the feedback of the estimates they make is poor 
(Jørgensen & Sjøberg, 2001a). In addition, we consider 
the involved software engineering students as semi-
professionals. They practise software development as 
part of the university course, and most of them work 
part-time in the software industry. Therefore, although 
they might differ in their amount of experience, we 
believe that there is no large difference between how 
students and software professionals estimate software 

development projects. Our view is supported by Höst 
et al. (2000), who found that computer science students 
were good substitutes for software professionals to 
assess lead-time impact factors. 

The students were asked to estimate the productivity 
of a new project (P-NEW) and to explain how they 
had derived their calculation based on available 
information as presented in table 6 which contains 
records of the two the two most similar projects, called 
P-11 and P-34, from an existing project database, In 
addition, they received the following data about the 
projects in the project database:

•   The project database consists of 100 software 
development projects.

•   The projects vary in productivity from 0.2 
kLOC/PM to 7 kLOC/PM.

•   The average productivity of all 100 projects is 
2 kLOC/PM.

•   The average productivity of the ten projects 
with development platform and complexity 
- the two factors considered most important for 
the productivity - identical to P-NEW is 1.0 
kLOC/PM.

When we analysed the strategy chosen for each 
estimate, both the estimate itself and its explanation 
were taken into account. The resulting answers 
were classified into 4 strategies of use of the 
representativeness heuristic, depending on the projects 
used as analogues to predict the productivity of P-
NEW:

1)  Use of the two closest analogues (P-11 and P-
34)

2)  Use of the average of the ten closest analogues 
and adjustments for P-11

3)  Unadjusted use of the average of the ten closest 

analogues

4)  Use of the average of the ten closest analogues 
and an adjustment for the total average

Table 7 shows the distribution of the strategies and the 
average estimated productivity for each of them. 

Projects Platform Architecture Size Complexity Productivity 

P-11 Cobol/MVS Client/server 9 kLOC HIGH 0.3 kLOC/PM 

P-34 Cobol/MVS Client/server 11 kLOC HIGH 1.1 kLOC/PM 

P-NEW Cobol/MVS Client/server 10 kLOC  
(estimated by the 
project leader) 

HIGH
(estimated by the 
project leader) 

?      LOC/PM 

Table 6: Project information used in the experiment (kLOC = 1000 Lines of Code, PM = Person Months)

Strategy Frequency Average estimate 
1 9 (24%) 0.8 kLOC/PM 
2 7 (18%) 0.9 kLOC/PM 
3 17 (45%) 1.0 kLOC/PM 
4 5 (13%) 1.7 kLOC/PM 

Table 7: Estimation strategies

Although these results need to be replicated in more 
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realistic contexts, they indicate that the actual use of the 
representativeness heuristic is based on very different 
individual interpretations of representativeness. In the 
case of the estimation task these were, for example:

•   P-11 is representative for P-NEW because P-
11 is similar to P-NEW

•   P-11 is not representative for P-NEW because 
P-11 has an unusually low productivity

•   The average of the ten closest analogues is 
representative for P-NEW, with the probable 
reasoning that the variance of possible produc-
tivity values cannot be represented by one or 
two earlier projects.

The expected prediction accuracy of the above 
strategies depends on how well the use of the project 
information in the experience database enables us 
to predict new projects. If high similarity means 
high predictability, then the use of few analogues 
to predict a new project may be a proper strategy. 
On the other hand, if the project information in the 
experience database is of less use to predict new 
projects, then use of the total average productivity 
may be the best estimation strategy. Information 
about the predictability of the historical data was not 
included in the task description. None of the students 
made any assumptions on the predictability of the 
data in the experience database when answering the 
estimation question. The students may have assumed 
environments with different estimation uncertainty 
when selecting their estimation strategy. The results do 
not necessarily describe the variance of productivity 
estimates in a realistic environment with better known 
estimation uncertainty. The results do indicate the 
following:

•   To select a proper estimation strategy, the in-
formation about the estimation uncertainty is 
essential.

•   The awareness of the relation between pre-
dictability and use of very similar projects as 
predication analogues can be low.

•   The representativeness heuristic is a rather 
vague label for several different strategies that 
may lead to very different estimates.

As shown in Table 7, nine of the estimates were 
based on Strategy 1, i.e., the strategy that the closest 

two analogues were the best predictors. As described 
earlier, Strategy 1 is expected to perform poorly if the 
estimation uncertainty is low. To further investigate 
whether the students were aware of this relation 
between estimation strategy and uncertainty, we added 
more information to the estimation task: there it was 
assumed that the estimation accuracy of estimates 
based on the 2-3 most similar projects had, on average, 
been very low. We then asked whether this information 
had an impact on the productivity estimate and required 
an explanation. 

We found that only one of the nine students using 
Strategy 1 to solve the first task changed the estimate 
based on this information. The other eight students 
answered that the uncertainty had no impact on their 
estimates. The additional uncertainty information 
did not change their choice of estimation strategy. 
This points to a need for training in the relation 
between prediction uncertainty and the use of the 
representativeness heuristic. Yet, when introduced 
this type of improvement is an example of software 
improvement supporting the expert estimators instead 
of replacing the expert with statistical “black-box” 
estimation tools.

7. Conclusions and Further Work
This paper has exemplified that software processes 
can be improved by applying knowledge from human 
judgement heuristics. The main condition for human 
judgement heuristics to perform well is that there is a 
fit between the heuristics and their environment. For 
example, in environments where the recognised objects 
on average are perceived as better than the unrecog-
nised objects and where there are scarce resources to 
collect further information, a good strategy is to select 
between the initially recognised objects. There are 
studies reporting very good judgements based on little 
information and simple computations when there is a 
fit between the judgement strategies and the environ-
ments. On the other hand, there are numerous examples 
of how simple heuristics may lead to poor decisions, 
in particular, when the estimators are unaware of the 
heuristics they use and are unconscious of their as-
sumptions regarding the fit between the heuristic and 
the environment. A small-scale experiment carried 
out by the authors indicated that different persons’ 
interpretation of the representativeness heuristic may 
differ to a large extent and this is not necessarily based 
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on awareness of the assumptions behind this heuristic. 
In particular, software estimators may need training 
concerning the relation between representativeness 
and estimation uncertainty.

This paper has described initial research on how to 
improve software processes based on an understanding 
of how software professionals judge and learn from 
experience. In the near future we plan to carry out 
several industrial studies and experiments to study 
further issues such as:

•   How do professional software estimators use 
data from earlier projects?

•   Can elements of the Take The Best heuristic 
improve software effort estimation?

•   How typical is the faulty use of the heuristics 
applied by software professionals, e.g., do 
software professionals select an estimation 
strategy in accordance with the prediction un-
certainty of their environment?

•   When is there a major lack of environmental 

fit between the heuristic and its environment?

•   How does the use of heuristics differ among 
different individuals and how can software pro-
fessionals be trained to select and use the most 
proper heuristic?

and finally

•   To what extent will training of software profes-
sionals based on knowledge about the heuris-
tics actually improve software development 
processes?
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