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ABSTRACT 

Adopters of corporate software reuse programs face important decisions with 

respect to the size of components added to the reuse repository.  Large 

components offer substantial savings when reused but limited opportunity for 

reuse; small components afford greater opportunity for reuse, but with less 

payoff.  This suggests the possibility of an “optimal” component size, where the 

reuse benefit is at a maximum.  In the software engineering discipline, this 

relationship – termed the Goldilocks Principle - has been empirically observed in 

software development, software testing, and software maintenance.  This paper 

examines whether this relationship also applies for software reuse. In order to 

understand the effects of component size and repository size on the benefits of a 

reuse program this paper extends an empirically grounded reuse model to assess 

the effects of component size on reuse savings. The study finds that a variant of 

the Goldilocks Principle applies with respect to both component and repository 

size, suggesting that uncontrolled growth of a reuse repository and an 

inappropriate choice of component size may reduce benefits obtained from reuse. 
 

 

INTRODUCTION 

Software development is generally 

acknowledged as an expensive and lengthy 

process, often producing artifacts that are of 

suspect quality and maintainability.  Sustained 

growth in the demand for software, coupled 

with shortages in the supply of software 

developers and the stagnant productivity in 

software development, has exacerbated the 

problem.  Several different strategies have 

been proposed to alleviate this, including 

software automation, outsourcing, use of agile 

methodologies, and software reuse, among 

others.  Each of these approaches provides 

some relief, at the expense of related 

objectives.  This paper focuses on software 

reuse as a possible strategy for alleviating the 

software development crunch.  The benefits 
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claimed for software reuse include reduced 

development cost and time, improved software 

quality, increased developer productivity, and 

improved software maintainability 

(Ravichandran and Rothenberger 2004).  

These benefits are offset by the cost of setting 

up a repository of reusable components, and 

ongoing population and management of the 

repository.  It is expected that long term 

savings through software reuse will outweigh 

the initial costs of adopting a reuse program 

(Lim 1998).  Most studies addressing costs and 

benefits of software reuse tend to focus on 

post-hoc analyses of cost data for a portfolio of 

projects.  Frakes and Kang (2005) identify a 

need for more measurement and 

experimentation of reuse.  This paper uses an 

empirically grounded model of reuse to 

address this need, examining how component 

size and repository size determine viability of 

a software reuse program.  This approach 

allows us to analyze the effect that changes to 

repository and component size have on the 

economic feasibility of a reuse program.  

Intuitively, it would appear that very small 

components may be usable in a large number 

of applications; however, each reuse instance 

will provide little savings over traditional 

development. In such a scenario, the search 

and retrieval costs that are expended to find 

the component in a repository may offset a 

substantial portion of the savings obtained 

through reuse.  Thus, the reuse program may 

not provide net positive benefits.  On the other 

hand, very large components are more specific 

and are therefore expected to be reusable in 

fewer applications; however, each reuse 

instance will provide larger savings over 

traditional development.  Search and retrieval 

costs are expected to be small in comparison to 

the savings obtained by reusing large 

components.  Consequently, the reuse program 

may appear to pay for itself.  However, as the 

repository size grows, management, 

maintenance, and search and retrieval costs 

also grow, offsetting some of the reuse 

savings, thereby leading to an uneconomical 

reuse program.  Our model investigates 

whether reuse programs may be subject to 

optimality considerations, because of these 

tradeoffs, wherein performance on some pre-

specified dimension initially improves, but 

later degrades. 

THE GOLDILOCKS CONJECTURE 

The concept of optimality has 

fascinated researchers in the software 

engineering discipline.  Optimality introduces 

the notion of the best possible performance on 

a given dimension.  The application of curve 

fitting techniques, particularly non-linear 

models, to empirical software engineering data 

suggests the presence of an optimal value.  

Early studies in the area of software 

development have established a non-linear 

relationship between module size and 

development effort that suggests an optimal 

module size (Bowen 1984).  A host of 

explanations have been offered for this 

phenomenon.  These include tradeoffs between 

the complexity of the interface between 

modules, and the inherent complexity of the 

CONTRIBUTIONS 

Most software reuse research focuses 

on the analysis of empirical data and 

reporting of case evidence.  While this has 

provided important insights about reuse 

success factors, reuse methods, and reuse 

benefits, there has been little research done 

that examines the complex 

interdependencies of reuse program-related 

decisions.  This research addresses this need 

by examining whether repository size and 

component size affect the benefits of reuse, 

and whether there are optimal levels for 

both. 

The contributions of this study are 

twofold. First, it provides evidence that 

uncontrolled repository growth leads to a 

reduction of reuse benefit as the search cost 

in a larger repository outweighs the benefits 

obtained from the increase in reuse 

opportunities.  While it is generally agreed 

on that a very small repository cannot lead 

to substantial reuse, the notion of optimality 

in repository size is novel. Second, the study 

indicates that there is also a preferred 

component size. Very large and very small 

components reduce the reuse benefit. Very 

small components provide not enough reuse 

benefit per reuse instance to offset the 

search and retrieval cost; very large 

components reduce reuse opportunities, as 

their requirements become too specific.   

These results have implications for 

both researchers and practitioners.  The 

findings extend the body of knowledge in 

the field of software reuse, and they can 

provide important guidelines for the 

building of a corporate reuse program. Of 

course, the actual values of the optimal 

repository and component sizes depend on 

the specific reuse environment. 
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code.  For smaller modules, the interface 

complexity contributes disproportionately, 

while larger modules are more likely to be 

influenced by code complexity.   

In the software quality discipline, 

several studies have examined the relationship 

between software defects and module size.  

Empirical data has suggested the presence of 

non-linear relationships, and polynomial curve 

fitting techniques have been employed in the 

creation of defect prediction models (Compton 

and Withrow 1990; Gaffney 1984).   An 

unintended consequence of using models with 

polynomial terms is that the model suggests 

the presence of an optimal size of the 

component in the context of defect reduction.  

Gaffney (1984) examined defect densities for 

assembly language components, and the 

resulting model predicted the density to be 

lowest for components of size 877 lines.  In a 

separate exercise on Ada components, using a 

different polynomial model, Compton and 

Withrow (1990) concluded that the component 

size that yielded the lowest defect densities 

was 83 lines.  They dubbed this the 

“Goldilocks Principle”, based on the notion 

that there exists an optimal component size 

that is “not too big nor too small”.  Other 

researchers have also experienced similar 

results when analyzing code defect densities.  

Several possible explanations have been 

advanced in this context, including 

disproportionate user interface defect that 

skew the densities for smaller components, 

more attention to the development of larger 

components, and human cognitive processing 

limitations that cause the introduction of more 

defects for larger components.  

These results have some definite 

implications for software development.  First, 

they suggest that component size is a 

determinant of defect density.  This is at odds 

with the notion of software decomposition, 

which seeks to break up components into 

smaller, more easily crafted, and potentially 

more reusable components.  Further, it 

provides a pessimistic outlook for developers 

engaged in the creation of very small or very 

large components.  An excellent critique is 

provided by Fenton and Neil (1999), where 

they conclude that “the relationship between 

defects and component size is too complex, in 

general, to admit to straightforward curve 

fitting models”.  Their analysis and results 

would appear to contradict the notion of the 

“Goldilocks Conjecture” as an underlying 

relationship between defect density and 

component size.  Despite the concerns raised 

in (Fenton and Neil 1999), there is evidence to 

suggest that some data sets support the 

conjecture.  It should be borne in mind that the 

data, however problematic from a quality 

perspective, merely represents some 

underlying facts.  As such, it cautions 

developers of very small and very large 

components about the propensity for higher 

defect densities. 

A similar relation is also observed in 

software maintenance, wherein maintenance 

effort is high for small modules, then 

decreases as the module size increases, and 

finally increases once again for large modules 

(Banker et al. 1993a).  This research used a 

model to predict maintenance effort as a 

function of procedure size and other cost 

drivers, and obtained a U-shaped relationship, 

with an “optimal” procedure size of 44 

executable lines of code.  As with other non-

linear relationships, caution should be 

exercised in designating the low-cost values as 

the optimal size.  Clearly, the component size 

will be dictated by functional requirements.  

However, the implications for software 

maintenance are undeniable. 

The presence of non-linear 

relationships between cost and size in the 

development, quality assurance, and 

maintenance of software is intriguing.  The 

rest of this paper seeks to examine whether 

such relationships also exist for software 

reuse.  

THE GOLDILOCKS CONJECTURE AND 

SOFTWARE REUSE 

There is little doubt that software reuse 

can generate savings in development effort.  

However, setting up a repository of reusable 

components and searching it for appropriate 

modules in an reuse context entails definite 

costs.  It is expected that the initial phases of 

software reuse in an organization will be 

characterized by higher setup costs vis-à-vis 

savings from reuse.  As the repository grows 

larger, it is expected that the savings through 

reuse will start to offset the costs associated 
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with the initial setup, and a breakeven point 

will be reached.  Beyond this, the savings 

should continue to outpace costs, as cataloging 

costs and search costs are expected to be 

smaller than development costs averted 

through reuse.  This paper focuses on the 

breakeven point for software reuse.  Of 

particular interest is whether the breakeven 

point occurs differently if the repository is 

populated with small components, or large 

components.  If the breakeven varies with 

component size, the Goldilocks Conjecture 

may apply.  

A review of the software reuse 

literature did not yield any insight into the 

effect of component size on the extent of 

software reuse.   However, data from software 

reuse studies have indicated several non-linear 

relationships between various reuse parameters 

and overall reuse costs.  In a study of 2954 

reused components at NASA, Selby (1988) 

determined that a concave non-linear 

relationship existed between modification 

effort and percentage of code modified as part 

of the reuse effort, whereby small 

modifications generated disproportionately 

large costs.  Gerlich and Denskat (1994) posit 

that changes to multiple components in an 

application will generate a non-linear set of 

changes to their interfaces.  Cost estimation 

models for software development in the 

presence of reuse and reengineering also 

include non-linear drivers (Clark et al. 1998).  

Non-linearities involving a second order 

relationship between component size and other 

software reuse parameters would indicate 

support for the Goldilocks Conjecture. 

REUSE BREAKEVEN AND COMPONENT 

SIZE 

To investigate a possible relationship 

between the breakeven point for software 

reuse and component size, this research 

employs a domain-specific model of 

systematic software reuse.  The motivation for 

constraining the model to work with a single 

domain stems from the notion that reuse is 

expected to be greatest when the repository of 

reusable components address a set of related 

applications from the same domain.  Reuse 

across domains is expected to be limited, and 

presents a less interesting scenario.  The model 

addresses cost factors and savings relating to 

systematic software reuse.  An earlier version 

of the model that was directed at capturing the 

effect of project size on savings is described in 

(Nazareth and Rothenberger 2004). The model 

has been further enhanced to permit 

investigating the relationship between 

component size and repository size. A 

summary of the model is presented in Table 1.  

A more detailed discussion of the analysis of 

the underlying relationships established in the 

model is presented in (Nazareth and 

Rothenberger 2004).  The model is highly 

parameterized and employs multiple 

mechanisms to accommodate several different 

reuse strategies.  The model has undergone 

substantial testing, using a wide range of 

coefficient values.  The lack of brittleness in 

its behavior suggests that it is a robust model.  

The prior study established a proportionate 

relationship between project size and reuse 

savings, indicating that savings tended to 

increase uniformly with project size, other 

conditions being the same.  It can therefore be 

inferred that project size is not likely to be an 

issue in this analysis.  On the other hand, we 

have learned that the repository size affects the 

search cost, as well as the likelihood to find 

desired components. Further, the component 

size also affects the leverage of each reuse 

instance.  These observations suggest that both 

will have an impact on the breakeven point. 

The model was calibrated using 

empirical data from reuse projects, in 

conjunction with other findings from the reuse 

literature.  Results from the model will clearly 

be shaped by this calibration.  The model can 

easily be recalibrated for other settings, which 

would yield different numbers, but similar 

trends due to its robust nature.  As with any 

model-driven analysis, any findings should be 

viewed in light of the overall trends, rather 

than absolute values.  Calibrating the model 

required that appropriate values for the relative 

effectiveness coefficients for query 

formulation, retrieval, modification, making a 

component generic, and cataloging needed to 

be determined, vis-à-vis development effort.  

This study employed an overall development 

effectiveness coefficient of 10 lines-of-code 

per time unit which allowed us to derive the 

other effectiveness coefficients separately.  

Cataloging cost are expected to be low 

compared to development cost, query and 
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Table 1.  The Reuse Model [adapted from (Nazareth and Rothenberger 2004)] 
 

The savings of developing a project with reuse over developing from the ground up is based on the total cost 

assuming no reuse (Cnoreuse) and the total cost of the project with reuse (Creuse):  

Csavings = Cnoreuse - Creuse  
 

──────────────── 
 

The total cost of a project assuming no reuse is assessed based on the development cost (CD) and the number 

of components in the project (PC):   

 Cnoreuse = CD  PC    , where 

      The development cost is based on component size (S), a factor that addresses development 

economies of scale (β), and the development effectiveness of the developers (DE):  CD= S β  DE 

 

The total cost of a project developed with reuse is based on the cost of components developed from scratch 

(Cdev), the search cost expended (Csea), the cost of publishing new components in the repository (Crep), and 

the cost of modifying existing components for the current project (Cmod):  

 Creuse = Cdev + Csea + Cmod +  Crep 
 

──────────────── 
 

The total cost of custom development on a project is based on the component Size (S), a factor that 

addresses development economies of scale (β), the number of components newly created for the project (NN) 

and the development effectiveness of the developers (DE):  

 Cdev= S β  DE  NN 

 

The search costs (Csea) address efforts required to locate appropriate components for reuse in a new software 

development project.  They include query formulation costs (CQ), retrieval costs (CR), and are based on the 

number of components in the project (PC):   

 Csea = (CQ + CR)  PC    , where 

      Query formulation costs are based on the number of terms to be retrieved (nq) moderated by the 

developers‟ effectiveness of selecting among the query criteria (QE): CQ= nq  QE.    

      Retrieval costs are based on the number of components in the repository (N), the number of query 

criteria (nq), the selectivity among criteria (a), and the developers‟ effectiveness of retrieval (RE): 

E

q

n

R
R

n
aNC q 




)1(2.1

1  

The cost of modifying an existing component for a project (Cmod) is based on the modification cost (CM), the 

cataloging cost (CC), and the number of components reused with modification (NM):  

 Cmod = (CM + CC) x NM, where 

      Modification costs are assessed based on the degree of fit of the retrieved components (s), on the 

effectiveness of the developers to modify a component (ME), its size (S), and an economies of 

scale factor (β):  CM=(1-s)  S β  ME 

      Cataloging costs are modeled on the basis of the number of cataloging dimensions (nc) and the 

effectiveness of the developers to catalog a component (CE):  CC=nc  CE 

 
The cost of publishing components as part of an actual reuse project (Crep) represent the effort associated 

with the addition of new components to the repository.  This includes the cost of cataloging the components 

(CC), the cost of making a component more general to improve reusability (CG), and the number of 

components to be published (NP):  

Crep = (CG + CC.)  NP    , where 

     The cost of making a component generic is based on the component size (S), an economies of 

scale factor (β), and the developers‟ effectiveness of making a component generic (GE):   

CG=S β  GE 
 

──────────────── 
 

The number of components to be published (NP), the number of components to be written from scratch (NN), 

and the number of components to be modified (NM) depend directly on the proportions of components 

reused (r), reused as is (p), and the degree of fit of retrieved components (s); these values will increase as the 

size of the repository grows.  The slopes of these three variables have been carefully calibrated.  Many of 

above relationships incorporate relative effectiveness coefficients (QE, RE, ME, GE, and CE), which were 

calibrated based on prior research findings, in order to ensure realistic results for our analysis. 
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retrieval cost are expected to be low compared 

to modification and cataloging cost, thus the 

respective effectiveness coefficients are set to 

yield small values in comparison.  

Modification effectiveness is closely related to 

development effectiveness; however, since 

modification requires the understanding of 

code developed by other programmers, 

modification effectiveness is expected to be 

slightly lower. Finally, the effectiveness to 

make components generic is expressed as a 

fraction of development effectiveness.  We 

selected the median of the data of several 

projects according to Poulin (1997), which 

suggests that developing a component for 

reuse requires 50% additional development 

effort than developing the same component for 

only one project. Nazareth and Rothenberger 

(2004) discuss additional details on this part of 

the model‟s calibration.   

When searching for behavior consistent 

with the Goldilocks Principle, a large space 

may need to be explored.  However, the 

phenomenon is likely to be localized, and 

values for repository size and the average 

component size need to be attuned.  The 

conditions employed in this study are as 

follows:  The repository size was varied from 

0 to 2000 components in steps of 20.  The 

average component size was varied from 20 to 

200 lines of code in steps of 1.  Expected 

savings from reuse are computed for these 

conditions, with particular emphasis on when 

the breakeven occurs.  The analysis was 

performed for cases of decreasing, constant, 

and increasing economies of scale for software 

development.  The results are depicted in 

Figure 1, and represent the case for increasing 

economies of scale.  Similar results were 

obtained for the other cases.  For very small 

repositories no breakeven was attained, 

indicating repository creation costs 

outweighed any savings through reuse.  The 

analysis was repeated for different search 

costs, both lower and higher than that depicted 

in the figure.  Similar trends were observed, 

with a flatter curve for lower search costs, and 

a steeper curve for larger search costs.  The 

results suggest that there is a clear minimum 

component size needed for the reuse program 

to break even. 

REUSE SAVINGS AND COMPONENT 

SIZE 

To determine whether there is an 

“optimal “component size, the average 

component size was varied from 10 to 1000 

lines of code for a fixed repository size. 

Expected savings from reuse are computed for 

these conditions.  A repository of 800 

components allows for a reuse program to 

break-even with relatively small components 

(see Figure 1), representing an intriguing case 

that merits further investigation.  Figure 2 

depicts the overall savings that can be 

expected for a repository of 800 components, 

as the average component size is varied.  For 

small components the savings are negative, as 

search and retrieval costs outweighed the 

benefit of reusing these small components. 

However, as the components grow larger, the 

savings through reuse outpace the search and 

repository maintenance costs.  For very large 

components, a reversal is observed due to the 

low potential for reuse of these complex 

components.  The results are displayed on a 

log scale to better illustrate the non-linearity.  

Peak values of savings are obtained for 

component sizes of 240 lines of code, which is 

considerably larger than that advocated by 

most proponents of modular software 

development.  Similar trends were observed 

when the analysis was repeated for different 

repository sizes.  Figure 3 shows the reuse 

savings for a considerably larger repository 

comprising 1,600 components.  In this case, 

the peak value was observed at 290 lines of 

code. 

IMPLICATIONS 

While it is tempting to focus solely on 

the Goldilocks Conjecture and examine overall 

reuse savings in light of changing component 

size, we believe that the breakeven analysis 

offered in Figure 1 has equally important 

implications for reuse program managers.  As 

the repository size changes, the average size of 

the component in the repository required to 

break even also changes.  Our findings suggest 

that a variant of the Goldilocks Principle 

applies for the breakeven analysis of software 

reuse programs.  The unstated implication is 

that a minimum component size is needed for 

reuse programs to be economical, below which 
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no reuse program is ever economical.  For 

very small repositories, breakeven simply does 

not occur, consistent with the notion that the 

initial costs to set up the repository are not 

likely to be offset by the limited opportunities 

for reuse.  As the repository grows, a more 

moderate component size is needed to break 

even.  Intuitively, this is logical in that small 

components are not likely to generate 
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Figure 1:  Breakeven Component Size for Software Reuse 
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Figure 2:  Software Reuse Savings as a Function of Component Size (for a Repository of 800 

Components) 
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Reuse Program Savings
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Figure 3:  Software Reuse Savings as a Function of Component Size (for a Repository of 

1,600 Components) 
 

sufficient savings when reused.  With a larger 

repository, there are more opportunities for 

reuse, and hence less need to rely on large 

components for savings through reuse.  

However, as the repository size increases even 

more, the average size of components required 

to break even begins to climb.  This can be 

explained in the light of increased search, 

maintenance, and modification costs 

associated with large repositories. These 

increased costs need to be offset through 

increased savings, and hence larger 

components to be reused. 

Figures 2 and 3 focus on the more 

traditional implications of the Goldilocks 

conjecture, i.e. there is an “optimal” 

component size, at which the performance on a 

predetermined metric is best.  These figures 

examine the effect of different component 

sizes on savings, assuming a constant 

repository size.  The graphs suggest that not all 

components are likely to generate similar 

savings through reuse. While it is intuitive that 

small components do not provide sufficient 

leverage to outweigh the cost of their search 

and retrieval, the dip in savings for very large 

components necessitates an alternative 

explanation: the reduction of reuse 

opportunities of very large and specialized 

components may explain this phenomenon. 

Thus, it appears that declining reuse 

opportunities of larger components can not 

always be offset by an increase in the number 

of components to choose from, as the search 

cost for large repositories tends to overwhelm 

the savings through limited reuse.  However, 

the savings tail off only for large components 

sizes (about 240 lines of code). 

These results are examined in the light 

of earlier findings in software reuse, as well as 

other areas of software engineering. Most 

empirical studies in software reuse tend to 

work with a limited number of reuse programs, 

affording little opportunity to generalize 

findings.  Consistent with the findings from 

our model, anecdotal evidence suggests that 

larger repositories will lead to more reuse and 

thus increased savings from reuse (Banker et 

al., 1993b).  Also, anecdotal evidence reports 

that a larger component size leads to an 

increase in reuse payoffs (Apte et al. 1990).  

However, any assessment as to whether the 

savings will increase, remain roughly constant, 

or decrease, is not possible in empirical 

studies, based on lack of comparability of the 

data.  The use of a robust model, that is 

rigorously constructed and calibrated, permit 

systematic exploration of the benefits of a 

reuse program.  The results indicate that the 

Goldilocks Conjecture also applies to software 

reuse.  This is not inconsistent with the 
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findings in software development, software 

quality assurance, and software maintenance. 

These results have clear implications 

for software reuse.  While they confirm that 

extremely small repositories are not likely to 

generate any meaningful savings, they also 

indicate that extremely small components may 

not generate enough savings to be 

economically worthwhile.  Likewise, caution 

needs to be exercised with respect to large 

repositories.  Table 2 summarizes the 

implications of this study.  Very small 

components and very small repositories inhibit 

a reuse program from breaking even.  While 

this may appear to cover the bulk of the table, 

the implications are not quite as bleak.  

Breakeven occurs when the repository contain 

about 200 to 250 components.  Most reuse 

programs will experience negative savings 

while the repository is initially assembled.  

However, attempting reuse on a low-level of 

abstraction does not generate a net saving over 

traditional development, as the benefits of 

reusing very small components do not offset 

the effort invested in cataloging, searching, 

and retrieving the components.  For the 

conditions explored, the model suggests that 

the minimum component size needed to break 

even is approximately 30 lines of code.  The 

center cell in the table represents the 

conditions when the reuse program is expected 

to be most effective.  Moderately sized 

components (between 30 and 240 lines of 

code), in moderately sized repositories 

(between 400 and 1000 components) generate 

considerable savings.  As the component size 

grows, the savings will dip, but the overall 

reuse program still remains economical.  

Likewise, as the repository size grows, it takes 

a larger component to break even, but this is 

still characterized by overall savings through 

reuse.  Repositories are expected to grow over 

time, as components developed for ongoing 

projects are added to the reuse library.  Under 

these circumstances, search and retrieval cost 

per reuse instance increase.  Reuse managers 

need to be aware that this necessitates larger 

components to break even.  While the average 

size may not fall below the breakeven point, 

the overall savings through reuse will be 

lower.  Very large components in moderate 

repositories generate reuse savings; however, 

the benefits from reuse are reduced, on 

account of fewer opportunities for reuse.  Very 

large components are highly specific and the 

probability of finding a suitable match in a 

new project is small.  Nevertheless, even under 

these conditions the reuse program breaks 

even, because each reuse instance represents a 

significant saving over developing an equally 

large component, allowing the reuse program 

to sustain itself with fewer reuse opportunities.  

In a similar vein, large components in a large 

repository will still generate some savings – 

just not as much as the center cell scenario, 

where search and maintenance costs are lower, 

and opportunities for reuse are greater.  The 

lack of reuse opportunities of individual large 

components in this case is offset by the 

collective increase in reuse opportunities from 

the large repository. 

As with all analysis involving the 

Goldilocks Conjecture, it should be stressed 

that the goal is not to determine an optimum 

around which the reuse program should be 

structured.  Rather, it provides a basis for 

identifying implications for operating in 

conditions that stray from these preferred 

areas.  In particular, the paper makes a case for 

moderate component size and for controlled 

growth of the repository. 

CONCLUSION AND LIMITATIONS 

This study employed a domain-specific 

model to provide greater insight into the 

economics of a software reuse program.  Two 

forms of analysis were performed – a 

breakeven analysis to assess whether reuse is 

worthwhile, and a more traditional cost-benefit 

analysis, which suggests that savings from 

reuse may eventually tail off as reuse 

components grow larger.  The findings suggest 

that the Goldilocks Conjecture does apply, 

both for breakeven as well as for reuse savings 

assessments.  For the breakeven analysis, the 

quadratic relationship is observed between the 

component size required to break even and 

different repository sizes.  This suggests that 

software reuse programs can never break even 

if they are populated with very small 

components, no matter how many components 

are available to reuse.  The second analysis 

also found a quadratic relationship between 

overall reuse savings and component size, 

representing the classic interpretation of the 

Goldilocks Conjecture.  The analysis was 
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Table 2.  Implications for Reuse Program Effectiveness 

   Repository Size  

  Very Small Moderate Very Large 

C
o

m
p

o
n

en
t 

S
iz

e 

V
er

y
 S

m
a

ll
 

Reuse program not 

economical 

Reuse program not 

economical 

Reuse program not 

economical 

M
o

d
er

a
te

 

Reuse program 

not economical 

Reuse program preferred to 

traditional software 

development 

Reuse program viable but 

savings may dip due to higher 

repository management and 

search costs 

V
er

y
 L

a
rg

e 

Reuse program not 

economical 

Reuse program viable but 

savings may dip due to fewer 

reuse opportunities 

Reuse program viable but 

savings may dip due to fewer 

reuse opportunities  and 

higher repository 

management and search costs 

 
repeated for multiple repository sizes, with 

similar results, once again indicating that the 

savings will eventually tail off, though the 

peak is observed at slightly different points.  

It is not the intent of this study to 

prescribe specific numbers for repository and 

component size – these will be very much 

context dependent.  Instead, it identifies 

conditions where a reuse program is 

economically viable.  These results should 

caution reuse managers about small 

repositories, small reusable components, and 

uncontrolled repository growth. 

The model employed in this study is 

deterministic in nature, assuming average 

component size instead of a portfolio of 

components of various sizes.  Moreover, it 

assumes that the components all pertain to a 

specific business domain.  Clearly, these are 

restrictive assumptions.  Projects are expected 

to comprise components of various sizes, and 

as a consequence, the repository is also 

expected to include components of varying 

size.  Likewise, not all applications would 

pertain to the same business domain, thereby 

reducing some opportunities for reuse.  Future 

research into this phenomenon will involve the 

need for a more comprehensive simulation 

model in which projects are assembled from 

different business domains and involve a 

portfolio of components with varying size and 

propensity for reuse. This approach would also 

permit dynamic growth of the repository, with 

initial projects contributing heavily to the 

repository and subsequent projects 

contributing only the unique processing that is 

not covered elsewhere among existing 

applications. 
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