
JITTA

JOURNAL OF INFORMATION TECHNOLOGY THEORY AND APPLICATION

Ken Peffers acted as the senior editor for this paper.

Nazareth, D. L., and M. A. Rothenberger, “Does the „Goldilocks Conjecture‟ Apply to Software

Reuse?” Journal of Information Technology Theory and Application (JITTA), 8:2, 2006, 57-67.

DOES THE “GOLDILOCKS CONJECTURE” APPLY TO

SOFTWARE REUSE?

DEREK L. NAZARETH, University of Wisconsin - Milwaukee
Sheldon B. Lubar School of Business, Milwaukee, WI 53201, Tel: 414-229-6822, Fax: 414-229-5999,
Email: derek@uwm.edu

MARCUS A. ROTHENBERGER, University of Nevada Las Vegas
Department of MIS, College of Business, Las Vegas, NV 89154-6034, Tel: 702-895-2890, Fax: 702-895-0802,

Email: marcus.rothenberger@unlv.edu

ABSTRACT

Adopters of corporate software reuse programs face important decisions with

respect to the size of components added to the reuse repository. Large

components offer substantial savings when reused but limited opportunity for

reuse; small components afford greater opportunity for reuse, but with less

payoff. This suggests the possibility of an “optimal” component size, where the

reuse benefit is at a maximum. In the software engineering discipline, this

relationship – termed the Goldilocks Principle - has been empirically observed in

software development, software testing, and software maintenance. This paper

examines whether this relationship also applies for software reuse. In order to

understand the effects of component size and repository size on the benefits of a

reuse program this paper extends an empirically grounded reuse model to assess

the effects of component size on reuse savings. The study finds that a variant of

the Goldilocks Principle applies with respect to both component and repository

size, suggesting that uncontrolled growth of a reuse repository and an

inappropriate choice of component size may reduce benefits obtained from reuse.

INTRODUCTION

Software development is generally

acknowledged as an expensive and lengthy

process, often producing artifacts that are of

suspect quality and maintainability. Sustained

growth in the demand for software, coupled

with shortages in the supply of software

developers and the stagnant productivity in

software development, has exacerbated the

problem. Several different strategies have

been proposed to alleviate this, including

software automation, outsourcing, use of agile

methodologies, and software reuse, among

others. Each of these approaches provides

some relief, at the expense of related

objectives. This paper focuses on software

reuse as a possible strategy for alleviating the

software development crunch. The benefits

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301356706?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:derek@uwm.edu
mailto:marcus.rothenberger@unlv.edu

Derek Nazareth and Marcus Rothenberger

58

claimed for software reuse include reduced

development cost and time, improved software

quality, increased developer productivity, and

improved software maintainability

(Ravichandran and Rothenberger 2004).

These benefits are offset by the cost of setting

up a repository of reusable components, and

ongoing population and management of the

repository. It is expected that long term

savings through software reuse will outweigh

the initial costs of adopting a reuse program

(Lim 1998). Most studies addressing costs and

benefits of software reuse tend to focus on

post-hoc analyses of cost data for a portfolio of

projects. Frakes and Kang (2005) identify a

need for more measurement and

experimentation of reuse. This paper uses an

empirically grounded model of reuse to

address this need, examining how component

size and repository size determine viability of

a software reuse program. This approach

allows us to analyze the effect that changes to

repository and component size have on the

economic feasibility of a reuse program.

Intuitively, it would appear that very small

components may be usable in a large number

of applications; however, each reuse instance

will provide little savings over traditional

development. In such a scenario, the search

and retrieval costs that are expended to find

the component in a repository may offset a

substantial portion of the savings obtained

through reuse. Thus, the reuse program may

not provide net positive benefits. On the other

hand, very large components are more specific

and are therefore expected to be reusable in

fewer applications; however, each reuse

instance will provide larger savings over

traditional development. Search and retrieval

costs are expected to be small in comparison to

the savings obtained by reusing large

components. Consequently, the reuse program

may appear to pay for itself. However, as the

repository size grows, management,

maintenance, and search and retrieval costs

also grow, offsetting some of the reuse

savings, thereby leading to an uneconomical

reuse program. Our model investigates

whether reuse programs may be subject to

optimality considerations, because of these

tradeoffs, wherein performance on some pre-

specified dimension initially improves, but

later degrades.

THE GOLDILOCKS CONJECTURE

The concept of optimality has

fascinated researchers in the software

engineering discipline. Optimality introduces

the notion of the best possible performance on

a given dimension. The application of curve

fitting techniques, particularly non-linear

models, to empirical software engineering data

suggests the presence of an optimal value.

Early studies in the area of software

development have established a non-linear

relationship between module size and

development effort that suggests an optimal

module size (Bowen 1984). A host of

explanations have been offered for this

phenomenon. These include tradeoffs between

the complexity of the interface between

modules, and the inherent complexity of the

CONTRIBUTIONS

Most software reuse research focuses

on the analysis of empirical data and

reporting of case evidence. While this has

provided important insights about reuse

success factors, reuse methods, and reuse

benefits, there has been little research done

that examines the complex

interdependencies of reuse program-related

decisions. This research addresses this need

by examining whether repository size and

component size affect the benefits of reuse,

and whether there are optimal levels for

both.

The contributions of this study are

twofold. First, it provides evidence that

uncontrolled repository growth leads to a

reduction of reuse benefit as the search cost

in a larger repository outweighs the benefits

obtained from the increase in reuse

opportunities. While it is generally agreed

on that a very small repository cannot lead

to substantial reuse, the notion of optimality

in repository size is novel. Second, the study

indicates that there is also a preferred

component size. Very large and very small

components reduce the reuse benefit. Very

small components provide not enough reuse

benefit per reuse instance to offset the

search and retrieval cost; very large

components reduce reuse opportunities, as

their requirements become too specific.

These results have implications for

both researchers and practitioners. The

findings extend the body of knowledge in

the field of software reuse, and they can

provide important guidelines for the

building of a corporate reuse program. Of

course, the actual values of the optimal

repository and component sizes depend on

the specific reuse environment.

Does the „Goldilocks Conjecture‟ Apply to Software Reuse?

Journal of Information Technology Theory and Application (JITTA), 8:2, 2006.

59

code. For smaller modules, the interface

complexity contributes disproportionately,

while larger modules are more likely to be

influenced by code complexity.

In the software quality discipline,

several studies have examined the relationship

between software defects and module size.

Empirical data has suggested the presence of

non-linear relationships, and polynomial curve

fitting techniques have been employed in the

creation of defect prediction models (Compton

and Withrow 1990; Gaffney 1984). An

unintended consequence of using models with

polynomial terms is that the model suggests

the presence of an optimal size of the

component in the context of defect reduction.

Gaffney (1984) examined defect densities for

assembly language components, and the

resulting model predicted the density to be

lowest for components of size 877 lines. In a

separate exercise on Ada components, using a

different polynomial model, Compton and

Withrow (1990) concluded that the component

size that yielded the lowest defect densities

was 83 lines. They dubbed this the

“Goldilocks Principle”, based on the notion

that there exists an optimal component size

that is “not too big nor too small”. Other

researchers have also experienced similar

results when analyzing code defect densities.

Several possible explanations have been

advanced in this context, including

disproportionate user interface defect that

skew the densities for smaller components,

more attention to the development of larger

components, and human cognitive processing

limitations that cause the introduction of more

defects for larger components.

These results have some definite

implications for software development. First,

they suggest that component size is a

determinant of defect density. This is at odds

with the notion of software decomposition,

which seeks to break up components into

smaller, more easily crafted, and potentially

more reusable components. Further, it

provides a pessimistic outlook for developers

engaged in the creation of very small or very

large components. An excellent critique is

provided by Fenton and Neil (1999), where

they conclude that “the relationship between

defects and component size is too complex, in

general, to admit to straightforward curve

fitting models”. Their analysis and results

would appear to contradict the notion of the

“Goldilocks Conjecture” as an underlying

relationship between defect density and

component size. Despite the concerns raised

in (Fenton and Neil 1999), there is evidence to

suggest that some data sets support the

conjecture. It should be borne in mind that the

data, however problematic from a quality

perspective, merely represents some

underlying facts. As such, it cautions

developers of very small and very large

components about the propensity for higher

defect densities.

A similar relation is also observed in

software maintenance, wherein maintenance

effort is high for small modules, then

decreases as the module size increases, and

finally increases once again for large modules

(Banker et al. 1993a). This research used a

model to predict maintenance effort as a

function of procedure size and other cost

drivers, and obtained a U-shaped relationship,

with an “optimal” procedure size of 44

executable lines of code. As with other non-

linear relationships, caution should be

exercised in designating the low-cost values as

the optimal size. Clearly, the component size

will be dictated by functional requirements.

However, the implications for software

maintenance are undeniable.

The presence of non-linear

relationships between cost and size in the

development, quality assurance, and

maintenance of software is intriguing. The

rest of this paper seeks to examine whether

such relationships also exist for software

reuse.

THE GOLDILOCKS CONJECTURE AND

SOFTWARE REUSE

There is little doubt that software reuse

can generate savings in development effort.

However, setting up a repository of reusable

components and searching it for appropriate

modules in an reuse context entails definite

costs. It is expected that the initial phases of

software reuse in an organization will be

characterized by higher setup costs vis-à-vis

savings from reuse. As the repository grows

larger, it is expected that the savings through

reuse will start to offset the costs associated

Derek Nazareth and Marcus Rothenberger

60

with the initial setup, and a breakeven point

will be reached. Beyond this, the savings

should continue to outpace costs, as cataloging

costs and search costs are expected to be

smaller than development costs averted

through reuse. This paper focuses on the

breakeven point for software reuse. Of

particular interest is whether the breakeven

point occurs differently if the repository is

populated with small components, or large

components. If the breakeven varies with

component size, the Goldilocks Conjecture

may apply.

A review of the software reuse

literature did not yield any insight into the

effect of component size on the extent of

software reuse. However, data from software

reuse studies have indicated several non-linear

relationships between various reuse parameters

and overall reuse costs. In a study of 2954

reused components at NASA, Selby (1988)

determined that a concave non-linear

relationship existed between modification

effort and percentage of code modified as part

of the reuse effort, whereby small

modifications generated disproportionately

large costs. Gerlich and Denskat (1994) posit

that changes to multiple components in an

application will generate a non-linear set of

changes to their interfaces. Cost estimation

models for software development in the

presence of reuse and reengineering also

include non-linear drivers (Clark et al. 1998).

Non-linearities involving a second order

relationship between component size and other

software reuse parameters would indicate

support for the Goldilocks Conjecture.

REUSE BREAKEVEN AND COMPONENT

SIZE

To investigate a possible relationship

between the breakeven point for software

reuse and component size, this research

employs a domain-specific model of

systematic software reuse. The motivation for

constraining the model to work with a single

domain stems from the notion that reuse is

expected to be greatest when the repository of

reusable components address a set of related

applications from the same domain. Reuse

across domains is expected to be limited, and

presents a less interesting scenario. The model

addresses cost factors and savings relating to

systematic software reuse. An earlier version

of the model that was directed at capturing the

effect of project size on savings is described in

(Nazareth and Rothenberger 2004). The model

has been further enhanced to permit

investigating the relationship between

component size and repository size. A

summary of the model is presented in Table 1.

A more detailed discussion of the analysis of

the underlying relationships established in the

model is presented in (Nazareth and

Rothenberger 2004). The model is highly

parameterized and employs multiple

mechanisms to accommodate several different

reuse strategies. The model has undergone

substantial testing, using a wide range of

coefficient values. The lack of brittleness in

its behavior suggests that it is a robust model.

The prior study established a proportionate

relationship between project size and reuse

savings, indicating that savings tended to

increase uniformly with project size, other

conditions being the same. It can therefore be

inferred that project size is not likely to be an

issue in this analysis. On the other hand, we

have learned that the repository size affects the

search cost, as well as the likelihood to find

desired components. Further, the component

size also affects the leverage of each reuse

instance. These observations suggest that both

will have an impact on the breakeven point.

The model was calibrated using

empirical data from reuse projects, in

conjunction with other findings from the reuse

literature. Results from the model will clearly

be shaped by this calibration. The model can

easily be recalibrated for other settings, which

would yield different numbers, but similar

trends due to its robust nature. As with any

model-driven analysis, any findings should be

viewed in light of the overall trends, rather

than absolute values. Calibrating the model

required that appropriate values for the relative

effectiveness coefficients for query

formulation, retrieval, modification, making a

component generic, and cataloging needed to

be determined, vis-à-vis development effort.

This study employed an overall development

effectiveness coefficient of 10 lines-of-code

per time unit which allowed us to derive the

other effectiveness coefficients separately.

Cataloging cost are expected to be low

compared to development cost, query and

Does the „Goldilocks Conjecture‟ Apply to Software Reuse?

Journal of Information Technology Theory and Application (JITTA), 8:2, 2006.

61

Table 1. The Reuse Model [adapted from (Nazareth and Rothenberger 2004)]

The savings of developing a project with reuse over developing from the ground up is based on the total cost

assuming no reuse (Cnoreuse) and the total cost of the project with reuse (Creuse):

Csavings = Cnoreuse - Creuse

────────────────

The total cost of a project assuming no reuse is assessed based on the development cost (CD) and the number

of components in the project (PC):

 Cnoreuse = CD  PC , where

  The development cost is based on component size (S), a factor that addresses development

economies of scale (β), and the development effectiveness of the developers (DE): CD= S β  DE

The total cost of a project developed with reuse is based on the cost of components developed from scratch

(Cdev), the search cost expended (Csea), the cost of publishing new components in the repository (Crep), and

the cost of modifying existing components for the current project (Cmod):

 Creuse = Cdev + Csea + Cmod + Crep

────────────────

The total cost of custom development on a project is based on the component Size (S), a factor that

addresses development economies of scale (β), the number of components newly created for the project (NN)

and the development effectiveness of the developers (DE):

 Cdev= S β  DE  NN

The search costs (Csea) address efforts required to locate appropriate components for reuse in a new software

development project. They include query formulation costs (CQ), retrieval costs (CR), and are based on the

number of components in the project (PC):

 Csea = (CQ + CR)  PC , where

  Query formulation costs are based on the number of terms to be retrieved (nq) moderated by the

developers‟ effectiveness of selecting among the query criteria (QE): CQ= nq  QE.

  Retrieval costs are based on the number of components in the repository (N), the number of query

criteria (nq), the selectivity among criteria (a), and the developers‟ effectiveness of retrieval (RE):

E

q

n

R
R

n
aNC q 




)1(2.1

1

The cost of modifying an existing component for a project (Cmod) is based on the modification cost (CM), the

cataloging cost (CC), and the number of components reused with modification (NM):

 Cmod = (CM + CC) x NM, where

  Modification costs are assessed based on the degree of fit of the retrieved components (s), on the

effectiveness of the developers to modify a component (ME), its size (S), and an economies of

scale factor (β): CM=(1-s)  S β  ME

  Cataloging costs are modeled on the basis of the number of cataloging dimensions (nc) and the

effectiveness of the developers to catalog a component (CE): CC=nc  CE

The cost of publishing components as part of an actual reuse project (Crep) represent the effort associated

with the addition of new components to the repository. This includes the cost of cataloging the components

(CC), the cost of making a component more general to improve reusability (CG), and the number of

components to be published (NP):

Crep = (CG + CC.)  NP , where

  The cost of making a component generic is based on the component size (S), an economies of

scale factor (β), and the developers‟ effectiveness of making a component generic (GE):

CG=S β  GE

────────────────

The number of components to be published (NP), the number of components to be written from scratch (NN),

and the number of components to be modified (NM) depend directly on the proportions of components

reused (r), reused as is (p), and the degree of fit of retrieved components (s); these values will increase as the

size of the repository grows. The slopes of these three variables have been carefully calibrated. Many of

above relationships incorporate relative effectiveness coefficients (QE, RE, ME, GE, and CE), which were

calibrated based on prior research findings, in order to ensure realistic results for our analysis.

Derek Nazareth and Marcus Rothenberger

62

retrieval cost are expected to be low compared

to modification and cataloging cost, thus the

respective effectiveness coefficients are set to

yield small values in comparison.

Modification effectiveness is closely related to

development effectiveness; however, since

modification requires the understanding of

code developed by other programmers,

modification effectiveness is expected to be

slightly lower. Finally, the effectiveness to

make components generic is expressed as a

fraction of development effectiveness. We

selected the median of the data of several

projects according to Poulin (1997), which

suggests that developing a component for

reuse requires 50% additional development

effort than developing the same component for

only one project. Nazareth and Rothenberger

(2004) discuss additional details on this part of

the model‟s calibration.

When searching for behavior consistent

with the Goldilocks Principle, a large space

may need to be explored. However, the

phenomenon is likely to be localized, and

values for repository size and the average

component size need to be attuned. The

conditions employed in this study are as

follows: The repository size was varied from

0 to 2000 components in steps of 20. The

average component size was varied from 20 to

200 lines of code in steps of 1. Expected

savings from reuse are computed for these

conditions, with particular emphasis on when

the breakeven occurs. The analysis was

performed for cases of decreasing, constant,

and increasing economies of scale for software

development. The results are depicted in

Figure 1, and represent the case for increasing

economies of scale. Similar results were

obtained for the other cases. For very small

repositories no breakeven was attained,

indicating repository creation costs

outweighed any savings through reuse. The

analysis was repeated for different search

costs, both lower and higher than that depicted

in the figure. Similar trends were observed,

with a flatter curve for lower search costs, and

a steeper curve for larger search costs. The

results suggest that there is a clear minimum

component size needed for the reuse program

to break even.

REUSE SAVINGS AND COMPONENT

SIZE

To determine whether there is an

“optimal “component size, the average

component size was varied from 10 to 1000

lines of code for a fixed repository size.

Expected savings from reuse are computed for

these conditions. A repository of 800

components allows for a reuse program to

break-even with relatively small components

(see Figure 1), representing an intriguing case

that merits further investigation. Figure 2

depicts the overall savings that can be

expected for a repository of 800 components,

as the average component size is varied. For

small components the savings are negative, as

search and retrieval costs outweighed the

benefit of reusing these small components.

However, as the components grow larger, the

savings through reuse outpace the search and

repository maintenance costs. For very large

components, a reversal is observed due to the

low potential for reuse of these complex

components. The results are displayed on a

log scale to better illustrate the non-linearity.

Peak values of savings are obtained for

component sizes of 240 lines of code, which is

considerably larger than that advocated by

most proponents of modular software

development. Similar trends were observed

when the analysis was repeated for different

repository sizes. Figure 3 shows the reuse

savings for a considerably larger repository

comprising 1,600 components. In this case,

the peak value was observed at 290 lines of

code.

IMPLICATIONS

While it is tempting to focus solely on

the Goldilocks Conjecture and examine overall

reuse savings in light of changing component

size, we believe that the breakeven analysis

offered in Figure 1 has equally important

implications for reuse program managers. As

the repository size changes, the average size of

the component in the repository required to

break even also changes. Our findings suggest

that a variant of the Goldilocks Principle

applies for the breakeven analysis of software

reuse programs. The unstated implication is

that a minimum component size is needed for

reuse programs to be economical, below which

Does the „Goldilocks Conjecture‟ Apply to Software Reuse?

Journal of Information Technology Theory and Application (JITTA), 8:2, 2006.

63

no reuse program is ever economical. For

very small repositories, breakeven simply does

not occur, consistent with the notion that the

initial costs to set up the repository are not

likely to be offset by the limited opportunities

for reuse. As the repository grows, a more

moderate component size is needed to break

even. Intuitively, this is logical in that small

components are not likely to generate

Breakeven Analysis

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Repository Size

C
o

m
p

o
n

e
n

t
S

iz
e

 (
L

O
C

)

Figure 1: Breakeven Component Size for Software Reuse

Reuse Program Savings

(Repository of 800 components)

-150

-100

-50

0

50

100

150

10 100 1000

Component Size (LOC)

S
a

v
in

g
s

Figure 2: Software Reuse Savings as a Function of Component Size (for a Repository of 800

Components)

Derek Nazareth and Marcus Rothenberger

64

Reuse Program Savings
(Repository of 1600 components)

-300

-250

-200

-150

-100

-50

0

50

100

150

200

10 100 1000

Component Size (LOC)

S
a

v
in

g
s

Figure 3: Software Reuse Savings as a Function of Component Size (for a Repository of

1,600 Components)

sufficient savings when reused. With a larger

repository, there are more opportunities for

reuse, and hence less need to rely on large

components for savings through reuse.

However, as the repository size increases even

more, the average size of components required

to break even begins to climb. This can be

explained in the light of increased search,

maintenance, and modification costs

associated with large repositories. These

increased costs need to be offset through

increased savings, and hence larger

components to be reused.

Figures 2 and 3 focus on the more

traditional implications of the Goldilocks

conjecture, i.e. there is an “optimal”

component size, at which the performance on a

predetermined metric is best. These figures

examine the effect of different component

sizes on savings, assuming a constant

repository size. The graphs suggest that not all

components are likely to generate similar

savings through reuse. While it is intuitive that

small components do not provide sufficient

leverage to outweigh the cost of their search

and retrieval, the dip in savings for very large

components necessitates an alternative

explanation: the reduction of reuse

opportunities of very large and specialized

components may explain this phenomenon.

Thus, it appears that declining reuse

opportunities of larger components can not

always be offset by an increase in the number

of components to choose from, as the search

cost for large repositories tends to overwhelm

the savings through limited reuse. However,

the savings tail off only for large components

sizes (about 240 lines of code).

These results are examined in the light

of earlier findings in software reuse, as well as

other areas of software engineering. Most

empirical studies in software reuse tend to

work with a limited number of reuse programs,

affording little opportunity to generalize

findings. Consistent with the findings from

our model, anecdotal evidence suggests that

larger repositories will lead to more reuse and

thus increased savings from reuse (Banker et

al., 1993b). Also, anecdotal evidence reports

that a larger component size leads to an

increase in reuse payoffs (Apte et al. 1990).

However, any assessment as to whether the

savings will increase, remain roughly constant,

or decrease, is not possible in empirical

studies, based on lack of comparability of the

data. The use of a robust model, that is

rigorously constructed and calibrated, permit

systematic exploration of the benefits of a

reuse program. The results indicate that the

Goldilocks Conjecture also applies to software

reuse. This is not inconsistent with the

Does the „Goldilocks Conjecture‟ Apply to Software Reuse?

Journal of Information Technology Theory and Application (JITTA), 8:2, 2006.

65

findings in software development, software

quality assurance, and software maintenance.

These results have clear implications

for software reuse. While they confirm that

extremely small repositories are not likely to

generate any meaningful savings, they also

indicate that extremely small components may

not generate enough savings to be

economically worthwhile. Likewise, caution

needs to be exercised with respect to large

repositories. Table 2 summarizes the

implications of this study. Very small

components and very small repositories inhibit

a reuse program from breaking even. While

this may appear to cover the bulk of the table,

the implications are not quite as bleak.

Breakeven occurs when the repository contain

about 200 to 250 components. Most reuse

programs will experience negative savings

while the repository is initially assembled.

However, attempting reuse on a low-level of

abstraction does not generate a net saving over

traditional development, as the benefits of

reusing very small components do not offset

the effort invested in cataloging, searching,

and retrieving the components. For the

conditions explored, the model suggests that

the minimum component size needed to break

even is approximately 30 lines of code. The

center cell in the table represents the

conditions when the reuse program is expected

to be most effective. Moderately sized

components (between 30 and 240 lines of

code), in moderately sized repositories

(between 400 and 1000 components) generate

considerable savings. As the component size

grows, the savings will dip, but the overall

reuse program still remains economical.

Likewise, as the repository size grows, it takes

a larger component to break even, but this is

still characterized by overall savings through

reuse. Repositories are expected to grow over

time, as components developed for ongoing

projects are added to the reuse library. Under

these circumstances, search and retrieval cost

per reuse instance increase. Reuse managers

need to be aware that this necessitates larger

components to break even. While the average

size may not fall below the breakeven point,

the overall savings through reuse will be

lower. Very large components in moderate

repositories generate reuse savings; however,

the benefits from reuse are reduced, on

account of fewer opportunities for reuse. Very

large components are highly specific and the

probability of finding a suitable match in a

new project is small. Nevertheless, even under

these conditions the reuse program breaks

even, because each reuse instance represents a

significant saving over developing an equally

large component, allowing the reuse program

to sustain itself with fewer reuse opportunities.

In a similar vein, large components in a large

repository will still generate some savings –

just not as much as the center cell scenario,

where search and maintenance costs are lower,

and opportunities for reuse are greater. The

lack of reuse opportunities of individual large

components in this case is offset by the

collective increase in reuse opportunities from

the large repository.

As with all analysis involving the

Goldilocks Conjecture, it should be stressed

that the goal is not to determine an optimum

around which the reuse program should be

structured. Rather, it provides a basis for

identifying implications for operating in

conditions that stray from these preferred

areas. In particular, the paper makes a case for

moderate component size and for controlled

growth of the repository.

CONCLUSION AND LIMITATIONS

This study employed a domain-specific

model to provide greater insight into the

economics of a software reuse program. Two

forms of analysis were performed – a

breakeven analysis to assess whether reuse is

worthwhile, and a more traditional cost-benefit

analysis, which suggests that savings from

reuse may eventually tail off as reuse

components grow larger. The findings suggest

that the Goldilocks Conjecture does apply,

both for breakeven as well as for reuse savings

assessments. For the breakeven analysis, the

quadratic relationship is observed between the

component size required to break even and

different repository sizes. This suggests that

software reuse programs can never break even

if they are populated with very small

components, no matter how many components

are available to reuse. The second analysis

also found a quadratic relationship between

overall reuse savings and component size,

representing the classic interpretation of the

Goldilocks Conjecture. The analysis was

Derek Nazareth and Marcus Rothenberger

66

Table 2. Implications for Reuse Program Effectiveness

 Repository Size

 Very Small Moderate Very Large

C
o

m
p

o
n

en
t

S
iz

e

V
er

y
 S

m
a

ll

Reuse program not

economical

Reuse program not

economical

Reuse program not

economical

M
o

d
er

a
te

Reuse program

not economical

Reuse program preferred to

traditional software

development

Reuse program viable but

savings may dip due to higher

repository management and

search costs

V
er

y
 L

a
rg

e

Reuse program not

economical

Reuse program viable but

savings may dip due to fewer

reuse opportunities

Reuse program viable but

savings may dip due to fewer

reuse opportunities and

higher repository

management and search costs

repeated for multiple repository sizes, with

similar results, once again indicating that the

savings will eventually tail off, though the

peak is observed at slightly different points.

It is not the intent of this study to

prescribe specific numbers for repository and

component size – these will be very much

context dependent. Instead, it identifies

conditions where a reuse program is

economically viable. These results should

caution reuse managers about small

repositories, small reusable components, and

uncontrolled repository growth.

The model employed in this study is

deterministic in nature, assuming average

component size instead of a portfolio of

components of various sizes. Moreover, it

assumes that the components all pertain to a

specific business domain. Clearly, these are

restrictive assumptions. Projects are expected

to comprise components of various sizes, and

as a consequence, the repository is also

expected to include components of varying

size. Likewise, not all applications would

pertain to the same business domain, thereby

reducing some opportunities for reuse. Future

research into this phenomenon will involve the

need for a more comprehensive simulation

model in which projects are assembled from

different business domains and involve a

portfolio of components with varying size and

propensity for reuse. This approach would also

permit dynamic growth of the repository, with

initial projects contributing heavily to the

repository and subsequent projects

contributing only the unique processing that is

not covered elsewhere among existing

applications.

REFERENCES

Apte, U., C.S. Sankar, M. Thakur, and J.E. Turner, “Reusability-Based Strategy for Development of

Information Systems: Implementation Experience of a Bank,” MIS Quarterly, 1990, 14:4, pp 420-433.

Banker, R.D., S.M. Datar, C.F. Kemerer, and D. Zweig, “Software Complexity and Maintenance Costs,”

Communications of the ACM, 1993a, 36:11, pp. 81-94.

Banker, R.D., R.J. Kauffman, and D. Zweig, “Repository Evaluation of Software Reuse,” IEEE

Transactions on Software Engineering, 1993b, 19:4, pp 379-389.

Bowen, J.B., “Module size: A Standard or Heuristic,” Journal of Systems and Software, 1984, 4, pp. 327-

332.

Does the „Goldilocks Conjecture‟ Apply to Software Reuse?

Journal of Information Technology Theory and Application (JITTA), 8:2, 2006.

67

Clark, B., S. Devnani-Chulani, and B. Boehm, “Calibrating the COCOMO II Post-Architecture Model,”

Proceedings of the 20th International Conference on Software Engineering ICSE-20, Kyoto, Japan,

1998, pp. 477-480.

Compton, B.T., and C. Withrow, “Prediction and Control of Ada Software Defects,” Journal of Systems

and Software, 1990, 12:3, pp. 199-207.

Fenton, N.E., and M. Neil, “A Critique of Software Defect Prediction Models,” IEEE Transactions on

Software Engineering, 1999, 25:6, pp. 675-689.

Frakes, W.B. and K. Kang, “Software Reuse Research: Status and Future,” IEEE Transactions on Software

Engineering, 2005, 31:7, pp. 529- 536.

Gaffney, J.R., “Estimating the Number of Faults in Code,” IEEE Transactions on Software Engineering,

1984, 10:4, pp. 459-464.

Gerlich, R., and U. Denskat, “A Cost Estimation Model for Maintenance and High Reuse,” Proceedings of

the European Software Cost Modeling Conference, Ivrea, Italy, 1994.

Lim, W.C., Managing Software Reuse: A Comprehensive Guide to Strategically Reengineering the

Organization for Reusable Components, Prentice-Hall, Upper Saddle River, NJ, 1998.

Nazareth, D.L. and M.A. Rothenberger, “Assessing the Cost-Effectiveness of Software Reuse: A Model for

Systematic Reuse,” Journal of Systems and Software, 2004, 73:2, pp. 245-255.

Ravichandran, T. and M.A. Rothenberger, “Black Box or White Box Reuse: The Impact of Component

Markets on Reuse Strategies,” Communications of the ACM, 2003, 46:7, pp. 109-114.

Selby, R., “Empirically Analyzing Software Reuse in a Production Environment,” in Software Reuse:

Emerging Technology, W. Tracz (Ed.), IEEE Computer Society Press, 1988, pp. 176-189.

AUTHORS
Derek L. Nazareth is

Associate Professor of

Management

Information Systems at

the University of

Wisconsin-Milwaukee.

He holds a Ph.D. in

Management from Case

Western Reserve

University. His current research interests

include application development using web

services, software reuse, and information

systems ethics. His papers appear in

Communications of the ACM, IEEE

Transactions on Knowledge and Data

Engineering, Journal of Management

Information Systems, Decision Support

Systems, Knowledge Acquisition, OMEGA,

Information & Management among others. He

is a member of AIS, ACM, and INFORMS,

and was the Program Chair for AMCIS 1999,

and the Treasurer for ICIS 2006.

Marcus Rothenberger is

an Associate Professor in

the Department of

Management Information

Systems. He holds a

Ph.D. in Information

Systems from Arizona

State University. Dr.

Rothenberger‟s current

research explores

software process improvement issues, software

reusability, performance measurement,

software development offshoring, and the

adoption of enterprise resource planning

systems. His work has appeared in major

academic journals, such as the Decision

Sciences Journal, IEEE Transactions on

Software Engineering, Communications of the

ACM, and Information & Management. Dr.

Rothenberger is a senior editor of the Journal

of Information Technology Theory and

Application. He has been actively involved in

editorial and program committee capacities in

several academic conferences, including the

International Conference on Information

Systems and the Americas Conference on

Information Systems.

68

