
Scandinavian Journal of Information Systems

Volume 13 | Issue 1 Article 2

2001

Software Process Improvement and Human
Judgement Heuristics
Magne Jørgensen
University of Oslo, Norway, Magnejorgensen@emailaddressnotknown

Dag I. K Sjøberg
University of Oslo, Norway, DagIKSjoberg@emailaddressnotknown

Follow this and additional works at: http://aisel.aisnet.org/sjis

This material is brought to you by the Journals at AIS Electronic Library (AISeL). It has been accepted for inclusion in Scandinavian Journal of
Information Systems by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

Recommended Citation
Jørgensen, Magne and Sjøberg, Dag I. K (2001) "Software Process Improvement and Human Judgement Heuristics," Scandinavian
Journal of Information Systems: Vol. 13 : Iss. 1 , Article 2.
Available at: http://aisel.aisnet.org/sjis/vol13/iss1/2

CORE Metadata, citation and similar papers at core.ac.uk

Provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301357905?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org/sjis?utm_source=aisel.aisnet.org%2Fsjis%2Fvol13%2Fiss1%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sjis/vol13?utm_source=aisel.aisnet.org%2Fsjis%2Fvol13%2Fiss1%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sjis/vol13/iss1?utm_source=aisel.aisnet.org%2Fsjis%2Fvol13%2Fiss1%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sjis/vol13/iss1/2?utm_source=aisel.aisnet.org%2Fsjis%2Fvol13%2Fiss1%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sjis?utm_source=aisel.aisnet.org%2Fsjis%2Fvol13%2Fiss1%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sjis/vol13/iss1/2?utm_source=aisel.aisnet.org%2Fsjis%2Fvol13%2Fiss1%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

61© Scandinavian Journal of Information Systems, 2001, 13: 61-78

Software Process
Improvement and Human
Judgement Heuristics

Magne Jørgenseni, Dag I. K. Sjøbergi,ii,

i) Department of Informatics, University of Oslo, Norway,
ii) Simula Research Laboratory, Norway

Abstract
This paper exemplifies how better knowledge about human judgement strategies known as
heuristics can be used to improve software processes, especially estimation and prediction
processes. Human judgement heuristics work well when they exploit a fit between their structure
and the structure of the environment in which they are used. This use of environmental fit may
lead to amazingly good judgements based on little information and simple computations compared
with more formal approaches. Sometimes, however, the heuristics may lead to poor judgements.
Knowing more about the strengths and weaknesses of human judgement heuristics we may be
able to (1) know when to use formal process improvement approaches and when to use less
expensive expert judgements, (2) support the experts in situations where the experts’ judgements
strategies are known to perform poorly, (3) improve the formal processes with elements from the
experts’ strategies, and (4) train the experts in the use of more optimal judgement strategies. A
small-scale experiment was carried out to evaluate the use of the representativeness heuristic in
a software development effort estimation context. The results indicate that the actual use of the
representativeness heuristic differed very much among the estimators and was not always based
on an awareness of fit between the structure of the heuristic and the structure of the environment.
Estimation strategies only appropriate in low uncertainty development environments were used
in high uncertainty environments. A possible consequence of this finding is that expert estimators
should be trained in assessing how well previous software projects predict new software projects,
i.e., the uncertainty of the environment, and how this uncertainty should impact the estimation
strategy.

Key words:
Software process improvement, human judgement heuristics, expert judgement, software effort
estimation.

1

Jørgensen and Sjøberg: Software Process Improvement and Human Judgement Heuristics

Published by AIS Electronic Library (AISeL), 2001

© Scandinavian Journal of Information Systems, 2001, 13: 61-7862

SPECIAL ISSUE ARTICLE • Software Process Improvement and Human Judgement Heuristics

63© Scandinavian Journal of Information Systems, 2001, 13: 61-78

Software Process Improvement and Human Judgement Heuristics - SPECIAL ISSUE ARTICLE

1. Introduction
An important principle of Scientific Management,
Taylorism, is to decrease the reliance on expert
judgement and to increase the use of well-defined
work processes derived from measurement and
statistical analyses. In fact, the main purpose
of Taylor’s book The Principles of Scientific
Management (Taylor, 1911) is “to show the enormous
gains which would result from the substitution by our
workmen of scientific for rule-of-thumb methods.”
Implementation of this principle has typically had the
following consequences:

• A work process improvement group, process
owners or the managers get the formal respon-
sibility for improvement of the process, not the
workers.

• The work processes are defined and measured.

• The work process variance is controlled and
analysed.

• Work process changes are managed as con-
trolled experiment, with scientific analyses of
the causes and/or impacts of process changes.

The principle has, in spite of several anti-Tayloristic
initiatives (Pruijt, 1997), proved to be persistent, and
there are reasons to believe that it has had a strong
influence on current software process improvement
frameworks. For example, process owner, process
measurement and statistical process control are
important elements of the widely known process
improvement frameworks Total Quality Management
(Deming, 2000) and the Capability Maturity Model
(Paulk et al., 1993). The increased reliance on
scientific methods to improve software processes is,
of course, only meaningful when it leads to better
processes than the processes which were developed
or evolved by applying informal expert judgement.
We probably need both formal and informal software
process improvement approaches. But we need to
know the cost and benefits of different approaches. To
do this we need to know how and how well software
professionals judge. If we knew the judgement
strategies used by software professionals, we may
be able to:

• know when to use formal process improve-
ment approaches and when to use - less expen-

sive - expert judgements,

• support the experts in situations where the ex-
perts’ strategies are known to perform poorly,

• improve the formal processes with elements
from the experts’ strategies, and

• train the software professionals in the use of
more optimal judgement strategies.

Unfortunately, as far as we know, neither the Scientific
Management literature nor the software process
improvement literature describes how to achieve these
goals. On the other hand, there have been a number of
relevant psychological studies on human judgement.
These studies are not referred to in the software process
improvement literature. The purpose of this paper is,
therefore, to exemplify how we may apply results from
psychological studies on how people judge to improve
software processes.

Our work is part of a Norwegian software process
improvement research project: PROFIT (PROcess
improvement For the IT industry). PROFIT is a 3 year
project running from 2000 until 2003 and is funded by
the Research Council of Norway (NFR). Its main goal
is to increase the competitiveness and profitability
of Norwegian IT-industry through systematic and
continuous process improvement. An important
aspect of PROFIT is to provide a means for academia
and software industry to meet and share software
process improvement experiences and research
results. The research partners are University of Oslo
(UiO), the Foundation for Scientific and Industrial
Research at the Norwegian Institute of Technology
(SINTEF) and the Norwegian University of Science
and Technology (NTNU). Currently, 10 Norwegian
software development organisations participate in
the project. Through the participation in PROFIT we
carry out software improvement studies in industrial
environments to get feedback on the importance of the
problems we study and on the validity of our research
results. The results described in this paper are based
on studies in co-operation with the PROFIT software
development organisations and an experiment using
computer science students.

Although this paper covers software process
improvement in general, its main focus is on human
judgement heuristics for software project effort
estimation. Software project effort estimation is, in
our opinion, a good example of a process that can be

2

Scandinavian Journal of Information Systems, Vol. 13 [2001], Iss. 1, Art. 2

http://aisel.aisnet.org/sjis/vol13/iss1/2

© Scandinavian Journal of Information Systems, 2001, 13: 61-7862

SPECIAL ISSUE ARTICLE • Software Process Improvement and Human Judgement Heuristics

63© Scandinavian Journal of Information Systems, 2001, 13: 61-78

Software Process Improvement and Human Judgement Heuristics - SPECIAL ISSUE ARTICLE

improved using both formal and informal approaches
when one knows more about the judgement strategies
of software professionals. The empirical studies
on software project effort estimation indicate that
formal estimation models are not systematically more
accurate than informal expert judgement (Conte et
al., 1986, Finnie & Wittig, 1997, Kemerer, 1987,
Myrtveit & Stensrud, 1999). On the other hand, there
is evidence indicating that a combination of expert-
and modelbased judgement provides more accurate
effort estimates than expert and model estimates
alone (Briand et al., 1998, Jørgensen, 1997, Myrtveit
& Stensrud, 1999). Similar results are found in other
domains, such as business forecasting (Blattberg &
Hoch, 1990). A reason for the benefits of combining
expert-based and model-based estimates is that they
have different strengths and weaknesses. Potential
strengths of formal estimation models are, for example,
that they have less bias towards over-optimistic effort
estimates (Jørgensen, 1997) and that the models’ effort
estimates are less influenced by organisational and
social pressure. An example of social pressure, is when
a manager gives a project leader positive feedback on
low effort estimates and negative feedback on high
effort estimates. Potential strengths of an expert
judgement are that experts can identify new variables
relevant for the actual project effort estimate and

can include “broken-leg” situations, i.e., very rare
situations that are not meaningful to include in a
formal estimation model. While we know much about
the properties of estimation models, we do not have
much knowledge about expert estimation strategies.
According to Brown & Siegler (1993) psychological
research on real-world quantitative estimation has not
culiminated in any theory of estimation, not even in
a coherent framework for thinking about the process.
We believe that knowledge about the strategies used by
expert estimators will enable better use of both expert
estimates and estimation models, and ultimately lead to
an improved software estimation process.

The remainder of this paper is organised as follows.
Section 2 describes the term judgement heuristics
and introduces two research approaches on human
judgement heuristics, namely the so-called “Heuristics
and Biases” and “Fast and Frugal” approaches.
Sections 3 and 4 describe these two approaches,
respectively. Section 5 illustrates their relevance
for software processes. Section 6 describes and
discusses a specific experiment analysing the use of
the “representativeness heuristic” by computer science
students when estimating software development
productivity. Finally, Section 7 concludes and describes
further work. Table 1 gives an overview of where the
different heuristics are covered in this paper.

Table 1: Human judgement heuristics covered in this paper

Research
approach

Heuristic class:
Instance

Description Software
process
relevance

Representativeness Section Error!
Reference source
not found.

Section Error!
Reference source not
found.

Availability Section Error!
Reference source
not found.

Section Error!
Reference source not
found.

Heuristics
and biases

Anchoring and adjustment Section Error!
Reference source
not found.

Section Error!
Reference source not
found.

Ignorance: Recognition Section Error!
Reference source
not found.

Section Error!
Reference source not
found.

One reason: Take The Best Section Error!
Reference source
not found.

Section Error!
Reference source not
found.

Elimination: QuickEst Section Error!
Reference source
not found.

Section Error!
Reference source not
found.

Fast and Frugal

Elimination: Categorisation Section Error!
Reference source
not found.

Section Error!
Reference source not
found.

3

Jørgensen and Sjøberg: Software Process Improvement and Human Judgement Heuristics

Published by AIS Electronic Library (AISeL), 2001

© Scandinavian Journal of Information Systems, 2001, 13: 61-7864

SPECIAL ISSUE ARTICLE • Software Process Improvement and Human Judgement Heuristics

65© Scandinavian Journal of Information Systems, 2001, 13: 61-78

Software Process Improvement and Human Judgement Heuristics - SPECIAL ISSUE ARTICLE

2. Human Judgement Heuristics
The term heuristic is of Greek origin and means
“to discover” (Collins, 1991). The term has several
different interpretations, e.g.:

• Useful, even indispensable cognitive processes
for solving problems that cannot be handled by
logic and probability theory (Groner, 1983).

• A rule of thumb for solving a problem without
the exhaustive application of an algorithm
(Collins, 1991).

Our use of the term human judgement heuristics
follows the interpretation in Gigerenzer et al. (1999):
cognitive processes that do not necessarily lead to
an optimal solution. The cognitive processes we are
interested in are the strategies people use to reach
decisions in complex environments without the use of
sophisticated and computation intensive algorithms.
These strategies have to be simple and sufficiently
fast to be used by people in real-life situations, e.g.,
situations where decisions cannot wait until all relevant
information is available and has been analysed. As we
will illustrate in the next sections, these strategies
may lead to biased judgements. On the other hand,
they may perform amazingly well compared with
much more sophisticated and computation intensive
algorithms.

Human judgement relies on indicators. An indicator,
frequently described as a cue in the human judgement
literature, is a variable with relevance for the
judgement to be made. When for example estimating
effort, the known software development project
characteristics useful for effort estimation purposes are
indicators of the actual effort of the project. Indicators
can be more or less valid relative to a judgement, i.e.,
more or less useful for judgement purposes. Different
heuristics use different definitions of validity. The
criterion is the variable to be estimated, e.g., the effort
needed in a software project.

In recent years a large amount of research studies
have been devoted to uncover the human judgement
heuristics, to analyse the contexts when heuristics
are used, and to analyse how people learn and adapt
heuristics. Overviews of these studies can be found
in (Gigerenzer et al., 1999), (Kahnemann et al.,
1982) and (Plous, 1993). The research studies point
at several heuristics that people may use or, at least,

are simple and fast enough for people to be possible to
use without any computational support. It is difficult to
categorise and give an exhaustive review of the judge-
ment heuristics described in the research literature.
The heuristics are not always well specified, with only
general labels on a broad range of methods, they may
be overlapping and they may be differently described
in different research papers. To simplify the presenta-
tion, we have based the work in this paper mainly on
two competing research approaches, respectively de-
scribed in (Kahnemann et al., 1982) and (Gigerenzer
et al., 1999).

The first approach builds upon an effort initiated by
Tversky & Kahnemann (1974) and is known as the
“Heuristics and Biases” approach. It emphasises how
the use of heuristics may lead to non-optimal solutions
compared with more scientific and statistically sound
methods. As a reaction on the strong focus on how
heuristics lead to judgement fallacies, the Adaptive
Behaviour and Cognition Research Group (ABC
Group)[1] lead by Gigerenzer was initiated (Gigerenzer
& Goldstein, 1996). Their research has a more general
focus on judgement heuristics, including a strong focus
on how the heuristics make us “smart”, i.e., situations
in which simple heuristics lead to accurate and useful
judgements. Another difference between these two
research approaches is that the ABC Group typically
gives a more algorithmic description of the heuristics
compared with the more informal descriptions of the
Tversky-Kahneman tradition.

3. Heuristics and Biases
The three main heuristics described in (Kahnemann et
al., 1982) are (1) the representativeness heuristic, (2)
the availability heuristic, and (3) the adjustment and
anchoring heuristic.

3.1. Representativeness
The representativeness heuristic describes a judgement
process based on the assumption that similarity with
respect to some properties means similarity with
respect to other properties. Tversky and Kahneman
make a distinction between four basic cases of
representativeness. The following case descriptions
are adapted from Tversky & Kahneman (1982):

1) M is a class and X is a value of a variable
defined in this class. The most representative
value will be close to the mean, median or

4

Scandinavian Journal of Information Systems, Vol. 13 [2001], Iss. 1, Art. 2

http://aisel.aisnet.org/sjis/vol13/iss1/2

© Scandinavian Journal of Information Systems, 2001, 13: 61-7864

SPECIAL ISSUE ARTICLE • Software Process Improvement and Human Judgement Heuristics

65© Scandinavian Journal of Information Systems, 2001, 13: 61-78

Software Process Improvement and Human Judgement Heuristics - SPECIAL ISSUE ARTICLE

mode of the distribution of the relevant vari-
able in the class M. For example, the most
representative family income (X) may be the
mean family income of the class of families
(M). Representativeness is mainly determined
in this case by what the judge knows about the
frequency distribution of the relevant variable.

2) M is a class and X is an instance of that class.
There are two ways in which an element can
be highly representative of a class. An element
is highly representative of a class if it is typi-
cal or if it is an ideal type that embodies the
essence of that class. For example, if we know
a person that we believe is a typical industry
worker (X), we may use the characteristics
of that person to represent characteristics of a
class of industry workers (M).

3) M is a class and X is a subset of M. The criteria
of representativeness are not the same for a
subset and for a single instance because an
instance can only represent the central ten-
dency of attributes, whereas a subset can also
represent range and variability. Similar to the
previous example, we may know a group of
industry workers (X), and use the characteris-
tics of that group, e.g., the variance in opinions
on a subject, to represent characteristics of a
larger class of industry workers (M).

4) M is a (causal) system and X is a (possible)
consequence. Here, X is representative for
M either because it is frequently associated
with M or because people believe, correctly
or incorrectly, that M causes X. For example,
a high inflation (X) can be representative for
certain types of economies (M).

Tversky & Kahneman (1982) claim that most of the
available research studies support the hypothesis
that intuitive predictions and probability judgements
are highly sensitive to representativeness, although
not completely dominated by it. A strong reliance
to representativeness works well in most cases,
similarity with respect to one property frequently
means similarity with respect to other properties. In
addition, reliance of representativeness simplifies
the judgement compared with the use of statistical,
probability based, models. On the other hand, the
use of the representativeness heuristic can be a major
source of error, as we show in Section 5.1.

3.2. Availability

The availability heuristic is based on the assumption
that we assess the frequency of a class or the
probability of an event by the ease with which
instances or occurrences can be brought to mind
(Tversky & Kahneman, 1974). Usually, this heuristic
works quite well, common events are more available
than uncommon events. There are, however, situations
where this heuristic leads to incorrect judgements.
Some events are easier to remember because they are
inherently easier to think of: because they have taken
place recently or because they are highly emotional.
Biases due to this heuristic may occur due to:

• Own contribution. The availability of experi-
ence increases with the level of participation in
the actions leading to the experience (Ross &
Sicoly, 1979).

• The retrievability of instances. For example,
words starting with r are easier to retrieve than
words with r as its third letter. Most people
predict that words starting with r are more fre-
quent, although the opposite is true (Tversky &
Kahneman, 1974).

• The imaginability of instance. For example,
if the potential problems of a software project
are difficult to imagine, we will easily under-
estimate the risk. We will tend to do this even
when we know from previous projects that
there are many problems that we do not imag-
ine at the start of a project. On the other hand,
if we easily imagine horrible scenarios, e.g.,
death by drowning, a low likelihood of these
scenarios may still lead to an overestimation of
the risk (Tversky & Kahneman, 1974).

• Illusory correlation. For example, if we
strongly believe that we can trust our intuition
of when a software project will be a failure,
confirming observations will be easier to recall
than non-confirming observations. To scientifi-
cally test the quality of our intuition of project
failure, we need to study all variants of the
events A and B, where A = “We felt that the
project would be a failure”, and B = “The proj-
ect was a failure”, i.e., the four situations: (i) A
and B, (ii) A and not(B), (iii) not(A) and B, (iv)
not(A) and not(B). Assume that we have not
studied situation (iii), i.e., the situation where
we did not feel that the project would be a fail-
ure and the project was a failure. Then, a situa-
tion where there frequently are project failures
and we, now and then, feel that a project will
be a failure may easily lead to an illusionary

5

Jørgensen and Sjøberg: Software Process Improvement and Human Judgement Heuristics

Published by AIS Electronic Library (AISeL), 2001

© Scandinavian Journal of Information Systems, 2001, 13: 61-7866

SPECIAL ISSUE ARTICLE • Software Process Improvement and Human Judgement Heuristics

67© Scandinavian Journal of Information Systems, 2001, 13: 61-78

Software Process Improvement and Human Judgement Heuristics - SPECIAL ISSUE ARTICLE

belief in our predictions of project failures. Our
intuition about project failure is, normally, not
documented, and the we-knew-it-all-along bias
may further increase the risk of a too high be-
lief in our intuitions.

The availability heuristic has recently been challenged
by some researchers, for example, (Sedlmeier et
al., 1998). A major problem with the evaluation
of that heuristic seems to be the interpretation and
measurement of the rather vague label “availability”.
In addition, there may be other mechanisms that can
explain the judgement biases, e.g., the letter frequency
biases, better than the availability heuristic.

3.3. Anchoring and Adjustment
The anchoring-and-adjustment heuristic consists of
two steps:

1) Make an initial judgement, i.e., an anchor.

2) Adjust the initial judgement due to differences
between current situation and the anchor situa-
tion.

Studies by Tversky & Kahneman (1974) and Northcraft
& Neale (1987) indicate that the adjustments are, most
of the time, insufficient and that the anchor has an
unexpected high impact on the final judgement. This
can be illustrated by an example. In an experiment
described in (Kahnemann et al., 1982), subjects were
asked to estimate the percentage of African countries
in the United Nations (UN). Before estimating, the
subjects watched a wheel of fortune randomly stop
at a number between 0 and 100. The subjects were
instructed to indicate first whether that number was
higher or lower than the percentage of African countries
in UN, and then to estimate the percentage. The
randomly generated number had an amazingly large
impact on the estimated percentage. For example, the
median estimates of the percentage of African countries
in the UN were respectively 25 and 45 for groups that
received 10 and 65 as starting points!

4. Fast and Frugal Heuristics
Gigerenzer et al. (1999) describe heuristics which they
label “Fast and Frugal” heuristics; these are heuristics
that are fast and computationally simple. Necessary
conditions for a heuristic to be fast and frugal are
that it is:

• sufficiently simple to be used by people with-
out computational support and with realistic
speed,

• specified algorithmically and includes rules for
search, stop and decision making, and

• “ecological rational”, i.e., the heuristic exploits
the structure of realistic environments and re-
sults in robust decision and learning models.

To assess the suitability of these heuristics they have
to be evaluated with respect to, amongst others:
performance compared with computationally more
expensive strategies, e.g., regression based models,
and the likelihood that people use these heuristics when
learning and making judgements. If a fast and frugal
heuristic performs well, and people do not use it, we
may train people in when and how to use it. Therefore,
an additional aspect is whether we can train people in
using this heuristic correctly.

This section presents fast and frugal heuristics of the
following three classes:

• ignorance based heuristics,

• one-reason based heuristics, and

• elimination based heuristics.

4.4. Ignorance
Ignorance based heuristics are based on the fact that
there is implicit information in the failure to recognise
something, i.e., there is information in the fact that we
have no information about an object. An example of
ignorance based heuristics is the recognition heuristic:
If one of two objects is recognised and the other is not,
then it is inferred that the recognised object has a higher
value (Gigerenzer et al., 1999), meaning, for example,
that the object is larger or better. The recognition
heuristic is interesting for several reasons:

• It is very simple, only based on our ability to
recognise objects.

• It is useful in situations where we have no other
information than recognition and need a fast
and frugal judgement.

• There is evidence that in some situations a
person using this heuristic will perform better
than a person using more sophisticated heu-
ristics and knowing more about the objects. In
an experiment, American students performed

6

Scandinavian Journal of Information Systems, Vol. 13 [2001], Iss. 1, Art. 2

http://aisel.aisnet.org/sjis/vol13/iss1/2

© Scandinavian Journal of Information Systems, 2001, 13: 61-7866

SPECIAL ISSUE ARTICLE • Software Process Improvement and Human Judgement Heuristics

67© Scandinavian Journal of Information Systems, 2001, 13: 61-78

Software Process Improvement and Human Judgement Heuristics - SPECIAL ISSUE ARTICLE

better in predicting the larger of two German
cites than the larger of two American cities.
Gigerenzer et al. (1999) argue that this result is
based on the fact that the students knew fewer
German cities and thus benefited from a strat-
egy where they exploited the assumption that
unknown cities were more likely to be smaller
than recognised cities.

4.5. One Reason
One-reason based heuristics use only a single piece of
information to decide between two alternatives, i.e.,
no combination of variable values is used to reach
a decision. The three one-reason based heuristics
described in (Gigerenzer et al., 1999), (1) minimalist,
(2) take the best, and (3) take the last, differ only in
how they search for information. Perhaps the most
interesting of these heuristics is the Take The Best
heuristic (TTB). TTB is used to select the object with
the highest criterion value, e.g., the largest city, among
a number of objects. TTB bases the selection on binary
indicators, e.g., whether a city has an airport, whether
it has a railway station, etc.. The indicator values of
the objects are then compared pair-wise, starting with
the most valid indicator. Indicator validity is for this
heuristic defined as R/(R+W), where R is the number
of observations where the object with the highest
value of the indicator has the highest criterion value.
For example, R equals the number of observations
made where a city with a railway station is larger than
a city without a railway station. W is the number of
observations where this is not the case. The following
example illustrates the use of indicator validity in the
TTB in more detail.

Assume that team A meets team B in a football match
and that we want to predict whether A will win, i.e., our
criterion is the outcome of the match. We have the two
binary indicators with corresponding possible indicator
values: I1 = {the team won the last match, the team did
not win the last match}, and I2 = {the team is placed
in the top 10% in the league, the team is not placed
in the top 10% in the league}. We have 10 earlier
observations connecting indicator and criterion values.
In 6 (R) out of 10 (R+W) matches a win was followed
by a win, and in 8 (R) out of 10 (R+W) matches the top
10% team won the match. Consequently, the validity of
indicator I1 is 6/(6+4) = 0.6 and the validity of indicator
I2 is 8/(8+2) = 0.8, i.e., indicator I2 is more valid than
indicator I1for the intended prediction

The TTB algorithm consists of the following steps:
Step 0 (Recognition): If applicable, use the

recognition heuristic; if neither of the alternatives are
recognised, then guess; if both are recognised, go to
Step 1.

For example, if we recognise only team A, we should
according to the recognition heuristic predict that team
A wins.

Step 1 (Search): In an ordered search choose the
indicator with the highest validity that has not yet been
tried for the choice selection process; then look up the
indicator values of the two alternatives.

In the football match example, this means that we
should start our search by investigating the indicator
values of I2 for the teams A and B.

Step 2 (Stopping rule): If one alternative has a
positive value for the chosen indicator, while the other
alternative has a negative or unknown value, then stop
the search and go to Step 3; otherwise go back to Step 1
and search for another indicator; if no further indicator
is found, then guess.

If football team A is among the top 10% teams of the
league and team B is not, then we can stop our search.
If A and B have the same indicator value, then we
investigate (Step 1) and compare (Step 2) the values
of indicator I1.

Step 3 (Decision rule): Predict that the alternative
with the higher positive indicator value has the higher
value on the criterion. Assuming that both team A and
B belong to the top 10% and that only team A won
its last match, we should predict that team A will win
against B.

Few studies are reported that analyse whether people
really use TTB. However, the performance of this
heuristic has been compared with regression analysis
and other formal decision models in a number of tasks
(Gigerenzer et al., 1999). In most tasks TTB, in spite
of its one-reason based decisions, performed as well or
better than the competing formal decision models.

4.6. Elimination
Elimination-based heuristics extend one-reason
based heuristics to a broader class of applications.
While one-reason based heuristics are appropriate for
selection between options, elimination-based heuristics
are also appropriate for classification and quantitative
prediction purposes. In our description of elimination-
based heuristics below we explain the QuickEst

7

Jørgensen and Sjøberg: Software Process Improvement and Human Judgement Heuristics

Published by AIS Electronic Library (AISeL), 2001

© Scandinavian Journal of Information Systems, 2001, 13: 61-7868

SPECIAL ISSUE ARTICLE • Software Process Improvement and Human Judgement Heuristics

69© Scandinavian Journal of Information Systems, 2001, 13: 61-78

Software Process Improvement and Human Judgement Heuristics - SPECIAL ISSUE ARTICLE

heuristic and the categorisation by elimination heuristic
as presented by Gigerenzer et al. (1999).

4.6.1. QuickEst
QuickEst is used for quantitative prediction purposes.
It assumes that an object has a set of variables and that
we want to predict the value of one of these variables.
The variable value to be predicted is, as before, called
the criterion value. The object variables, when used for
prediction purposes, are called indicators. QuickEst is
based on, similar to the Take The Best heuristic, binary
indicators. Here we label the two binary indicator
values using a ‘-‘ and a ‘+’ sign. Further, we define si

-
as the average criterion value for the objects with the
value ‘-‘ on the indicator i and si

+ the other value. To
simplify the algorithmic description we consequently
use ‘-‘ on the values with the lowest criterion value,
i.e., si

- is always less or equal than si
+. We define that

the validity of indicator i is higher than the validity of
indicator j if si

- is lower than sj
-.

The prediction process starts with a comparison of
values of the indicator with the highest validity, i.e., a
comparison of the value of the most valid indicator of
the object to be predicted with the ‘-‘ value of the same
indicator. If these values are equal, we stop the search
and use the value si

- as our predicted criterion value. If
not, we proceed with less and less valid indicators until
we find equal values. If no equal values are found, we
use the highest si

- value. Note that starting with the
lowest values leads to faster decisions if the criterion
values belong to a distribution with many small values
and few high values. If this is not the case, other
starting points may be better.

In spite of the perhaps complicated description
above, QuickEst itself is simple. Assume, for example,
that we want to predict the number of medals won by
Morocco in the Sydney Summer Olympics and that
we will use QuickEst. Most countries win very few
medals and we start investigating indicators that imply
that Morocco won no medals. One such indicator is,
we may believe, that small African countries seldom
win medals in the Olympics. Morocco is, however,
not a small African country. Moreover, we do not find
other indicators that imply no medals. Therefore, we
continue with indicators implying that Morocco won,
for example, 1 to 3 medals, 4 to 8 medals, etc. until
we find the first true indicator. If the first true indicator
with corresponding average criterion value is that we
believe that “African countries with 10 to 30 million

inhabitants win on average 4 to 8 medals in the Summer
Olympics”, our prediction is that Morocco won 4 to 8
medals. Note that the indicators in this example are
not based on actual indicators, but on what we might
believe. It is, of course, possible to improve the use of
QuickEst with actual historical indicator values.

An ongoing experiment carried out by the authors
instructed the subjects to predict the number of
medals won by Morocco and other countries in the
Sydney Olympics. The analysis indicates, so far,
that the subjects used strategies similar to QuickEst
when the knowledge about the actual medals won
was poor. Surprisingly, the subjects having more
knowledge about the actual distribution of medals won
in the Summer Olympics did not predict better than the
subjects using a QuickEst similar strategy.

4.6.2. Categorisation
Categorisation by elimination is a heuristic used to
predict which category an object belongs to. Similar
to the earlier heuristics, we rank indicators according
to validity. The most valid indicator in this heuristic is
the indicator that, when used alone, makes the most
correct category predictions. For example, assume that
we have parked our car in a car park, have been away
for a while and now want to find the car. We remember
the colour (red), the type of the car (Volvo) and the area
where we parked it (slot B1). The strategy we may use
for finding our car is to eliminate all cars that cannot
be ours, i.e., to determine whether a car belongs to the
category “not our car”. To categorise cars into “our
car” and “not our car”, we may use the indicators car
colour, car type and car parking area. Assume that we
believe that the indicator values in the car parking are
distributed as shown in Table 2.

Indicator values Red NOT(red) Volvo NOT(Volvo) B1 NOT(B1)

Our car 1 0 1 0 1 0

Not our car 19 80 14 85 9 90

Table 2: Indicator value distribution

From the indicator value distribution we can calculate
that the indicator car colour predicts correctly in 81%
of the cases, car type 86% and car parking area 91%
of the cases. The most valid indicator is, therefore, car
parking area, then, car type and, finally, car colour. In
a realistic situation we would, probably, modify this
validity measure to take the effort we need to identify

8

Scandinavian Journal of Information Systems, Vol. 13 [2001], Iss. 1, Art. 2

http://aisel.aisnet.org/sjis/vol13/iss1/2

© Scandinavian Journal of Information Systems, 2001, 13: 61-7868

SPECIAL ISSUE ARTICLE • Software Process Improvement and Human Judgement Heuristics

69© Scandinavian Journal of Information Systems, 2001, 13: 61-78

Software Process Improvement and Human Judgement Heuristics - SPECIAL ISSUE ARTICLE

the different indicator values into account.
The categorisation by elimination heuristic follows

the following algorithm:

1) Let S be the whole set of categories. In the car
parking example, S = {Our car, Not our car}

2) Get next indicator I. Indicators are ordered with
respect to categorisation validity. The most
valid indicator in our example is the car park-
ing area, i.e., we start with I = car parking area.

3) Set possible categories P to categories cor-
responding to indicator I’s value. Assume that
the car we attempt to categorise is a red Saab,
parked in B1. Starting with the most valid indi-
cator, P is set to {Our car, Not our car} because
both our car and other cars are parked in B1.

4) a) If S ∩ P contains only one category, then
select this category. End.
b) If S ∩ P contains more than one category, let
S = S ∩ P, go to 5)
c) If S ∩ P = ∅, go to 5).
In our example, the intersection between S and
P contains two categories, i.e., we proceed with
Step 5.

5) a) If there are no more indicators available, se-
lect a category from S at random.
b) If there are more indicators available, go to
2).
In our example, there are more indicators avail-
able, car type and car colour, and we proceed
with Step 2 and start the second iteration of the
algorithm.

In the second iteration in the car parking example we
use the second most valid indicator; I = car type. P
is now set to {Not our car} since the car we observe
is a Saab and our car is a Volvo. This means that the
category Our car is eliminated. Hence, the intersection
between S and P is {Not our car}. According to step
4 we predict that the car is not our car and end the
categorisation of that car.

In (Gigerenzer et al., 1999) this categorisation
heuristic was applied to categorise flowers, wine and
mushrooms. The simple heuristic performed almost as
good as formal statistical methods on these data sets.
In situations where there is a degree of uncertainty
regarding the indicator values of the object we want
to categorise, the heuristic may however be difficult
to use. For example, assume that we were only 80%
sure that we had parked our car in B1 and that we were

unable to exclude any parking area completely. The
validity of the parking area indicator would still be
high, because the use of it leads to a high proportion of
correct categorisations. On the other hand, observing a
car in B5 we would be almost sure that the car is not
ours, but the original heuristic would not allow us to
use this information to exclude the category Our car. In
other words, there may be only few situations where we
actually use categorisation by elimination as described
in this heuristic.

5. The Use of Heuristics in Software
Processes

5.1. Representativeness
Judgements relying on the representativeness heuristic,
typically, search for the most representative elements
from a class of elements. For example, a software
development risk analysis of project A based on
representativeness builds upon on a search for the most
similar projects from a class of completed software
projects. Then, the similar projects are used to draw
conclusions about the risk of project A. Consequently,
the heuristic may lead to poor judgement when more
similar is not the same as more useful for prediction
purposes.

The following example of high representativeness
and relatively low prediction accuracy is described
in more detail in (Jørgensen & Sjøberg, 2001b). This
study indicates that software maintainers frequently
use the representativeness heuristic together with the
anchoring-and-adjustment heuristic when they carry
out risk analyses of their tasks. The maintainers tried
to remember the most representative tasks carried
out recently and adjusted their risk assessment due
to differences between the representative and the new
task. Although the maintainers had detailed knowledge
about the task they were supposed to complete, a
simple judgement model based solely on whether
the size of the task was small or medium/large made
more accurate risk assessments than representativeness
based assessments of the maintainers. Similar results
on how a strong reliance of representativeness may
lead to poor judgements are reported in, for example,
(Dawes & Corrigan, 1974).

To avoid the misuse of the representativeness
heuristic, we must understand its limitations. For
example, let us consider a new software project A,

9

Jørgensen and Sjøberg: Software Process Improvement and Human Judgement Heuristics

Published by AIS Electronic Library (AISeL), 2001

© Scandinavian Journal of Information Systems, 2001, 13: 61-7870

SPECIAL ISSUE ARTICLE • Software Process Improvement and Human Judgement Heuristics

71© Scandinavian Journal of Information Systems, 2001, 13: 61-78

Software Process Improvement and Human Judgement Heuristics - SPECIAL ISSUE ARTICLE

which is very similar to a completed project B. Project
B had an extremely high productivity. This extremely
high productivity was, however, not only caused by the
variables that made project A similar to project B, but also
by other variables, such as an unusual degree of luck.
Therefore, it is unlikely that project A will have as high a
productivity as project B. due to the so-called statistical
regression toward the mean effect - the same effect that
explains why it is likely that children of tall parents will
be smaller than their parents (Campbell & Kenny, 1999),
(Jørgensen et al., 2001) - it would have been better to use
less similar projects, i.e., more average projects, as a basis
for the estimation of the productivity of project A.

Software risk assessment and productivity predictions
should be based on knowledge about when people tend
to think too representatively. In these cases more formal
data analysis may be necessary for accurate judgements.
We further evaluate the use of the representativeness
heuristic when estimating software project productivity
in Section 6.

5.2. Availability
The availability heuristic aims at describing how people
make judgements about frequency and probability.
According to this heuristic, human judgements on
frequency and probability are based on how easily
they can recall objects or events. Objects or events that
can easily be recalled are assumed to be more frequent
than objects or events that are more difficult to recall.
This heuristic may explain why we found that software
maintenance managers assessed the proportion of effort
spent by their maintenance team on enhancing and
adapting software applications reasonably accurate,
while the proportion of effort spent on error correction
was highly over-estimated (Jørgensen, 1995b). Software
corrections may receive more management attention
compared with other types of maintenance work and
are, therefore, easily overestimated according to the
availability heuristic.

Knowledge about when the availability heuristic
leads to biased judgements is an important input when
a decision has to be taken on whether to trust frequency
judgements based on expert judgement or whether to
start a measurement program to collect and analyse data
more objectively. If there are reasons to believe that there
are significant differences in how easily people recall
different events, more objective measurement may be
necessary to get accurate judgements.

5.3. Anchoring and Adjustment

The anchoring-and-adjustment heuristic is a two
step judgement process. First, an initial judgement
is made and its result is established as the anchor.
Then, adjustments are made for differences between
the current situation and the anchor situation. There
are indications that the anchoring-and-adjustment
heuristic is important when experts estimate software
project effort and, sometimes, a significant reason for
estimation inaccuracy (Jørgensen & Sjøberg, 2001a).
Such indications were found both in industrial contexts
using project experience reports and interviews
as sources, and in an anchoring-and-adjustment
experiment performed with 38 computer science
students. Here, we will illustrate this experiment in
more detail:

• The students estimated how much effort they
would use on a course in software engineering,
i.e., they had to deliver an estimate of the effort
for their own work. The estimation was carried
out approximately 4 weeks after the course had
started. The activities included in the estimate
were: participation in the lectures, participation
in the weekly exercises, work on the mandatory
software development project and self-study on
course topics. The students could use the activ-
ity category “Other activities” if an activity did
not fit any of the activities above.

• Before estimating the course effort in detail
the students were asked whether they thought
they would use more than X work-hours on
the course. Half of the students were presented
with X=200 work-hours and the other half with
X=800 work-hours. While 200 work-hours
was a possible effort usage, 800 work-hours
would mean that the students used about 50
hours each week on the course, i.e., a much too
high effort estimate. The students were asked
not to use more than 5 minutes on this initial
estimation task and were informed that the X-
value was not based on historical data or what
the course teachers believed was a reasonable
amount of effort. We believed that the X-value
would, in spite of this information, be used as
an anchor and would have an impact on the
activity estimates.

• Then, the students were asked to give an effort
estimate on each of the activities of the course.
They were asked to estimate the minimum, av-
erage and maximum effort on each activity.

• The average estimated effort for groups with

10

Scandinavian Journal of Information Systems, Vol. 13 [2001], Iss. 1, Art. 2

http://aisel.aisnet.org/sjis/vol13/iss1/2

© Scandinavian Journal of Information Systems, 2001, 13: 61-7870

SPECIAL ISSUE ARTICLE • Software Process Improvement and Human Judgement Heuristics

71© Scandinavian Journal of Information Systems, 2001, 13: 61-78

Software Process Improvement and Human Judgement Heuristics - SPECIAL ISSUE ARTICLE

different X-values were finally compared.

While the group presented with X=200, on average,
estimated 202 work-hours, the group presented with
X=800 estimated, on average, 303 work-hours, see
Figure 1.

poorly when the anchor projects were different from the
new project, i.e., there was an insufficient adjustment
for the differences. Interestingly, the knowledge of the
human characteristic that the differences to closest
analogy is not sufficiently adjusted for, can be used
to compensate for another human weakness, namely
the tendency of planners to make too optimistic
predictions. The compensation technique used by
some project leaders is to start the estimation process
with the most pessimistic effort estimate and then
estimate the most likely and the most optimistic effort.
The most pessimistic effort estimates will then function
as the anchor value and lead to higher estimates of the
most likely effort compared with an estimation process
starting with the most likely effort estimates. Results
supporting this compensating process are reported by
Conolly & Dean (1997).

5.4. Ignorance: Recognition
The recognition heuristic is based on the assumption
that people, when choosing between two objects,
prefer the object they know if they do not know the
other object. In software process improvement work,
the recognition heuristic may, for example, be used
together with other heuristics when selecting software
development tools. There is, typically, no empirical
evaluation of the overall performance of a development
tool to support such selections (Jørgensen et al., 1995).
An important input for the selection process may,
for this reason, be the strength of recognition of the
tools. This example is based on an extension of the
recognition algorithm described in Section 4.1.

While the original recognition heuristic divides
recognition into recognised and not recognised, our
example is based on a more fine-grained scale of
recognition. This extension is, in our opinion, natural,
but lacks the preciseness of the original recognition
heuristic since there is no commonly accepted fine-
grained scale for strength of recognition. The strength
of development tool recognition is increased through
information about other companies using the tool, tool
advertisements, vendor presentations and other tool
marketing initiatives. In our opinion, the recognition
heuristic explains why many of the advertisements
do not focus on informing the potential customers
about the performance of the tool. Instead, they focus
on increasing the strength of recognition. Strength of
recognition may correlate with important performance
characteristics and may be a useful strategy if a

X=800X=200

600

500

400

300

200

100

Group

T
o
ta

l
(w

o
rk

-h
o
u

rs
)

Total effort estimate
(means are indicated by lines)

Figure 1: Anchor and adjustment experiment

A statistical one-sided t-test with different variance gave
p=0.003, which means the difference is significant.
We asked the students whether they believed their
estimate had been impacted by the X-value. In spite of
a somewhat leading question: “Do you believe that you
have been influenced ...”, less than half of the students
believed that they had been influenced. An analysis of
the data showed no significant difference in estimates
between those that believed that they had been
impacted and the others. This indicates that people are
not always aware of the anchors used and their impact
on the judgements. More details about this study can be
found in (Jørgensen & Sjøberg, 2001a).

When estimating software work it is, according
to the results above, important that the estimation
is carried out independently of non-informative or
biased numbers. For example, if the software product
customer has unrealistic expectations regarding the
cost of a project, estimators aiming at realistic estimates
should not know these expectations! As indicated by
the experiment the estimators may otherwise believe
that they have provided a realistic effort estimate,
when in fact they have provided a much too optimistic
estimate anchored in the customer expectations.

Similar results were found by Hoch & Schkade
(1996), who reported that an estimation process based
on anchoring-and-adjustment performed well compared
with other estimation methods when the anchor projects
were good predictors of the new project, and performed

11

Jørgensen and Sjøberg: Software Process Improvement and Human Judgement Heuristics

Published by AIS Electronic Library (AISeL), 2001

© Scandinavian Journal of Information Systems, 2001, 13: 61-7872

SPECIAL ISSUE ARTICLE • Software Process Improvement and Human Judgement Heuristics

73© Scandinavian Journal of Information Systems, 2001, 13: 61-78

Software Process Improvement and Human Judgement Heuristics - SPECIAL ISSUE ARTICLE

fast decision is needed. Selecting less recognised
development tools may, for example, imply smaller
tool vendors with high risk of no further development
of the tool. On the other hand, if our intuition, which
many people may trust more than analytical models, is
too much based on strength of recognition, a vendor
with a poor development tool can compensate for this
through demonstrations and advertisements. Therefore,
the recognition heuristic can when used alone, lead to
poor decisions.

5.5. One Reason: Take The Best
A decision process based on the heuristic Take The
Best (TTB) investigates indicators according to their
validity and stops when a difference between two
alternatives is found. Take the following example,
a project leader has decided to improve the project
performance by introducing a code generating
CASE (Computer Aided Software Engineering) tool.
The project leader has collected information about
two CASE tools, A and B, and has to choose one of
them. Here, the original recognition heuristic cannot
be used, since both A and B are recognised. Assume
that the main criterion when choosing a CASE tool is
project productivity and that the most valid indicators
of productivity are (1) quality of generated code and
(2) ease of CASE tool use. The project leader sorts the
indicators according to their validity, i.e., how useful
the indicators are believed to differentiate between the
CASE tools. The search for differences starts with the
indicator with the highest validity, and, if there are no
significant differences between A and B concerning
this indicator, continues with the second most valid
indicator, and so on, until a difference is found. When
a difference is found, the CASE tool with the highest
value for this indicator is chosen. Note that TTB does
not combine indicators and that less valid information
is not considered at all if a significant difference on a
more valid indicator is found.

When does TTB perform well, and is this heuristic
actually used by people? Experiments described
by Gigerenzer (1999) indicate that TTB potentially
explains elements of human judgement and performs
just as well as or better than more formal methods,
e.g., regression based models and classification trees,
when:

• the number of objects per indicator is low, i.e.,
when there are many valid indicators and few
observations to learn from, and

• the information is relatively non-compensatory,
i.e., the indicator validity is strongly decreas-
ing. Information is totally non-compensatory
when each indicator is more valid than any
combination of less valid indicators.

The former condition may be typical for software
improvement decisions. In the CASE tool example
above we may have only few observations that
indicate the performance of the CASE tools and
many indicators that are relevant for the performance
of the tools. The second condition is less obvious.
TTB will perform well if there is a strong decrease
in indicator validity. This is the case if, for example,
quality of CASE tool generated code is considered
the most important characteristic and only very
large differences regarding ease of use should alter a
decision based on a difference in quality of generated
code. On the other hand, TTB performs badly if there
is important information in a combination of indicators,
e.g., when weighting of indicators is necessary to make
a good decision. We recommend the use of formalised
decision procedures when there is no clear ranking of
indicator validity or when the combination of indicator
values are believed to contain important information.
This recommendation is in accordance with the results
described in (Dawes, 1988), where it is reported that
people, on average, perform poorly in situations where
two or more aspects of a situation have to be attended
at once, i.e., situations where combination of indicators
are important. However, if there is a clear ranking of
indicator validity, i.e., the indicator validity is strongly
decreasing, and there are few relevant observations
available, a decision based on expert judgement may
perform just as well or better than a formalised decision
procedure.

5.6. Elimination: QuickEst
The use of the QuickEST heuristic in a software

process improvement context is best illustrated with
an example. We demonstrate it by using it for the
estimation of software productivity and compare
estimates with the actual effort. In the example, using
QuickEst,software productivity is estimated measured
in function points (Symons, 1991) per work-hour for
a new project. The example uses a data set of real life,
completed software projects as described in (Jeffery
& Stathis, 1996). The productivity indicators and the
corresponding indicator values are listed in Table 3.

12

Scandinavian Journal of Information Systems, Vol. 13 [2001], Iss. 1, Art. 2

http://aisel.aisnet.org/sjis/vol13/iss1/2

© Scandinavian Journal of Information Systems, 2001, 13: 61-7872

SPECIAL ISSUE ARTICLE • Software Process Improvement and Human Judgement Heuristics

73© Scandinavian Journal of Information Systems, 2001, 13: 61-78

Software Process Improvement and Human Judgement Heuristics - SPECIAL ISSUE ARTICLE

Table 3: Indicators and indicator values

For each indicator value we calculated the average
productivity and ranked them according to this
value. The indicator value with the lowest average
productivity value was allocated the highest validity
rank, the second lowest was allocated the second
highest validity rank, etc. Table 4 shows the 5 most
valid indicator values.

shows, QickEST is easy to learn and it should thus be
not too difficult to train software professionals in using
QuickEst when estimating the productivity, effort, or
time usage of new projects.

5.7. Elimination: Categorisation
We evaluated the categorisation by elimination
heuristic using a data set of 109 maintenance tasks
and asked software maintainers to sort these tasks into
the following two categories: (C1) the task will have
major unexpected problems and (C2) the task will not
have major unexpected problems (for more detail,
see Jørgensen, 1995a). The most valid indicators
are described and ranked according to percentage of
correct predictions in Table 5, as described in Section
4.3.2.

Table 4: Validity ranked indicator values

There were additional indicator values in the data set,
but these had no impact on the estimate when using
QuickEst. No other additional indicator values had
to be applied to estimate the project productivity.
Concerning f. ex. project size a project using 4GL as
the programming language on a distributed platform,
regardless of its actual size, results in a QuickEst
productivity estimate of 0.13 function points per work-
hour in only two search steps.

The prediction accuracy, defined as the mean
value of the difference between the actual and the
QuickEst predicted productivity relative to the actual
productivity, was 38%. Neither estimation by analogy
using clustering algorithms based on Euclidian
distance nor linear regression achieved a better
prediction accuracy than QuickEst. In addition, while
the statistical approaches frequently over-fitted their
model to the data - they developed a prediction model
indicating the productivity of projects in the given set
very well on the cost of the prediction of new projects-,
QuickEst avoided this over-fitting to a large extent.

Independently of whether expert estimators actually
use a heuristic similar to QuickEst, this heuristic
illustrates that fast and frugal heuristics can have
a performance comparable to more sophisticated
methods. QuickEst probably enables better integration
with expert estimator knowledge than formal estimation
models because the heuristic is easy to understand
and the indicator values are easy to update with new
experience. In addition, as the example hopefully

Indicator Indicator values
Programming language COBOL, C, 4GL, mixed
Project type Distributed platform, centralised platform
Project size Small, medium, large

Rank Indicator values Average productivity value for indicator value
1 Programming language = mixed 0.10 function points per work-hour
2 Project type = distributed 0.13 function points per work-hour
3 Programming language = C 0.21 function points per work-hour
4 Programming language = COBOL 0.22 function points per work-hour
5 Programming language = 4GL 0.25 function points per work-hour

Table 5: Categorisation indicators sorted by validity

Unfortunately, none of these indicators eliminates
categories. There are small tasks that have major
unexpected problems, there are corrective tasks
without major unexpected problems and there are
tasks where the maintainers’ confidence is high that
have major unexpected problems. Following the
algorithm described in Section 4.3.2, we should then
select category (C1) or (C2) at random. The original
categorisation heuristics based on elimination may,
therefore, not be very useful in situations like this,
where we are unable to eliminate any alternatives
based on the available information. In the above case,
there is an obvious lack of fit between the heuristic and
its environment. Hence, the heuristic Take The Best, for
example, may be a better choice.

The main purpose of this example is to illustrate
that to perform well, software process experts need a
toolbox of heuristics, and knowledge about when there
is a fit between the heuristics and their environments.

6. The Different Use of Heuristics

Rank Indicator Correctly predicted categories and prediction rule
1 Size of change 62 % correct predictions.

IF Size of change = small THEN predict C2 ELSE
predict C1

2 Type of change 58% correct predictions.
IF Type of change = corrections THEN predict C1
ELSE predict C2

3 Confidence of
maintainer

57% correct predictions.
IF Confidence of the maintainer = high THEN
predict C2 ELSE predict C1
The confidence of the maintainer is high if he/she
believes to know how to solve the task when starting
the maintenance task work.

13

Jørgensen and Sjøberg: Software Process Improvement and Human Judgement Heuristics

Published by AIS Electronic Library (AISeL), 2001

© Scandinavian Journal of Information Systems, 2001, 13: 61-7874

SPECIAL ISSUE ARTICLE • Software Process Improvement and Human Judgement Heuristics

75© Scandinavian Journal of Information Systems, 2001, 13: 61-78

Software Process Improvement and Human Judgement Heuristics - SPECIAL ISSUE ARTICLE

The utilisation of human judgement heuristics differs
however from person to person based upon, amongst
other things, a person’s toolbox of heuristics and
previous feedback on the usefulness of a heuristic.
To illustrate this, we describe in this section how
individuals vary in their use of the representativeness
heuristic when estimating software development
productivity.

We here therefore come back to the experiment
reported in section 5.3 which included 38 under-
graduate students who followed a course in software
engineering at the University of Oslo. It might be
argued that the use of students instead of software
professionals may jeopardise to the validity of the
results of this experiment. However, interviews with
professional software developers indicate that they,
typically, get no formal training in estimation and
that the feedback of the estimates they make is poor
(Jørgensen & Sjøberg, 2001a). In addition, we consider
the involved software engineering students as semi-
professionals. They practise software development as
part of the university course, and most of them work
part-time in the software industry. Therefore, although
they might differ in their amount of experience, we
believe that there is no large difference between how
students and software professionals estimate software

development projects. Our view is supported by Höst
et al. (2000), who found that computer science students
were good substitutes for software professionals to
assess lead-time impact factors.

The students were asked to estimate the productivity
of a new project (P-NEW) and to explain how they
had derived their calculation based on available
information as presented in table 6 which contains
records of the two the two most similar projects, called
P-11 and P-34, from an existing project database, In
addition, they received the following data about the
projects in the project database:

• The project database consists of 100 software
development projects.

• The projects vary in productivity from 0.2
kLOC/PM to 7 kLOC/PM.

• The average productivity of all 100 projects is
2 kLOC/PM.

• The average productivity of the ten projects
with development platform and complexity
- the two factors considered most important for
the productivity - identical to P-NEW is 1.0
kLOC/PM.

When we analysed the strategy chosen for each
estimate, both the estimate itself and its explanation
were taken into account. The resulting answers
were classified into 4 strategies of use of the
representativeness heuristic, depending on the projects
used as analogues to predict the productivity of P-
NEW:

1) Use of the two closest analogues (P-11 and P-
34)

2) Use of the average of the ten closest analogues
and adjustments for P-11

3) Unadjusted use of the average of the ten closest

analogues

4) Use of the average of the ten closest analogues
and an adjustment for the total average

Table 7 shows the distribution of the strategies and the
average estimated productivity for each of them.

Projects Platform Architecture Size Complexity Productivity

P-11 Cobol/MVS Client/server 9 kLOC HIGH 0.3 kLOC/PM

P-34 Cobol/MVS Client/server 11 kLOC HIGH 1.1 kLOC/PM

P-NEW Cobol/MVS Client/server 10 kLOC
(estimated by the
project leader)

HIGH
(estimated by the
project leader)

? LOC/PM

Table 6: Project information used in the experiment (kLOC = 1000 Lines of Code, PM = Person Months)

Strategy Frequency Average estimate
1 9 (24%) 0.8 kLOC/PM
2 7 (18%) 0.9 kLOC/PM
3 17 (45%) 1.0 kLOC/PM
4 5 (13%) 1.7 kLOC/PM

Table 7: Estimation strategies

Although these results need to be replicated in more

14

Scandinavian Journal of Information Systems, Vol. 13 [2001], Iss. 1, Art. 2

http://aisel.aisnet.org/sjis/vol13/iss1/2

© Scandinavian Journal of Information Systems, 2001, 13: 61-7874

SPECIAL ISSUE ARTICLE • Software Process Improvement and Human Judgement Heuristics

75© Scandinavian Journal of Information Systems, 2001, 13: 61-78

Software Process Improvement and Human Judgement Heuristics - SPECIAL ISSUE ARTICLE

realistic contexts, they indicate that the actual use of the
representativeness heuristic is based on very different
individual interpretations of representativeness. In the
case of the estimation task these were, for example:

• P-11 is representative for P-NEW because P-
11 is similar to P-NEW

• P-11 is not representative for P-NEW because
P-11 has an unusually low productivity

• The average of the ten closest analogues is
representative for P-NEW, with the probable
reasoning that the variance of possible produc-
tivity values cannot be represented by one or
two earlier projects.

The expected prediction accuracy of the above
strategies depends on how well the use of the project
information in the experience database enables us
to predict new projects. If high similarity means
high predictability, then the use of few analogues
to predict a new project may be a proper strategy.
On the other hand, if the project information in the
experience database is of less use to predict new
projects, then use of the total average productivity
may be the best estimation strategy. Information
about the predictability of the historical data was not
included in the task description. None of the students
made any assumptions on the predictability of the
data in the experience database when answering the
estimation question. The students may have assumed
environments with different estimation uncertainty
when selecting their estimation strategy. The results do
not necessarily describe the variance of productivity
estimates in a realistic environment with better known
estimation uncertainty. The results do indicate the
following:

• To select a proper estimation strategy, the in-
formation about the estimation uncertainty is
essential.

• The awareness of the relation between pre-
dictability and use of very similar projects as
predication analogues can be low.

• The representativeness heuristic is a rather
vague label for several different strategies that
may lead to very different estimates.

As shown in Table 7, nine of the estimates were
based on Strategy 1, i.e., the strategy that the closest

two analogues were the best predictors. As described
earlier, Strategy 1 is expected to perform poorly if the
estimation uncertainty is low. To further investigate
whether the students were aware of this relation
between estimation strategy and uncertainty, we added
more information to the estimation task: there it was
assumed that the estimation accuracy of estimates
based on the 2-3 most similar projects had, on average,
been very low. We then asked whether this information
had an impact on the productivity estimate and required
an explanation.

We found that only one of the nine students using
Strategy 1 to solve the first task changed the estimate
based on this information. The other eight students
answered that the uncertainty had no impact on their
estimates. The additional uncertainty information
did not change their choice of estimation strategy.
This points to a need for training in the relation
between prediction uncertainty and the use of the
representativeness heuristic. Yet, when introduced
this type of improvement is an example of software
improvement supporting the expert estimators instead
of replacing the expert with statistical “black-box”
estimation tools.

7. Conclusions and Further Work
This paper has exemplified that software processes
can be improved by applying knowledge from human
judgement heuristics. The main condition for human
judgement heuristics to perform well is that there is a
fit between the heuristics and their environment. For
example, in environments where the recognised objects
on average are perceived as better than the unrecog-
nised objects and where there are scarce resources to
collect further information, a good strategy is to select
between the initially recognised objects. There are
studies reporting very good judgements based on little
information and simple computations when there is a
fit between the judgement strategies and the environ-
ments. On the other hand, there are numerous examples
of how simple heuristics may lead to poor decisions,
in particular, when the estimators are unaware of the
heuristics they use and are unconscious of their as-
sumptions regarding the fit between the heuristic and
the environment. A small-scale experiment carried
out by the authors indicated that different persons’
interpretation of the representativeness heuristic may
differ to a large extent and this is not necessarily based

15

Jørgensen and Sjøberg: Software Process Improvement and Human Judgement Heuristics

Published by AIS Electronic Library (AISeL), 2001

© Scandinavian Journal of Information Systems, 2001, 13: 61-7876

SPECIAL ISSUE ARTICLE • Software Process Improvement and Human Judgement Heuristics

77© Scandinavian Journal of Information Systems, 2001, 13: 61-78

Software Process Improvement and Human Judgement Heuristics - SPECIAL ISSUE ARTICLE

on awareness of the assumptions behind this heuristic.
In particular, software estimators may need training
concerning the relation between representativeness
and estimation uncertainty.

This paper has described initial research on how to
improve software processes based on an understanding
of how software professionals judge and learn from
experience. In the near future we plan to carry out
several industrial studies and experiments to study
further issues such as:

• How do professional software estimators use
data from earlier projects?

• Can elements of the Take The Best heuristic
improve software effort estimation?

• How typical is the faulty use of the heuristics
applied by software professionals, e.g., do
software professionals select an estimation
strategy in accordance with the prediction un-
certainty of their environment?

• When is there a major lack of environmental

fit between the heuristic and its environment?

• How does the use of heuristics differ among
different individuals and how can software pro-
fessionals be trained to select and use the most
proper heuristic?

and finally

• To what extent will training of software profes-
sionals based on knowledge about the heuris-
tics actually improve software development
processes?

6. Acknowledgements
The research project is funded by The Research
Council of Norway through the industry-project
PROFIT (PROcess improvement For the IT industry).
This paper is based upon earlier work presented at the
EuroSPI 2000 conference in Copenhagen, Denmark.
Thanks to Karlheinz Kautz who further reviewed the
paper and gave many very useful suggestions.

Notes

[1] For more information about the ABC group, see http://www.mpib-berlin.mpg.de/abc/.

References:

Blattberg, R.C. & Hoch, S.J. (1990) Database models and managerial intuition: 50% model + 50% manager, Management
Science, 36, pp. 887-899.

Briand, L.C., El Emam, K. & Bomarius, F. (1998) COBRA: A Hybrid Method for Software Cost Estimation, Benchmarking,
and Risk Assessment, Int. Conf. on Software Engineering, Kyoto, Japan.

Brown, N.R. & Siegler, R.S. (1993) The role of availability in the estimation of national populations, Memory and Cognition,
20, pp. 406-412.

Campbell, D.T. & Kenny, D.A. (1999) A primer on regression artifacts, The Guilford Press.

Collins (1991) Collins english dictionary, Aylesbury, England, HarperCollins Publishers.

Conolly, T. & Dean, D. (1997) Decomposed versus holistic estimates of effort required for software writing tasks,
Management Science, 43(7), pp. 1029-1045.

Conte, S.D., Dunsmore, H.E. & Shen, V.Y. (1986) Software engineering metrics and models, Benjamin/Cummings
Publishing Company Inc.

16

Scandinavian Journal of Information Systems, Vol. 13 [2001], Iss. 1, Art. 2

http://aisel.aisnet.org/sjis/vol13/iss1/2

© Scandinavian Journal of Information Systems, 2001, 13: 61-7876

SPECIAL ISSUE ARTICLE • Software Process Improvement and Human Judgement Heuristics

77© Scandinavian Journal of Information Systems, 2001, 13: 61-78

Software Process Improvement and Human Judgement Heuristics - SPECIAL ISSUE ARTICLE

Dawes, R.M. (1988) Rational choice in an uncertain world, Harcourt Brace & Company.

Dawes, R.M. & Corrigan, B. (1974) Linear models in decision making, Psychological Bulletin, 81(2), pp. 95-106.

Deming, W.E. (2000) Out of the crisis, MIT Press.

Finnie, G.R. & Wittig, G.E. (1997) A comparison of software effort estimation techniques: using function points with neural
networks, case based reasoning and regression models., J. Systems Software, 39, pp. 281-289.

Gigerenzer, G. & Goldstein, D.G. (1996) Reasoning the fast and frugal way: Models of bounded rationality, Psychological
review, 103, pp. 650-669.

Gigerenzer, G., Todd, P.M. & group, A.R. (1999) Simple heuristics that make us smart, New York, Oxford University Press.

Groner, M. (1983) Methods of heuristics, NJ, Erlbaum.

Hoch, S.J. & Schkade, D.A. (1996) A psychological approach to decision support systems, Management Science, 42(1), pp.
51-64.

Höst, M., Regnell, B. & Wohlin, C. (2000) Using students as subjects - a comparative study of students and professionals in
lead-time impact assessment, Empirical Software Engineering, 5(3), pp. 201-214.

Jeffery, F.R. & Stathis, J. (1996) Function point sizing: structure, validity and applicability, Empirical Software Engineering,
1(1), pp. 11-30.

Jørgensen, M. (1995a) An empirical study of software maintenance tasks, Journal of Software Maintenance, 7, pp. 27-48.

Jørgensen, M. (1995b) The quality of questionnaire based software maintenance studies, ACSM SIGSOFT - Software
Engineering Notes, 20(1), pp. 71-73.

Jørgensen, M. (1997) An empirical evaluation of the MkII FPA estimation model., Norwegian Informatics Conference,
Voss, Norway.

Jørgensen, M., Bygdås, S.S. & Lunde, T. (1995) Evaluation of CASE Tool Efficiency - Method and Results, Applied
Software Measurement, Orlando, USA.

Jørgensen, M., Indahl, U. & Sjøberg, D. (2001) Software effort estimation and regression toward the mean, Submitted to:
SEKE 2001.

Jørgensen, M. & Sjøberg, D.I.K. (2001a) Impact of software effort estimation on software work, Submitted to Journal of
Information and Software Technology.

Jørgensen, M. & Sjøberg, D.I.K. (2001b) Learning from experience in a software maintenance environment, Submitted to
IEEE Transactions on Software Engineering.

Kahnemann, D., Slovic, P. & Tversky, A. (1982) Judgement under uncertainty: Heuristics and biases, Cambridge University
Press.

Kemerer, C.F. (1987) An empirical validation of software cost estimation models, Communications of the ACM, 30(5), pp.

17

Jørgensen and Sjøberg: Software Process Improvement and Human Judgement Heuristics

Published by AIS Electronic Library (AISeL), 2001

© Scandinavian Journal of Information Systems, 2001, 13: 61-7878

SPECIAL ISSUE ARTICLE • Software Process Improvement and Human Judgement Heuristics

416-429.

Myrtveit, I. & Stensrud, E. (1999) A controlled experiment to assess the benefits of estimating with analogy and regression
models, IEEE Transactions on Software Engineering, 25, pp. 510-525.

Northcraft, G.B. & Neale, M.A. (1987) Experts, amateurs, and real estate: An anchoring-and-adjustment perspective on
property pricing decisions., Organizational Behavior and Human Decision Processes, 39, pp. 84-97.

Paulk, M.C., Curtis, B., Chrissis, M.B. & Weber, C.V. (1993) Capability maturity model, Version 1.1, IEEE Software, 10(4),
pp. 636-651.

Plous, S. (1993) The psychology of judgment and decision making, McGraw-Hill.

Pruijt, H.D. (1997) Job design and technology: Taylorism vs. Anti-Taylorism, London, Routledge.

Ross, M. & Sicoly, F. (1979) Egocentric biases in availability and attribution, The journal of personality and social
psychology, 37, pp. 322-336.

Sedlmeier, P., Hertwig, R. & Gigerenzer, G. (1998) Are judgements of the positional frequencies of letters systematically
biased due to availability?, Journal of Experimental Psychology: Learning, Memory and Cognition, 24(3), pp. 754-770.

Symons, C. (1991) Software sizing and estimating: MkII Function Point Analysis, J. Wiley and Sons.

Taylor, F.W. (1911) The principles of scientific management, New York, Harper & Row.

Tversky, A. & Kahneman, D. (1974) Judgment under uncertainty: Heuristics and biases, Science, 185, pp. 1124-1130.

Tversky, A. & Kahneman, D. (1982) Judgments of and by representativeness, in: D. Kahneman, P. Slovic & A. Tversky (Eds)
Judgment under uncertainty: Heuristics and biases, Cambridge, England, Cambridge University Press.

18

Scandinavian Journal of Information Systems, Vol. 13 [2001], Iss. 1, Art. 2

http://aisel.aisnet.org/sjis/vol13/iss1/2

	Scandinavian Journal of Information Systems
	2001

	Software Process Improvement and Human Judgement Heuristics
	Magne Jørgensen
	Dag I. K Sjøberg
	Recommended Citation

	tmp.1258131975.pdf.WyUtm

