
JJIITTTTAA
JJOOUURRNNAALL OOFF IINNFFOORRMMAATTIIOONN TTEECCHHNNOOLLOOGGYY TTHHEEOORRYY AANNDD AAPPPPLLIICCAATTIIOONN

Raisinghani, M., and G. Custodio, “Object-Oriented Database Management Systems: Architecture and
Application”, The Journal of Information Technology Theory and Application (JITTA), 2:1, 2000, 11-18.

OBJECT-ORIENTED DATABASE MANAGEMENT SYSTEMS:
ARCHITECTURE AND APPLICATION

MAHESH S. RAISINGHANI, University of Dallas
Email: mraising@gsm.udallas.edu

GABRIEL CUSTODIO, Associates Information Services, Inc.

ABSTRACT

The advent of multimedia computing, the World Wide Web, and object-
oriented application languages has caused the proliferation of complex data
types that must be managed differently from traditional character or numeric
data types. Relational DBMS (RDBMS) can be modified with data extenders to
support these complex new data types. Object DBMS (OODBMS), however, are
designed specifically for these data types, and manipulate them with far greater
efficiency. OODBMS perform direct navigation, clustering, schema evolution,
and other functions that RDBMS cannot match. Adoption of common
interoperable standards will facilitate the move towards open systems for
heterogeneous, distributed platforms.

INTRODUCTION
Consider the following scenario. You

are designing a web-enabled application for a
client who sells designer clothing. The client
wants potential customers not just to browse
the catalog on their web site, but to have an
experience that emulates a visit to a designer’s
studio. Though there may be only 50 to 100
items in the catalog, these items must be
presented real time in a slick, seamless fashion.
The specifications are:

Visitors to the site may browse
through thumbnail indexes of designs
in the catalog.

A search engine must be available to
help visitors locate clothing by type.

When an item is selected, the visitor
may enter a profile to appropriately
shape the item for a 3D presentation.

The design will be presented in full-
color 3D. The visitor may rotate the
image a full 360 degrees, and may

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301356864?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Mahesh Raisinghani and Gabriel Custodio

 12

pitch or skew the image to view it
from several different angles.

The color, shade, and material may be
selectively changed, and the
simulated illumination in which the
design is displayed may be adjusted
to several different settings.

The visitor has the option of hearing a
voice commentary that describes
features and aspects of the design.

Accessories that complement the
design may be selected from a
separate bar.

A running total of the bill, with any
applicable discounts, is available
upon the visitor’s request.

The visitor may then elect to
conclude with a purchase transaction,
or be routed via e-mail or direct
phone to the designer’s sales assistant
immediately

A session normally lasts no longer than
20 minutes, but in that time the visitor may
choose from a large combination of custom
views and details. Even with this mix of
flexible access and complex data (image,
voice, and animation) combined with some
data and information gathering, the visitor does
not require special technology other than a
browser. This requires a database that moves
dynamically and interactively with the visitor’s
requests. The database management system is
actively engaged in the entire selling process.

OBJECT-ORIENTED DBMS
The database management system

required for the application described above
must provide static images, video, 3D
graphics, voice, music, and traditional data to
provide customized information and ambiance
at the visitor’s request. This web site, with all
its complexity and sophistication, is envisioned
for electronic commerce. Web pages that
constitute a web site are essentially complex

objects containing many smaller, interrelated
objects. The image files, audio files,
hyperlinks, and other information that
comprise a web page are all objects.

The advent of multimedia computing,
the World Wide Web, and object-oriented
application languages such as C++ and Java
has added numerous complex data types that
must be managed differently from traditional
alphanumeric data types. Vendors of
Relational DBMS such as Informix and Oracle
offer data extenders to support these data
types. But the addition of data extenders does
not result in pure object databases, which falls
under the purview of object-oriented DBMS.

Architecture Overview

Rather than present the user with a
series of predefined, static HTML pages, web-
enabled (object-oriented) applications are
designed to compose pages in real time from a
large collection of component objects stored in
several different databases. Component
objects can be selected and configured at
runtime, allowing the site to be customized
based on individual user preferences.

The object system consists of a
collection of CORBA (Component Object
Request Broker Architecture) servers that
process incoming web requests and return
information for presentation back to the user.
A web server translates these standard or
custom HTTP requests into invocations on
objects in the CORBA servers, then collects
the returned information and compiles it into
applets for transmission back to the user’s
interface. These applets are cached in the web
server’s memory to reduce the amount of
inbound traffic and decrease request response
time, and are known in the object community
as “Servlets?

Figure 1 represents a high level view of
an object-oriented system architecture:

Object-Oriented Database Management Systems: Architecture and Application

The Journal of Information Technology Theory and Application (JITTA), 2:1, 2000. 13

Figure 1. Object-oriented System Architecture

Application & Database Overview

The key feature of this object
architecture is that every discrete element of a
dynamic HTML page is modeled in the back-
end database as a C++ or Java Object. A
single object is used to present a site index that
allows users to navigate through the site. This
site index changes its appearance dynamically
based on the structure of the back-end
database. The key advantage of using objects
to represent page elements is that these objects
can encapsulate algorithms as well as data, so
that intelligence and dynamic behavior can be
built into site components.

Object systems are those that contain
little or no fixed data, but rather interact at
runtime with a comprehensive set of text

objects such as write-ups and articles, in
combination with non-text objects such as
video and images, that correspond to particular
site content. When the web server processes a
request, a dynamic HTML page is constructed
by assembling the set of objects that compose
the requested page. These objects may contain
other objects and each of these sub-
components may have an internal composition
as well. These objects may not necessarily
reside in the same database, and may even be
stored by different servers in different
geographical locations.

Figure 2 illustrates how an object-based
HTML page is mapped onto a set of objects in
the database:

Mahesh Raisinghani and Gabriel Custodio

 14

Figure 2. Object-based HTML Page Mapping

To store objects and programs based on
object models, a relational system (RDBMS)
will have to break up the class hierarchies and
relationships into tables. Then it will have to
use the processing-intensive join operation to
reassemble the tables into objects for use by
object-oriented applications. It is impossible
for relational databases or any flat file
databases to circumvent this process. This will
grow more daunting as programmers and
application developers build increasingly
complex objects. On the other hand, due to its
itemized nature, object databases can perform
the following functions that are not quite
possible with relational databases:

Direct Navigation Pure object
databases store maps of object class
hierarchies and relationships, which are
directly accessed for information. Since
navigation to the data is direct, it is the most
efficient approach in storing and retrieving
object-oriented information.

Clustering Object databases can
perform physical object clustering to tune
system performance. Objects that are used
most often are stored in cached memory space,
which improves application performance
dramatically. Depending upon the database,
the clustering can be quite fine-grained, which
minimizes network traffic. Data can be sent
either in a very large block in a single
transmission or in a small set of objects.

Clustering also enables an object database to
efficiently access all of the objects that would
allow multiple users and applications to each
have a unique view of the underlying object
model.

Data Distribution The key to this
concept is a unique object identifier that
isolates the logical name of an object from its
physical location. This enables a single logical
database to be separated and run on multiple
processors. This can occur in the same
machine (symmetric multiprocessing) or in a
network of machines (cluster). This fine
granularity of object management enables
efficient data replication, which allows a
network of processors to manage an
application. In addition, the database is
segmented into discrete components that are
kept synchronized. This effectively supports
the distributed form of system architecture.

Locking Locking is the capability to
maintain orderly change in the state of the
database by controlling read and write
privileges to the database. Object databases
can lock object-oriented data at the smallest
object level. Users without update privileges
would only be prohibited from changing a
small portion of the database while they can
generally work with the rest of the data while a
specified user has the lock. This minimizes
concurrency conflicts between users. Object
databases can even lock at a logical object

Object-Oriented Database Management Systems: Architecture and Application

The Journal of Information Technology Theory and Application (JITTA), 2:1, 2000. 15

level and have the system take care of locking
all the related physical objects without any
programming. This is called dynamic locking.

Schema Evolution Changes in the
object model necessitate change in the object
relationships held by the object database.
Object databases have facilities to enable
applications developers to change the database
schema without requiring the database to be
brought off-line and changed in a large batch
cycle, as a relational database or any other type
of database would require. Schema evolution
performed online in an intelligent incremental
manner can gracefully introduce system
changes. In addition, many object databases
keep track of different versions of the object
model and match the application program with
the appropriate version.

Client/Server Architecture Object
systems are designed to have aspects of
database processing done on clients in
cooperation with activities on servers. The
client functionality in an object database can
be extensive, including the capability to access
multiple databases and assemble the returned
objects to create a unified local view.
Multithreading enables a client to support
multiple database tasks simultaneously. The
distributed nature of many object databases is
evident in their ability to maintain local object
caches without tying up the central server and,
most importantly, the network. Accordingly,
object databases can be quite scalable.

N–Tier Architecture In this
architecture, numerous systems send messages
to each other. These systems normally have
clients, application servers, web servers, and
database servers working together as a single
system to fulfill any user request. Depending
on the database and application, an object
database could be distributed in multiple
locations. By virtue of their support for
distributed computing, it will be easier for

OODBMS to support many new applications
as system architectures change.

Program Execution The ability to run
an application in the database is one of the
emerging functionality requirements for
enterprise object computing. One of the
primary reasons is the need to support multiple
client requests for execution of a segment of
centralized code, while providing critical
integrity and transaction management features.
Databases, by virtue of their multi-user
functionality, have many of the facilities to
support such application processing. Another
use of database program execution is running
queries in a database, which can reduce the
amount of information that has to be sorted
through.

Application Case Study

Despite this array of impressive
features, Object DBMS has yet to reach the
full acceptance of the computer systems
community. While many major businesses are
considering or have considered object-oriented
systems, pure object databases have yet to
make their full impact. This may be due to the
difficulty and cost of migration from existing
legacy or relational databases to purely object-
oriented databases. Also, third-party vendors
and seasoned DB veterans are now offering
data converters to adopt existing data
architectures to object-oriented applications.
Oracle, Informix, and Sybase have introduced
data adapters to the latest versions of their
products to store complex objects and integrate
with object-oriented applications. Third-party
vendors such as Visigenic Software and IONA
Technologies have also developed data
managers based on ORBs (object request
brokers) to enable integration.

Figure 3 depicts an example of a
present-day object-oriented system utilizing
existing legacy and relational database
systems:

Mahesh Raisinghani and Gabriel Custodio

 16

Figure 3. Object-oriented System Using RDBMS

This system is currently under
development for the Consumer Branch
Technology Migration (CBTM) project for the
Associates First Capital Corporation (AFCC).
The entire project is a joint development
operation between AFCC, EDS, Sun
Microsystems, and Oracle, as well as other
third-party vendors.

The clients download Java applets from
web servers via HTTP. The Java applets talk
to applications located in information servers

via an application framework, which is based
on IIOP and written in Java. The applications
access data via accessors provided by the data
mapper located in the information server.
These data accessors access data stores such as
Oracle, CICS, and ALCS. All technologies
selected were chosen to provide plug and play
functionality for future additions to the
application framework.

The physical network architecture is
represented in Figure 4:

Figure 4. Physical Network Architecture of the CBTM System

Object-Oriented Database Management Systems: Architecture and Application

The Journal of Information Technology Theory and Application (JITTA), 2:1, 2000. 17

OUTLOOK FOR THE FUTURE
Object databases are expected to gain a

meaningful level of market credibility in the
next one to two years. Currently, the object
database market is being fueled by technically
knowledgeable development organizations
building real production systems. Confidence
in the growth potential of object databases
stems from the large size of the database
market and the shift to object technology.
Based on technological history, this trend is
irreversible. It is expected that the object
database market could experience 50-100%
growth for a number of years. Current vendors
generated over 50% growth in 1996, although
from a small market base. The most promising
aspect is the size of the overall database
market. Even if object databases comprise
only about 15% of the overall database market
in three to five years, this would reflect a $1
billion market.

Use of the Object Management
Groups’s (OMG’s), Unified Modeling
Language (UML) as a standard language to
analyze, model, and design business objects
will promote the use of OODBMS. Also, the
OMG’s Meta Object Facility standard for
distributed repositories provides the
framework for implementing interoperable,
heterogeneous, and/or multi-enterprise
database/data warehouse solutions.

The lack of standards, the most widely
known nemesis of object-oriented systems, has
been recently addressed by the introduction of
ODMG-93. ODMG-93 addresses the
boundaries between the ODBMS and certain
object-oriented programming languages. The
programmer should perceive the binding as a
single language for expressing both database
and programming operations.

This specification recognizes two types
of objects: transient and persistent. Transient
objects are stored in and managed by the
runtime system, be it Smalltalk, Java, or C++.
Transient objects are what programmers have
been using for years; they terminate when the
program does. Persistent objects are managed
by the OODBMS. As long as a root object in
the OODBMS ultimately references an object,
it is retained. From the programmer’s

perspective, however, persistence is
transparent.

An object definition language (ODL)
defines the OODBMS schema. Similarly, an
object manipulation language (OML) is used
to manipulate objects, and it doesn’t
distinguish between persistent and transient.
The object query language (OQL) follows
SQL-92 but offers object-oriented extensions
and integration with any of the programming
languages that have ODMG-93 binding.
Relationships between objects in this
specification are treated just as in its relational
counterpart: one to one, one to many, or many
to many.

ODMG-93 seems to promise that up-
front work in database design will reap
tremendous downstream benefits. Database
design tools that follow this model generate
code for the target application development
environment, rather than code for the target
database environment. Because the schema
definition will be done in the application
language, the developer need never be exposed
to the underlying OODBMS.

CONCLUSION
Businesses increasingly require high

performance access to complex data, and
object databases provide superior performance
and scalability compared to relational database
alternatives. The World Wide Web has
highlighted the reality that many businesses
have complex structured data and unstructured
text, email, reports, graphics, images, and
audio and video resources that need to be
seamlessly integrated. OODBMS can pave the
way for organizations to reuse vital
information, enable greater accessibility to
corporate information resources, and create
new applications and knowledge management
opportunities.

It is unlikely that object databases will
become the de facto standard overnight. Data
adapters that integrate current data
architectures to object-oriented systems extend
the functionality of relational databases and
thus delay the necessity for replacements.
Adoption of common interoperable standards
will facilitate the move towards open systems
for heterogeneous, distributed platforms.

Mahesh Raisinghani and Gabriel Custodio

 18

REFERENCES
Interview with Wayne Proctor, Systems Architect

CBTM Project, AFCC
Interview with Paul Rogers, Senior Systems

Designer, Sun Microsystems ?Enterprise
Systems Planning

Interview with Jim McGuinness, Senior Systems
Developer, Electronic Data Systems ?CBTM
Project, AFCC

?u>Object DBMS: Now or Never? DBMS July
1997

Bloom, Paul I. ?u>Object Databases versus
Universal Servers: Reality and Myth? ODI,
White Papers

“Java Data Management ?Quantum Objects
Implementations? ODI, White Papers

“Reevaluating Distributed Objects? DBMS January
1997

AUTHORS
Mahesh S.
Raisinghani is a
faculty member and
co-director of the E-
Commerce MBA
Program at the
University of

Dallas?Graduate
School of
Management. He
also serves as the

director of research at the University of
Dallas?Center for Applied Information
Technology. His primary areas of expertise
are Electronic Commerce Technology and
Management, Strategic Utilization and
Management of Information Systems, and the
Organizational Impacts of Emerging
Technologies. He is the chair of the Electronic
Commerce track and a world representative for
the International Resources Management
Association, an active member of the
Association of Information Systems, Decision
Sciences Institute, and the International
Association of Computer Information Systems.
He has had numerous listings including the
Who’s Who in Information Systems, Who’s
Who in the World and Who’s Who Among
Students in American Universities and
Colleges. Dr. Raisinghani conducts seminars
in e-commerce and global information systems
for executives.

Professor Raisinghani’s previous
publications have appeared in the Journal of
Information Systems Management,
International Journal of Information
Management, International Journal of
Materials and Product Technology, Journal of
Electronic Commerce, Journal of Information
Technology Theory and Application, Industrial
Management and Data Systems, Electronic
Commerce World, American Business
Review, Minority Business News USA and
Arthur Anderson’s KnowledgeSpace. His
chapters have been published in Annals of
Cases in Information Technology
Management, Managing Web-Enabled
Technologies Application and Management: A
Global Perspective, and Health Care
Information Systems: Challenges of the Next
Millennium; and has proceedings published in
several regional, national and international
information systems conferences in Australia,
Canada, Greece, Israel, Mexico, Puerto Rico,
South America and the U.S. His seven years of
professional experience in information systems
has taken him to Canada, China, India, Japan,
Mexico, Singapore, Thailand, and U.K.

Gabriel T. Custodio.
Is currently the Director
of Computing
Environment for the
Business Technology
Migration project of the
Associates Information
Services, Inc. His main
assignment in this
position is to design and
build the infrastructure

in which new systems are effectively
developed and implemented. He received an
MBA in Information Systems with emphasis in
Application Development from the University
of Dallas in April of 1999, and is currently
pursuing a Masters of Management degree in
Electronic Commerce from the same
University. His diverse work experience
ranges from Marine Transportation and
Shipping Management, Oil Exploration, Retail
Operations, Real Estate, and Marketing
Management.

