
Scandinavian Journal of Information Systems

Volume 15 | Issue 1 Article 7

2003

The social construction of the software operation:
Reinforcing effects in metrics programs
Helle Damborg Frederiksen
Aalborg University, Denmark, helledamborgfrederiksen@emailaddressnotknown

Jeremy Rose
Aalborg University, Denmark, jeremyrose@emailaddressnotknown

Follow this and additional works at: http://aisel.aisnet.org/sjis

This material is brought to you by the Journals at AIS Electronic Library (AISeL). It has been accepted for inclusion in Scandinavian Journal of
Information Systems by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

Recommended Citation
Frederiksen, Helle Damborg and Rose, Jeremy (2003) "The social construction of the software operation: Reinforcing effects in
metrics programs," Scandinavian Journal of Information Systems: Vol. 15 : Iss. 1 , Article 7.
Available at: http://aisel.aisnet.org/sjis/vol15/iss1/7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301357886?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org/sjis?utm_source=aisel.aisnet.org%2Fsjis%2Fvol15%2Fiss1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sjis/vol15?utm_source=aisel.aisnet.org%2Fsjis%2Fvol15%2Fiss1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sjis/vol15/iss1?utm_source=aisel.aisnet.org%2Fsjis%2Fvol15%2Fiss1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sjis/vol15/iss1/7?utm_source=aisel.aisnet.org%2Fsjis%2Fvol15%2Fiss1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sjis?utm_source=aisel.aisnet.org%2Fsjis%2Fvol15%2Fiss1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sjis/vol15/iss1/7?utm_source=aisel.aisnet.org%2Fsjis%2Fvol15%2Fiss1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

The social construction of the software operation

© Scandinavian Journal of Information Systems, 2003, 15: 23-37 23

The social construction of
the software operation
Reinforcing effects in metrics programs

Helle Damborg Frederiksen, Jeremy Rose
Aalborg University, Department of Computer Science, Fredrik Bajers Vej 7E, DK-9220 Aalborg, Denmark

Abstract
In a large software company in Denmark, much effort was expended capturing metrics
about the company’s software operation. The purpose of the metrics program was to
change and improve the software operation. Writing software can be understood as a
socially constructed practice, which can be analyzed using structuration theory. This
structurational analysis showed that the company’s software operation followed an easily
recognizable and widely understood pattern. The software operation was organized in
terms of development projects leading to applications that then needed maintenance, and
displayed a heavy focus on project development work and hitting the project deadline.
Study of the metrics program (and the computer software underpinning it) revealed that the
familiar pattern was also inscribed into the metrics software, heavily influencing the
company’s metrics practice. Rather than challenge the underlying social practice of the
software operation, the metrics program reinforced it by adopting the same underlying
values. Our conclusion is that, under these circumstances, metrics programs are unlikely to
result in radical changes to the software operation, and are best suited to small, incremental
improvements.

Keywords
Software process improvement, software metrics, social
constructionism

1

Frederiksen and Rose: The social construction of the software operation

Published by AIS Electronic Library (AISeL), 2003

The social construction of the software operation

© Scandinavian Journal of Information Systems, 2003, 15: 23-37 24

Introduction
Many organizations make a conceptual
separation in their software operation between
the development of new software (usually cast
as development projects), and maintenance of
the applications that result from these projects.
Maintenance activities often constitute the
larger, and very much the less glamorous part of
the total operation. ‘For most large, long-
lifetime software systems, maintenance costs
usually exceed development costs by factors
ranging from 2 to 4’ (Sommerville 1992).
Lientz and Swanson (1980) found that large
organizations devoted at least 50% of their
programming effort to maintaining existing
systems, whereas Avison (1995) estimates that
the effort given to maintenance can be as high
as 60-80% of the total workload. However
maintenance ‘is often considered a burden and
staff find the work unrewarding and often
frustrating’ (Avgerou and Cornford 1998).
Sommerville also describes the ‘negative image’
of maintenance.

‘Maintenance has a poor image amongst
software engineers. It is seen as a less skilled
process than program development and in many
organizations is allocated to inexperienced
staff.’ (Sommerville 1992).

Project deadline pressures do not help this
situation:

‘the temptation is towards ‘quick and dirty’
solutions. The deadline for cutover may seem
sacrosanct [sacred and inalterable]. It is
politically expedient to patch over poor design
rather than spend time on good design………..’
(Avison and Fitzgerald 1995).

This conceptualization of the software operation
(development projects leading to applications
that then need maintenance) is also common in
software houses – organizations dedicated to
building software. The term ‘software
operation’ refers to the analytical and
programming work that leads to the
development, upgrading and maintenance of
software applications. These are the direct
revenue generating operations, or ‘operating
core’ (Mintzberg 1983) of a software house.
Initiatives aimed at improving the software
operation have in recent years been studied as

software process improvement (SPI)
(Humphrey 1989; McFeely 1996) and often
linked to the Capability Maturity Model (CMM)
(Caputo 1998; Paulk et al. 1995). SPI focuses
on continuous improvement of software
development work practices. Assessment of
current software operation capability normally
leads to change strategies such as the
improvement of project management practices
like scheduling and tracking. CMM work
focuses on software process standardization,
and, as the level of maturity increases, process
learning and improvement. However,
experience shows that many SPI efforts fail to
generate significant changes in organizational
practice.

‘Starting SPI is not difficult… However, turning
assessment insights into action is the point at
which many organizations fail. Others manage
to initiate focused improvement projects, only to
find that implementing new ideas is very
difficult. Even when you succeed in
implementing an idea in an individual project,
you are still a long way from institutionalizing
improvements.’ (Mathiassen et al. 2001).

One strategy for learning about the software
operation advocated by SPI theorists is a metrics
program. “Software process data is gathered to
learn how to make process improvement”
(Humphrey 1989). A metrics program is the
work of collecting and interpreting numerical
data about the software operation (which is
normally structured around a metrics software
package), and feeding back the resulting
understandings. A metrics program builds on
measures, which each provide a quantitative
indication of the extent, amount, dimensions,
capacity, or size of some attribute of a software
product or process (Pressman 2000). The
measures are the result of the collection of one
or more data points and they are related (often
via algorithms built into the software package)
to obtain indicators of performance. The
measures and indicators are used to support
management and improvement, either in
specific projects or organization wide.

‘Software metrics are initiated with the belief
that they will improve software engineering and
management practices. The rationale arises from
the notion that you cannot improve something

2

Scandinavian Journal of Information Systems, Vol. 15 [2003], Iss. 1, Art. 7

http://aisel.aisnet.org/sjis/vol15/iss1/7

The social construction of the software operation

© Scandinavian Journal of Information Systems, 2003, 15: 23-37 25

without first measuring it.’ (Gopal et al. 2002).

Establishing a well-functioning metrics
programs is demanding. Difficulties may
include:
1. Alignment of the measurement program with

wider business and organizational goals,
2. Organizational commitment and resource

sufficiency, and
3. The technical characteristics of the

measurement program itself (Goldenson et
al. 1999).

A study by Dekkers (1999) showed that nearly
80% of attempts failed within the first two
years.

In view of the reported difficulties with SPI and
metrics programs (particularly with respect to
effecting lasting organizational change), it
becomes important to ask ‘what is the nature
and extent of the improvement to the software
operation that can reasonably be expected to
result from a metrics program?’ In this paper,
we address this question by studying the metrics
program at Software House (SWH - the name is
anonymized). SWH is a large Danish software
house, and their metrics program has been
running for five years. A third party company,
Waypoint (name also anonymized) provides a
software package (Development Waypoint) for
recording the data, and data analysis services
which include benchmarking against leading
software firms. The program has evolved to the
point where, after considerable effort,
reasonably reliable data is available about the
software operation, and the company is
currently seeking to improve the utilization of
the data.

The frame of reference that we adopt when
addressing the research question is that the
software operation and the metrics program can
be studied as socially constructed practice: that
is evolving practice which is located in the
shared understandings and actions of the people
who undertake it, related to its context and
historical development. This approach
encourages a much wider appreciation of socio
political- context than the focus on software
process. The two socially constructed practices
are related in as much as the purpose of the
metrics program is to improve the software
operation. Many theoretical lenses could be

adopted to study socially constructed practice;
for example communities of practice (Wenger
1998), situated action (Suchman 1987), actor
network theory (Callon and Law 1989; Latour
1987). Structuration theory (Giddens 1984) is
preferred here because of its focus on the
emergent effects of action and structure: an
evolving pattern of behaviors and
understandings. In this way we set out to study
the emergent effects of one practice (the metrics
program) upon another (the software operation);
in particular the ability of the metrics practice to
change (‘improve’) the software operation – its
primary stated purpose.

Research method
This research project forms part of a
collaborative practice study (Mathiassen 2000)
which is intended to improve the use of metrics
at SWH (see also Frederiksen & Mathiassen,
2002). The study, which began in October
2000, is sponsored by the company’s director
for software development, and operates under a
company steering committee. The research
team includes both researchers and
practitioners, and one of the authors
(Frederiksen) is a long term employee currently
responsible for the metrics program.

The interpretive case study reported here was
designed to help understand current practice.
The information systems literature contains
many examples of the interpretive case study
(Brooks 1997; Jones and Nandhakumar 1993;
Karsten 1995; Knights and Murray 1994; Sauer
1993; Walsham 1993; Zuboff 1988). The
research style normally involves substantial
involvement in the research situation in a
participant or non participant, overt or covert
mode, over a period of time. The goal of this
style of research is ‘deep familiarity’ (Goffman
1989) with the research situation, resulting in
‘thick’ description which provides enough detail
to allow analysis of the interpretations and inner
thought worlds of the research subjects. The
researcher cannot be assumed to be free of their
own interpretations, and considerable care is
needed to offer analysis in an open and explicit
manner, so that the reader is able to make
judgments about its validity. Walsham (1995),
following Eisenhardt (1989), suggests that
theory may be involved in interpretive case

3

Frederiksen and Rose: The social construction of the software operation

Published by AIS Electronic Library (AISeL), 2003

The social construction of the software operation

© Scandinavian Journal of Information Systems, 2003, 15: 23-37 26

studies in three different ways:
1. As an initial guide to design and data

collection
2. As part of an iterative process of data

analysis
3. As a final product of the research.

The iterative approach used here allows the
theoretical position to be developed as data
collection and analysis proceed. There may be a
problem in generalizing from case study
research, where depth is substituted for breadth,
but Walsham suggests that four types of
generalization are possible.
1. Concepts may be developed (such as

Zuboff’s ‘informate’)
2. Theory may be generated (as with the

structurational model of technology
(Orlikowski 1992))

3. ‘Specific implications in particular domains of
action’ may be drawn (such generalizations
are often formulated as tendencies rather
than predictions)

4. Less focused learning may be termed ‘rich
insight.’

Data collection for the study included ten semi-
structured interviews with management, metrics
staff, quality assurance staff, and software
engineers. The participants were chosen to
represent different interests in the collection,
interpretation, distribution, and usage of metrics
data, e.g. software senior manager, software
project managers, team manager, metrics
controller, general controller, manager with
responsibility for quality assurance and project
planning and tracking in SAP, manager with
responsibility for using data for software
process improvement, software engineers, and
maintenance engineer. Interviews lasted for
three hours, were documented and corrected and
approved by the interviewee. We studied plans,
decision reports, and e-mail correspondence
related to metrics, minutes of meetings from the
metrics staff, consultant’s reports and
documents from the organization’s process
improvement initiative and the company
intranet. This constitutes the formal data
collection process. However, Frederiksen’s role
as practitioner in the research situation allows a
daily familiarity with the company and the
metrics program which goes beyond participant
observation or the temporary engagement

generated by action research (for instance, a
complete five year record of all emails sent to
her in connection with the project was available
for study). This deep engagement with the
research situation was recorded in a personal log
for the duration of the study period.

An important part of the research process
involved achieving a balance between distance
and engagement (Nandhakumar and Jones
1997). Engagement promotes understanding,
but can lead to bias and over-subjective
interpretation. Distance helps with achieving
defensible understandings, but can lead to
superficiality. In this project, one of the authors
was heavily engaged with the research situation,
and the other with the theory. Balance was
achieved by a series of long analytical
conversations, in which each researcher took
care to transfer their engaged understandings to
the other, and acted as uninvolved (distant)
critic for the understandings they received. All
analytical insights into the research situation
were assumed to be provisional and in need of
validation. Initial data collection was followed
by structurational analysis, leading to the
generation of insights, followed by a further
round of data collection targeted at those
insights and further analysis. The insights
generated from this round of analysis were
taken back to the interviewees and project
sponsors for validation. The data and case study
material (section 4) is separated from the
analysis (section 5) as far as possible in the
writing so that the reader can judge the validity
of the analysis and conclusions. The research is
overt and conducted with the encouragement of
the company concerned. The end product of the
of the research process can be characterized as
specific implications in a particular domain (the
use of software metrics programs for software
process improvement).

Structuration theory and
the social construction of
practice
Anthony Giddens’ structuration theory
(expressed in ‘The Constitution of Society’
(1984)) has been used in the study of
information systems for some time (Barley
1986; Brooks 1997; Jones and Nandhakumar

4

Scandinavian Journal of Information Systems, Vol. 15 [2003], Iss. 1, Art. 7

http://aisel.aisnet.org/sjis/vol15/iss1/7

The social construction of the software operation

© Scandinavian Journal of Information Systems, 2003, 15: 23-37 27

1993; Karsten 1995; Orlikowski 2000;
Orlikowski 1992; Orlikowski and Robey 1991;
Rose and Scheepers 2001; Walsham 1993).
There are already three published reviews of
this literature (Jones 1997; Rose 1998; Walsham
and Han 1991) and all the reviewers note the
use of structuration theory for analyzing
empirical situations involving information
systems.

Structuration theory offers an explanation of
social practice as the recursive interaction of
agency and structure. Agency refers to what
human actors choose to do, whereas structure
refers to the sets of personal and collective
understandings which form the context in which
they do it, and partly determines what they are
able to understand as a viable potential action.
Human agency, in Giddens formulation, is the
‘capacity to make a difference’ (Giddens 1984
pp 14) - (also known as ‘transformative
capacity’). He defines structure as

‘rules and resources recursively implicated in
social reproduction; institutionalised features of
social systems have structural properties in the
sense that relationships are stabilized across
time and space’…….{Structure} ‘exist only as
memory traces, the organic basis of human
knowledgeability. Structure refers, in social
analysis to ‘the structuring properties allowing
the ‘binding’ of time space in social systems, the
properties which make it possible for similar
social practices to exist across varying spans of
time and space.’ (Giddens 1984 pp 17).

Social practice can be regarded as the
interaction of structure (sets of individual and
communal understandings) and action. Giddens
recasts the two independent sets of phenomena
(dualism) of structure and agency as a ‘duality’ -
two concepts which are dependent upon each
other and recursively related.

‘The structural properties of social systems are
both medium and outcome of the practices they
recursively organize’ (Giddens 1984 pp 25).

Structuration is thus the process whereby the
‘duality of structure’ evolves and is reproduced
over time space to constitute social practice.
Giddens suggests that the duality of structure
can be analyzed as dimensions including
signification, domination and legitimation
(structure) and the related concepts

communication, power, and sanction
(interaction).

The social construction of practice (in this case
software operation and metrics program) can
therefore be understood, in structurational
terms, as the recursive interaction of structure
and agency (analyzable in terms of the
dimensions above), reproduced over time and
space and integrated into emergent patterns.

SWH: the software
operation and the metrics
program
Background
The business of SWH is to develop and
maintain IT-solutions, including applications for
payroll, financial administration, and budgeting,
for large public clients in Denmark. Lately,
SWH has focused on delivering web
applications for private citizens to use, such as
applications for accessing and updating
information on the web. In April 2001 SWH
had 2355 employees, 620 of whom were
software developers. This makes SWH one of
the largest software organizations in Denmark.
SWH is distributed widely across Denmark at
12 sites, and the software organization is
represented at four sites. Though the company’s
customers may choose their software solutions
freely from the market, in some domains (such
as tax administration) SWH has, at least for the
time being, the leading market position.
Customers very rarely pay directly for
development work. According to the chief
accountant at SWH the revenue comes from
licensing arrangements, which guarantee
maintenance and support for the applications. In
2001 less than 1% of the development projects
were charged to customers on an hourly basis.

The software operation at SWH
SWH is organized in a conventional hierarchical
divisional structure, and the software operation
is organized in teams according to the
applications, (for example a team is responsible
for the tax application). The application teams
are responsible for correcting faults, supporting
the users and for upgrading the applications
with additional functional requirements and
more up-to-date technology platforms. New

5

Frederiksen and Rose: The social construction of the software operation

Published by AIS Electronic Library (AISeL), 2003

The social construction of the software operation

© Scandinavian Journal of Information Systems, 2003, 15: 23-37 28

software development is organized in projects,
with project members drawn from different
departments as appropriate. Because of the
wide potential client base of the software
applications, users are often represented on
development projects by company experts with
local knowledge, rather than being directly
involved. Maintenance programmers are
dedicated to correcting errors, supporting users,
and programming functionality that is not part
of the projects. In 2001 one fourth of the
software operation was dedicated to developing
new applications. The remaining part was
dedicated to the maintenance of the existing
applications.

Perceptions of project and maintenance work
are very different. “There is more prestige
associated with working on projects than with
working on maintenance” says a software
engineer with nearly twenty years experience
working across the organization (interview,
software engineer, September 2001). Project
work is perceived as “the most exciting and
challenging” with “stimulating new worlds and
“technical challenges to be overcome… new
recruits prefer to work here” (interview,
maintenance engineer, June 2002).
Maintenance work is “little valued and boring.”
Maintenance programmers have “security
without changes … a stable environment - you
know what to expect. There’s no particular
reason to get better educated or develop. In the
short term, the work can be successfully done
without it. However there’s a risk that you’ll
pay for this later… …furthermore you’re locked
into the job. Productivity can be very low. It’s
measured by the fault statistics. Nobody thinks
whether it would be better to add new
functionality. There’s a one-sided focus on
reducing the fault count” (interview,
maintenance engineer, June 2002). Poor
perceptions of maintenance sometimes mask its
real importance. Maintenance workers are “key
personnel - knowledge is power…remember
that this is where we earn money, so it must
really be important…you’re thought of as
flexible, if you agree to stay in maintenance.
Some people get a good salary to stay… the
average age is higher here” (interview,
maintenance engineer, June 2002). There is a
structural divide between development work,
organized in projects, and maintenance work,

which comes later. “It’s the common perception
at SWH that everything that comes after a
project’s specified deadline is maintenance”
(interview, software engineer, September 2001).

There is no compulsory method for software
development (project leaders and teams are free
to choose their own project organization and
development methods), but, by unspoken
convention, projects always adopt some kind of
waterfall model structure. Therefore the
language of analysis, design, testing,
implementation, rollout and maintenance is
standard, and can be seen, for instance
throughout the various development guides
issued by the methods department. The status
of projects is monitored using the familiar
traffic light convention. A project’s status can
be green amber, or red. However the
determination of a project’s status is not always
simple. An experienced project manager was
specially selected for a difficult project (project
A) (interview, project manager, March 2001).
Project A ran into trouble early on, and the
project manager recognized this. She also knew
her reputation partly depended on hitting the
deadline. She told her managers about the
difficulties, but they didn’t want to listen. She
thought the project should be red-lighted as a
signal that it was in trouble, but the managers
would not agree, knowing that this was a sign of
failure that they could be held responsible for.
She proposed a reduced functionality plan that
would see the project through to deadline, but it
was rejected. Project A went through many
crises, demanded much overtime, and its
functionality eventually had to be cut along the
lines that the project manager had suggested.

In the management of projects, the most
important consideration is hitting the deadline.
According to one senior manager "the expert
board {charged with overseeing the
development projects} concentrates only on
projects keeping to schedule – they have no
responsibility for business aspects." According
to the manager responsible for the expert board,
"its objective is to make sure that projects run to
schedule, but we also keep an eye out for
functionality and quality, and we also act as a
sparring partner for project managers."
However another senior manager (much closer
to development work) commented “the expert

6

Scandinavian Journal of Information Systems, Vol. 15 [2003], Iss. 1, Art. 7

http://aisel.aisnet.org/sjis/vol15/iss1/7

The social construction of the software operation

© Scandinavian Journal of Information Systems, 2003, 15: 23-37 29

board is interested in just one thing – hitting the
deadline.” This has resulted in a widespread
understanding of the deadline imperative. At a
series of courses for trainee project managers
(developers, technicians, sales people,
implementers drawn from all parts of the
organization), the trainees were asked to choose
between deadline, cost and quality as the most
important success factors. All twenty trainees
chose deadline.

The management of projects displays a number
ways of manipulating the projects in order to
hit, or apparently to hit deadlines. In one recent
project, (project B) organized along a traditional
analysis-design-implementation-testing-rollout
pattern, it became obvious that the deadline
could not be met (interview, quality assurance
personnel, October 2000). The solution was to
organize another, separate project for part of the
testing and the rollout. The outputs of the first
project became the starting point for the next
project. In this way the formal requirements for
meeting the deadline for the first project could
be achieved, at least in appearance. Skipping
part of the testing, or documentation in order to
meet the deadline is also fairly commonplace.
Another method for hitting the deadline is to
reduce the program functionality, as happened
in project A (reported above). The missing
functionality can be then be rescheduled as
another project, or (quite commonly) handed
over to the maintenance engineers and
undertaken as part of maintenance duties.

This focus on deadlines can sometimes be at the
expense of software quality. “That’s also one of
the problems I’ve experienced – that the
managerial focus on quality has not been huge”
(interview, experienced software middle
manager, January 2002). Quality, in the
language of SWH, refers to the performance of
the code that has been written – its ability to
execute cleanly without bugs and its functional
ability to fulfill users’ needs. Quality is usually
measured by fault statistics (the complaints
registered by users). Quality considerations will
not necessarily affect a project’s status, if it
appears to be running to schedule. “A project
can easily have big quality problems (for
example in a system test) and still be green”
(interview, experienced software middle
manager, January 2002). This can result in a

problem at release time, as imperfectly tested
code is rushed into operation to meet the
deadline. “It’s common to experience a boom in
faults at release time” (interview, middle
manager 1, November 2000). Apparently
successful projects can lead to problems later -
“we have many examples of ’exemplary’
development projects which brought praise to
everyone in the project group, where there was a
big problem later in maintenance with the
number of bugs, the system’s operational
situation” (interview, experienced software
middle manager, January 2002). The structural
divide between development and maintenance
means that there is little feedback – “nobody
follows up where the bugs arose – which project
group produced the bugs……..nobody ever
talks about it. In any case, the project group has
moved on to the next job” (interview,
maintenance engineer, June 2002).

The metrics program at SWH
SWH has a long tradition for collecting simple
measures, for example the number of defects in
an application. In January 1997 the metrics
program was implemented with the stated
intention of increasing productivity and quality,
through measuring key indicators and
benchmarking against other companies. ‘One
measurement is better than a thousand
opinions,” (interview, senior manager, October
2000). The insights available from the metrics
program should lead to change in the company’s
working practice. “Metrics and benchmarking
are pointless by themselves. It’s the resulting
change that’s the important thing. Metrics are
the means with which to actively achieve
change” (minutes, metrics program pre-project
group, Nov. 1996). “The purpose of the metrics
is to realize efficiency gains through making
costs visible, and identifying improvement
areas” (presentation, CEO, Jan 1997).

An external company (Waypoint) supplied the
metrics program. Data is collected according to
the model supplied by Waypoint (Figure 1) and
entered into Development Waypoint, the
software supplied for this purpose. The
software is built around a database with fields
organized according to the model. At the
beginning of the project the project manager
reports on (amongst other things) the actual start
date, name of project manager, data on estimates

7

Frederiksen and Rose: The social construction of the software operation

Published by AIS Electronic Library (AISeL), 2003

The social construction of the software operation

© Scandinavian Journal of Information Systems, 2003, 15: 23-37 30

and so on. They estimate the number of
function points (a measure of program
complexity) in the project. “Counting function
points is today reckoned the only recognized
way to compare project complexity” (meeting
minute, project group, Jan 1997). Through the
life of the project other data such as person
hours and cost are reported every quarter, and
further data are reported upon completion. In
the model (Figure 1) the measures from C
(development services), D (management and
administration) and E (customer services) are
regarded as overheads to the software operation,
which Waypoint represent as A (development)
and B (production). SWH do not use the term
‘production’ and in their internal documents it is
relabeled ‘maintenance’. According to the
model, development is divided into the
traditional activities: study, analysis, design etc.
Production is viewed in terms of the activities:
user support, repair, upgrade (new
functionality), and technical enhancement.
SWH chose not to use the customer satisfaction
(Y) part of the model. The data are processed,
validated and packaged at SWH, then sent to
Waypoint for analysis. The analysis results
include indicators, benchmarked against
successful companies in the industry, both at a
general level and at a project and application
level. Once a year Waypoint delivers a written
report including an analysis of strengths and
weaknesses pf the software operation and a set
of recommendations for further actions.

If we relate the Waypoint indicators to the
software operation at SWH, then A1-A7
measures relate to projects, B1 measures relate
to the quality of the resulting application and B3
measures relate to maintenance. B4 (upgrade)
and B5 (technical enhancement) might refer
either to projects or maintenance in the SWH
software operation. Of the measures
implemented by SWH, 64 refer to projects and
37 to applications and maintenance. In the
model’s graphical representation, development
is the largest, so presumably most important
activity area. Waypoint analyzes the data
annually and provide two levels of reporting: a
management summary and a much more
detailed numerical report, in which quantitative
indicators are cross-tabulated against categories
derived from descriptive indicators. The
management summary focuses on eight
aggregated reporting indicators. Project
indicators dominate; furthermore one of the four
project indicators relates directly to the project
deadline, and two more are indirectly related
since they are dependent on time measures.

We should also observe some things which are
missing from the metrics program. Income
plays no part, so it is not possible to relate
income from the software operation to the costs
of particular applications and the projects that
developed them. Neither is it possible to relate
a development project to a specific application
and its subsequent maintenance. This means
that it is impossible to link specific project

C1 Development
Tools & Technologies

C3 Quality
Assurance

C4 Training

C. Development Services

D. Management & Administration

D1 Management & Administration

C2 Standards
& Methods

E. Customer Services

E1 Contracting & Consulting

Users

ALL APPLICATIONS ALL ENVIRONMENTS

Y. User Satisfaction

A6 User Documentation

A1 Study

A4 Implementation & Test

A3 Design

A2 Analysis

A. Development

A7 Project Management
Quality Assurance etc.

A5 Installation

ALL PROJECTS ALL ENVIRONMENTS

B. Production

B3 Repair

B4 Upgrade

B2 User Support

B1 Application Processing & Quality

B5 Technical Enhancement

C1 Development
Tools & Technologies

C3 Quality
Assurance

C4 Training

C. Development Services

D. Management & Administration

D1 Management & Administration

C2 Standards
& Methods

E. Customer Services

E1 Contracting & Consulting

Users

ALL APPLICATIONS ALL ENVIRONMENTSALL APPLICATIONS ALL ENVIRONMENTS

Y. User Satisfaction

A6 User DocumentationA6 User Documentation

A1 Study

A4 Implementation & TestA4 Implementation & Test

A3 DesignA3 Design

A2 Analysis

A. Development

A7 Project Management
Quality Assurance etc.

A5 InstallationA5 Installation

ALL PROJECTS ALL ENVIRONMENTS

B. Production

B3 Repair

B4 Upgrade

B2 User Support

B1 Application Processing & Quality

B5 Technical Enhancement

Figure 1: Development Waypoint

8

Scandinavian Journal of Information Systems, Vol. 15 [2003], Iss. 1, Art. 7

http://aisel.aisnet.org/sjis/vol15/iss1/7

The social construction of the software operation

© Scandinavian Journal of Information Systems, 2003, 15: 23-37 31

measures with measures concerning the
applications that result from the projects, or the
later maintenance work that might result partly
from poor (or good) design and programming.
Thus if a project was completed on time, but at
the expense of application quality, and this later
caused many maintenance problems, there
would be no way of learning this from the
metrics program. Finally, SWH chose not to
collect user satisfaction metrics (Y in Figure 1).
Hence, there are no measures of application
quality as assessed by the firm’s customers in
the metrics program.

However, “interpreting results coming from the
metrics program can be quite difficult… you
need a deep understanding of the Waypoint
model and function points to interpret the data”
(minute, project meeting, March 2002). It has
also proved difficult to target relevant
conclusions from the report at appropriate
company members: “in order to interpret the
Waypoint results at a project or site level, its
necessary to have insight both into to the
function point method and the Waypoint model,
and also to understand other completed SWH
projects. You cannot expect this from the target
groups. And the higher up the organization the
report goes, the less insight you can expect”
(personal note, Waypoint controller, June 2002).
Some were openly suspicious of the results -
“the indicators (graphs and tables) give more
noise (mistrust of the function point method,
mistrust of consistency in data collection
between sites, fueling of rumors) than food for
careful consideration” (personal note, Waypoint
controller, June 2002). Others questioned the
relevancy of the results- “it hasn’t been possible
to find graphs in the Waypoint reports which are
relevant for project managers and employers”
(personal note, middle manager 2, March 2002).
“If this is really useful, you should tell us how,
its got no value for the individual project
manager” (personal note, middle manager 2,
March 2002). Some denied that the program
was useful or necessary - “the metrics confirm
what we already knew………we don’t need
metrics to improve our
processes………..SWH’s culture encourages
improvement anyway” (interview, middle
manager 1, April 2002)

Some of the reporting and utilization of metrics

is quite political. The allocation of function
points, for example, causes some argument at
SWH. “Employers would like to see for
themselves that the function points numbers are
OK, and that the function point numbers give a
realistic picture of a system’s complexity” (e-
mail, senior manager 1, March 2000).
“Function points, as a measure of size, are
regarded as unjust” (personal note, senior
manager 4, May 2002). If engineers didn’t
agree with the allocation of function points, they
were unlikely to value the results that later came
from the metrics program. “Function points
contradict peoples’ intuition………employees
should participate in the setting of function
points, in order to commit to them” (personal
note, middle manager 2, March 20021).
Function point allocation is not a precise
science, but is nevertheless necessary in order to
compare development projects of different size
and complexity. As another example of political
dispute, it is not easy to say on which day a
project started. Should this be the day the
project was approved, the day the project
manager was appointed, the day the first
engineer started work, or the first day on site? A
project manager would be wise to record the
start date as late as possible, and the number of
function points as high as possible, since this
will improve all the major indicators for their
project. Software managers were not
particularly interested in the metrics program to
begin with, regarding it as a distraction, but later
learned that their projects (and therefore their
work) could be evaluated through the program.
Projects supervised by one particular manager
(who was more than usually involved with the
metrics program) began to show significantly
better in all the indicators. Other managers,
however, wanted his count of function points
checked. They questioned whether his projects
actually were better, or whether he had simply
learned how to report the measures in a
favorable way. Where metrics were intended to
highlight problems, managers could sometimes
be seen defending their own territory - “the
development process runs smoothly. Problems
should be sought in other parts of the
organization” (email, middle manager 1, April
2002).

In 2001 the data available from the metrics
program showed that, benchmarked against

9

Frederiksen and Rose: The social construction of the software operation

Published by AIS Electronic Library (AISeL), 2003

The social construction of the software operation

© Scandinavian Journal of Information Systems, 2003, 15: 23-37 32

good industry performers, SWH performed
comparably well on the aggregated timeliness
indicator – the projects did indeed hit their
deadlines. However most of the other indicators
were lower than the benchmarks. Despite five
years of the metrics program it was difficult to
point to areas where the program had made a
significant impact on the company’s procedures
“Recommendations made on the basis of
metrics are correct and relevant, but they don’t
necessarily lead to an actual change in
behavior” (personal note, middle manager 1,
April 2002). This was also perceived as a
danger - “if the data is not continually used and
seen to be used, the metrics program will simply
lead a life of its own” (minute steering
committee, senior manager, April 2001).

The social construction of
the software operation at
SWH – a structurational
analysis
The software operation
In terms of the software operation, structure
primarily means the social and organizational
arrangements in place (formal and informal),
which both enable and constrain the writing of
code. These constitute a set of rules and
resources which actors employ in their software
writing process. Agency is then the process of
employing those rules and resources in the
writing of software. In a development project,
for instance, programmers employ individual
and collective understandings of how a
development project should be carried out
(some of which are formalized as organizational
procedures and some of which are part of their
every day understandings), and resources such
as budgets and development tools, in the writing
of software. However the development project
is an instance of software writing in which
understandings are put in to action and realized,
with varying degrees of success and fulfillment
of expectations. It therefore contributes to
individual and collective understandings,
confirming or changing them in the process.
Social construction of the software operation
therefore refers to the recursive process whereby
software is written under a set of social and
organizational arrangements. The signification

structure (the shared meaning or mode of
discourse) of the software operation at SWH is
understood in terms of development projects
(which result in applications or parts of
applications), and maintenance of the
applications. This is reflected in the structure of
the company, the language (“maintenance”
(SWH) not “production” (Waypoint)) methods
department guides and so on. Substantial
programming efforts (an upgrade to meet a
change in legislation, for instance) may be cast
as projects, even though they are not
‘development’ in the sense of developing an
application from scratch. This is to say that the
writing of code is understood either as
development or maintenance, even though the
actual activities concerned may be quite similar
(“everything that comes after a project’s
specified deadline is maintenance”).
Development is understood to be a project, and
a project is understood to follow a waterfall
model, that is to be composed of a linear set of
activities including analysis, design, testing and
implementation. The legitimation structures of
the company ensure that projects are seen as
more important than maintenance (see for
example the maintenance engineer’s
description of her work) although maintenance
is considerably more of the workload, and
important in the financial structures of the
company (“this is where we earn the money”).
In project work, hitting deadlines is the most
important goal and measure of success
(“interested in just one thing – hitting the
deadline”). Structures of domination in the
company mean that programmers who are
perceived to be more skilled become part of the
elite who work on development projects and
later become project managers. Successful
project managers become senior managers who
have the authority to perpetuate the same
values, and exclude those with different
perspectives (someone with a background in
sales, for example). Other programmers work
primarily on maintenance, sometimes many
years on the same application, without wielding
much formal power in the organization, though
the software operation is highly dependent on
their skills, experience and knowledge (“key
personnel”). Users are often locked into legacy
systems and consequently wield little consumer
power.

10

Scandinavian Journal of Information Systems, Vol. 15 [2003], Iss. 1, Art. 7

http://aisel.aisnet.org/sjis/vol15/iss1/7

The social construction of the software operation

© Scandinavian Journal of Information Systems, 2003, 15: 23-37 33

Enduring structures favoring projects and hitting
project deadlines over other features of the
software operation provide the context for
specific instances of practice. Managers can be
seen exercising power over the ‘red-lighting’ of
project A. Projects that fail or miss deadlines
mean loss of face and reputation, and possible
sanctions in terms of career progression, so the
managers concerned come into conflict. The
project manager tries to avoid being held
responsible for missing the deadline, whilst her
managers try to avoid being seen to be in charge
of a failing project. In doing so they confirm
the importance of the structures they work
within, and reenact them. The deadline’s the
important thing. It is part of the programmers’
understanding that the software they build
should be thoroughly tested before being
released to clients, and also part of their shared
underlying model of development, but the
project manger understands that deadline is
more important, and has the power to overrule
other members of the development team. In
doing so s/he helps set expectations for the next
project. Similarly, when project managers
decided to cut the functionality of a system (as
in project A) they prioritize the deadline over
other legitimate expectations. According to the
waterfall model interpretive scheme the coding
of functions specified in a requirements
specification is development work, but
unwritten norms in the company allow it to be
re-labeled as maintenance when the deadline is
at stake. In this way the social practice of the
software operation is constructed and re-
constructed over time.

Thus one part of the software operation (new
developments in the form of projects) is viewed
as very important, whilst the much larger
maintenance operation is viewed as less
important. With project work one measure of
performance, the project deadline, becomes
more important than other measures (such as
application quality – “managerial focus on
quality has not been huge”). Actions that
project staff take reproduce this legitimation
scheme. Developers demonstrate that they are
technically skilled by working on prestigious
projects (“stimulating new worlds….…technical
challenges to be overcome”), and position
themselves so as to be seen to be hitting project
deadlines, at least nominally, because they know

their reputations depend upon it. Successful
actors (who understand the legitimation system
and position themselves well) become the next
generation of the powerful, who are in a
position to reinforce the existing structures.

The metrics program
When we look at the metrics software depicted
in the model provided at Figure 1, we find that it
shares the same view of the software operation.
The majority of the metrics and reporting
indicators concern the software development
projects; only a few indicators relate to the
application quality and maintenance work.
Within the project measures, timeliness
(effectively deadline) measures play the most
significant part. Reporting from waypoint
shares the same focus. This is not very
surprising, indicating that the developers of the
software package shared the same perspective,
and to some extent, inscribe their value system
into the package as they build it. It is also
necessary that the metrics package reflects the
structure of the software operation in order to
usefully collect data.

The implementation of the metrics program was
seen as an opportunity to change the software
operation practice (“it’s the resulting change
that’s the important thing”). It makes visible
certain parts of software practice, giving an
opportunity to change shared structures of
understanding and engineers’ actions. Data is
collected by engineers, but the program was
championed by the Chief Executive Officer, and
reports go to senior managers, underlining the
domination structure. Certain aspects of the
software operation are made visible,
legitimizing them, and prioritizing them over
other aspects which are not measured. Thus the
collection of data about (for instance) project
start and finish dates signals that these are
considered important by the sponsoring senior
management. Conversely a decision not to
collect metrics (about user satisfaction, for
instance) may send a signal that these aspects
are less important. However, metrics program
managers made few decisions about what data
to collect. They chose, entirely reasonably, to
largely follow the course set by the designers of
the Waypoint software package, but by doing so
unintentionally implied that they share the
Waypoint value scheme. Managers and

11

Frederiksen and Rose: The social construction of the software operation

Published by AIS Electronic Library (AISeL), 2003

The social construction of the software operation

© Scandinavian Journal of Information Systems, 2003, 15: 23-37 34

engineers find ways to legitimize their positions
by understanding the metrics process and
ensuring that their own indicators are presented
in the best possible light (for example in the
discussions and interpretations of function point
allocation). Differing semantic interpretations
of the terms used (for instance in the social
construction of what a ‘function point’
represents) make this possible even before the
actors begin to ‘cheat’ (for instance by not
providing data about badly performing projects
which they know should be reported). It also
means that ‘losers’ in the metrics situation
(managers with poor metrics) may accuse
‘winners’ of ‘cheating’. Senior managers are
understood to be overseeing more junior
colleagues and engineers (reinforcing structures
of domination); checking whether they are
performing well in selected areas which are
thereby deemed important. Managers can be
seen in rivalry over what signals about their
personal projects are sent to senior management
via the medium of the metrics program.
Managers with favorable indicators are
challenged, or the program invalidated (“we
don’t need metrics”). Maximizing one’s
position is a natural part of organizational life;
however, in order to do this managers must
focus on projects and project deadlines, because
this is built both into the metrics model and to
organizational life. In the five years of
operation, the metrics program became a part of
SWH’s organizational routine, but there was
little evidence that there were significant
changes to the software operation as a result.
The language of ‘function points’ became
accepted and well-understood (and sometimes
regarded as synonymous with the metrics
program), but the concept then became part of
well-entrenched norms and values concerning
projects. No similar effort was evident to
change the signification structure of the
maintenance programmers’ work. This metrics
program focus on projects and project deadlines
feeds back in the structurational cycle of the
software operation and reinforces it.

In the evolution of the social practice of the
software operation (that is its routinization and
continuation over time and space), the metrics
program has largely served to reproduce
existing patterns, rather than to transform them
into something recognizably different. The

focus on projects and deadlines was inscribed
into the Waypoint software package, this
pointed the way for the metrics program which
was easily adapted to fit with the company’s
underlying software operation practice.
Although the program was intended to change
the software operation, many of the signals sent,
and the actions taken in collecting metrics
tended to reinforce the existing structures of
signification, legitimation and domination.
With the benefit of hindsight, it is doubtful that
this reinforcement process could have been
avoided.

Conclusions
This paper has argued that the software
operation and metrics program at SWH can be
understood as linked socially constructed
practices, and analyzed with structuration
theory. The analysis shows that the SWH
software practice falls into a familiar pattern of
development and maintenance, but has two
particular characteristics: it prioritizes project
development work over maintenance, and
hitting the project deadline over other project
success indicators (such as application quality
or user satisfaction). Examination of the
metrics software showed that it was also heavily
influenced by these priorities, emphasizing the
collection of data about projects and deadlines;
whilst the reporting practice of the third party
metrics company showed the same emphasis.
In adopting the metrics program more or less as
it was supplied, SWH developed social practices
around the collection and use of metrics which
tended to reinforce the existing priorities, rather
than challenge them.

However, it is not necessarily the case that the
focus on projects and project deadlines is
beneficial to the company. Much of the work of
the company, measured by programmers’ time
or income structure is maintenance, and there is
a relationship between the quality of the
applications that are developed and the resulting
maintenance that needs to be undertaken. As
researchers we may speculate that refocusing
the company’s energy on writing code which is
well-tested, bug free and meets customers’
needs, and targeting maintenance for
improvement efforts might produce better

12

Scandinavian Journal of Information Systems, Vol. 15 [2003], Iss. 1, Art. 7

http://aisel.aisnet.org/sjis/vol15/iss1/7

The social construction of the software operation

© Scandinavian Journal of Information Systems, 2003, 15: 23-37 35

overall improvement for the company than the
present focus on projects and deadlines.
Though this remains a hypothesis, we can
conclude that this is exactly the kind of
challenge to social practice that the metrics
program will never raise. The program is
unsuited to producing radical improvements to
existing practice – in the words of one manager
“it only tells us what we know already.” In
other words, the company’s metrics analysis
takes place within the Waypoint frame of
reference, which is very similar to SWH
software practice. Experience with five years of
metrics analysis in the company has shown it
does not result in big changes. The company
has slowly but steadily approached the
benchmarks (part of this improvement may be
attributed to learning how to report favorably),
leading to a feel-good factor which contributes a
further reinforcement effect. One metrics
specialist summarized the situation neatly: “our
real problem is: if our problem is anything
except project deadlines, we can’t discover what
it is.” Meanwhile the program becomes further
integrated into the existing social practice.
Shortly before the time of writing the chief
executive announced an initiative to ‘increase
timeliness and productivity within projects’
Baselines and improvements will be measured
through the metrics program.

In reflecting upon the nature and extent of
change that can be expected from a metrics
program, we conclude that metrics programs are
not neutral, but reflect perspectives on software
operation commonly held amongst developers.
Companies naturally choose or develop
programs which reflect their own social
construction of the software operation, and the
programs therefore produce hidden reinforcing
effects which tend to support existing practices
rather than challenge them. Metrics programs
can easily be integrated into the software
operation’s cycle of structure and action,
reinforcing the dominant logics rather than
changing them. This does not mean the
programs are without value, but rather that they
will tend to produce small incremental
improvements to existing practices.
Challenging insights and radical improvement
proposals must therefore come from other
directions. However an individual armed with
such a radical change proposal might be able to

use carefully selected and targeted metrics as
part of a strategy to gradually alter the social
construction of the software operation.

Acknowledgements
This research was in part supported by the
Danish National Centre for IT research. Thanks
to all the colleagues at SWH who were generous
with their time, and colleagues at IRIS who
reviewed an earlier version of the paper.

References
Avgerou, C., and Cornford, A. Developing
Information Systems, MacMillan, Basingstoke,
1998.

Avison, D. E., and Fitzgerald, G. Information
System Development: Methodologies,
Techniques and Tools, McGraw-Hill, Maidenhead,
1995.

Barley, S. R. “Technology as an Occasion for
Structuring: Evidence from Observation of CT
Scanners,” Administrative Science Quarterly (31),
1986, pp. 78-108.

Brooks, L. “Structuration theory and new
technology: analysing organisationally situated
computer-aided design,” Information Systems
Journal (7), 1997, pp. 133-151.

Callon, M., and Law, J. “On the Construction of
Sociotechnical Networks,” Knowledge and Society
(8), 1989, pp. 57-83.

Caputo, K. CMM Implementation Guide:
Choreographing Software Process Improvement,
SEI series in Software Engineering, Addison-
Wesley, Reading, MA, 1998.

Dekkers, C. A. “The Secrets of Highly Successful
Measurement Programs,” Cutter IT Journal (12:4),
1999, pp. 29-35.

Eisenhardt, K. “Building theories from case study
research,” Academy of Management Review
(14:4), 1989, pp. 532-550.

13

Frederiksen and Rose: The social construction of the software operation

Published by AIS Electronic Library (AISeL), 2003

The social construction of the software operation

© Scandinavian Journal of Information Systems, 2003, 15: 23-37 36

Frederiksen, H. D., and Mathiassen, L.
“Diagnosing Metrics Practice in a Software
Organization” in New Perspectives on Information
Systems Development: Theory, Methods and
Practice. Harindranath, G., Rosenberg, D.,
Sillince, J. A. A., Wojtkowski, W., Wojtkowski, G.,
Wrycza, S. and Zupancic, J (eds.), Kluwer
Academic, New York, 2002.

Giddens, A. The Constitution of Society, Polity
Press, Cambridge, 1984.

Goffman, E. “On Fieldwork,” Journal of
Contemporary Ethnography (24:2), 1989, pp. 123-
132.

Goldenson, D. R., Gopal, A., and Mukhopadhyay,
T. "Determinants of Success in Software
Measurement Programs," The Sixth International
Symposium on Software Metrics: "Taking the
Measure of New Technology", Boca Raton,
Florida, 1999.

Gopal, A., et al. “Measurement Programs in
Software Development: Determinants of
Success,” IEEE Transactions on Software
Engineering (28:9), 2002, pp. 863-875.

Humphrey, W. S. Managing the Software
Process, Addison Wesley, Reading,
Massachusetts, 1989.

Jones, M. “Structuration and IS” in Re-Thinking
Management Information Systems. Currie, W. L.
and Galliers, R. D (eds.), Oxford University Press,
Oxford, 1997.

Jones, M., and Nandhakumar, J. “Structured
development? A structurational analysis of the
development of an executive information system”
in Human, Organisational and Social Dimensions
of Information System Development. Avison, D.
E., Kendall, J. E. and DeGross, J. I. (eds.), North-
Holland, Amsterdam, 1993.

Karsten, H. “'It's like everyone working round the
same desk:' organisational readings of Notes,
Scandinavian Journal of Information Systems,” 7
(1:), 1995, pp. 7-34.

Knights, D., and Murray, F. Managers Divided:
Organisation Politics and Information Technology
Management, Wiley, Chichester, 1994.

Latour, B. Science in action: how to follow
scientists and engineers through society, Harvard
University Press, Cambridge, MA, 1987.

Lientz, B. P., and Swanson, E. B. Software
Maintenance Management, Addison-Wesley,
Reading MA, 1980.

Mathiassen, L. “Collaborative Practice Research”
in Organizational and Social Perspectives on
Information Technology. Baskerville, R., Stage, J.
and DeGross, J. (eds.), Kluwer Academic
Publishers, Boston, 2000, pp. 127-148.

Mathiassen, L., Pries-Heje, J., and Ngwenyama,
O. Improving Software Organisations; from
Principles to Practice, Addison-Wesley, Boston,
2001.

McFeely, B. IDEAL: A Users' Guide for Software
Process Improvement, SEI, Pittsburgh, 1996.
Mintzberg, H. Structure in Fives, Prentice-Hall,
Englewood Cliffs, 1983.

Nandhakumar, J., and Jones, M. “Too close for
comfort? Distance and engagement in interpretive
information systems research,” Information
Systems Journal (7), 1997, pp. 109-131.

Orlikowski, J. “Using Technology and Constituting
Structures: A Practice Lens for Studying
Technology in Organizations,” Organization
Science (11:4), July-August 2000, pp. 404-428.

Orlikowski, W. J. “The Duality of Technology:
Rethinking the Concept of Technology in
Organizations,” Organization Science (3:3), 1992,
pp. 398-429.

Orlikowski, W. J., and Robey, D. “IT and the
Structuring of Organizations,” Information
Systems Research (2:2), 1991, pp. 143-169.

Paulk, M. C., Weber, C.V. Curtis, B. and Chrissis,
M.B. The Capability Maturity Model: Guidelines

14

Scandinavian Journal of Information Systems, Vol. 15 [2003], Iss. 1, Art. 7

http://aisel.aisnet.org/sjis/vol15/iss1/7

The social construction of the software operation

© Scandinavian Journal of Information Systems, 2003, 15: 23-37 37

for Improving the Software Process, SEI Series in
Software Engineeing., Addison-Wesley, Reading,
MA, 1995.

Pressman, R. S. Software Engineering - A
Practitioner's Approach, fifth edition McGraw-Hill,
London, 2000.

Rose, J. "Evaluating the contribution of
structuration theory to the information systems
discipline," 6th European Conference on
Information Systems, Aix-en-Provence, Euro-Arab
Management School, Baets, W. R. J. (ed.), 1998,
pp. 910-924.

Rose, J., and Scheepers, R. "Structuration theory
and information systems development;
frameworks for practice," European Conference
on Information Systems, Bled, Slovenia,
Smithson, S. and Avgerinou, S. (eds.), 2001.

Sauer, C. Why Information Systems Fail, a case
study approach, Waller, Henley on Thames, 1993.
Sommerville, I. Software Engineering, Addison-
Wesley, New York, 1992.

Suchman, L. A. Plans and Situated Actions: The
Problem of Human-Machine Communication,
Cambridge University Press, New York, 1987.
Walsham, G. Interpreting Information Systems,
Wiley, Chichester, 1993.

Walsham, G. “Interpretive case studies in IS
research: nature and method,” European Journal
of Information Systems (4), 1995, pp. 74-81.

Walsham, G., and Han, C. K. “Structuration
Theory and Information Systems Research,”
Journal of Applied Systems Analysis (17), 1991,
pp. 77-85.

Wenger, E. Communities of practice: learning,
meaning, and identity, Cambridge University
Press, Cambridge, U.K.; New York, N.Y, 1998.

Zuboff, S. In the Age of the Smart Machine, Basic
Books, New York, 1988.

15

Frederiksen and Rose: The social construction of the software operation

Published by AIS Electronic Library (AISeL), 2003

	Scandinavian Journal of Information Systems
	2003

	The social construction of the software operation: Reinforcing effects in metrics programs
	Helle Damborg Frederiksen
	Jeremy Rose
	Recommended Citation

	Microsoft Word - 3 Frederiksen_Rose _pp.23-38_.doc

