
 

 

Volume 11 Article 3 Issue 2 

Information Visualization in Computing and Related Sciences: 
Evidence from Top Journals 

Madhavi M. Chakrabarty 
Verizon Wireless 
madhavi.chakrabarty@verizonwireless.com 

 
David Mendonça 
Department of Industrial and Systems Engineering 
Rensselaer Polytechnic Institute 
mendod@rpi.edu 

Information visualization provides a ready and potentially powerful mechanism for communicating research results. 
Understanding how visualizations are used in scientific discourse is one way to characterize this discourse, as well 
as to identify opportunities for expanding or refining it. 
 
This article proposes a systematic framework for classifying visualizations in published journal articles with respect 
to the data used to construct them, the processes they seek to explain, and the research goals they serve. The 
framework is applied to top journals in the computing and related sciences, revealing two main findings: while 
visualizations appear frequently in the surveyed articles, they serve a narrow band of uses relative to those 
encompassed by the framework. An implication of this finding is that discourse based on information visualization 
may be enriched by expanding the range of information visualizations found in this research, and by developing new 
classes of visualizations to illuminate a broader range of research results. 
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INTRODUCTION 

Scientists draw on the ability of different visualization techniques to help communicate their results within and across 
diverse research communities. In doing so, they take advantage of visualizations’ potential for high information 
content coupled with high comprehensibility. Given the wide range of tools now available for producing information 
visualizations—together with ongoing expansion of topics covered by researchers—it is appropriate to assess how 
information visualizations have been used in scholarly publications and to identify opportunities for extending 
scientific discourse through their expanded use. 
 
A number of prior studies suggest how different types of visualizations are used in communicating the results of 
scientific investigations (e.g., Card 1996; Herman et al. 2000). A novel contribution of this work is that it proposes a 
systematic framework for classifying information visualizations and applies this framework to visualizations found in 
recent articles published in top journals in computing and related sciences. Application of the framework results in a 
classification of each visualization with respect to the data used to construct it, the process it seeks to explain, and 
the research goal it serves. Both visual and statistical methods are used to analyze the results of this classification. 
One conclusion of this work is that, while visualizations appear frequently in these articles, they serve a narrow band 
of uses relative to those encompassed by the framework. The main implication of this result is that the discourse 
based on information visualization may be enriched by exploring other uses of visualization and, indeed, by 
developing new classes of visualizations to illuminate a broader range of research results. 

STUDY FRAMEWORK 

To understand the use of visualization in communicating scientific results, visualizations are here examined using a 
framework of four interrelated activities associated with the conduct of scientific research: the goals of the work, the 
processes under investigation, the data associated with these processes, and the visualizations used to 
communicate the results. As discussed more fully below, this framework provides a mechanism for classifying 
visualizations in relation to the nature of the research they are intended to support. 
 
A taxonomy of goals of research activities in the computing sciences is given by Leigh (1992) in the context of 
systems theory. In this taxonomy, a system is defined as a set of elements interconnected by information links in a 
boundary surrounded by the environment. Leigh offers three goals of research on systems: system understanding, 
which pertains to understanding the elements and information links within the boundary, or the whole system in the 
context of its environment; influencing systems behavior, which pertains to manipulating the properties or 
characteristics of the system; and system design, which is the task of replacing either the whole system or at least 
one of its components so that the system exhibits particular behaviors. 
 
Meeting any of these research goals can involve the investigation of system states and/or transitions between those 
states (i.e., system processes) (Widmeyer 2003). A transactional process represents the transitions between states 
and how reliably the transitions occur independent of any other process. A relational process represents the 
relationship of one process with another or the case in which a relationship is a process in and of itself. An 
informational process is a mediating process that captures the strength of a relationship between two other 
processes. 
 

CONTRIBUTION 
This article reviews the state of the art in the use of information visualizations to communicate the results of research published in top 
journals in computing and related sciences. A total of 570 separate visualizations—taken from a total of 119 articles published in twenty 
different journals—are classified using a framework developed for this research. The framework enables classification of each visualization 
by type, underlying data, process under examination, and primary research goal. The results show that visualizations are used in close to 80 
percent of the articles examined, and that they help address a range of research goals via examination of transactional, relational, and 
informational processes. On the other hand, this use is confined to a relatively narrow band of specific types of visualizations (e.g., 
dimensional and network), using mainly nominal and ratio data. A number of opportunities for extending visualization-based communication 
of findings are identified, including development of temporal visualizations, as well as visualizations based on absolute and ordinal data 
types. 
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Data may be collected in order to support the investigation of system processes. A discussed by Roberts (1979), 
data may be classified into any of the following four types. Absolute data is the simplest form of measurement, 
where there is only one way to measure the data (e.g., numerical count). Ratio data is represented in comparison to 
a fixed point, is transformed by a known operation, and gives the data as a measure relative to the point. Ratio data 
includes interval data that is ratio data marked off by two end points on a range. Ordinal data provide only an 
ordering, where scores or measurements are transformed to a monotonically increasing scale where each point 
describes the order of the data in the given scale. In nominal data, all functions define one to one transformations, 
as in a simple labeling. 
 
A visualization may be understood as a function that maps on or more of these data types to a shape and/or color. 
Shneiderman’s (2002) taxonomy describes a range of information visualizations, presented here in somewhat 
simplified form. Dimensional visualizations include one-dimensional, two-dimensional, and three-dimensional 
visualizations. One-dimensional visualization is a line of text containing strings or characters organized in a 
sequential manner. Two-dimensional visualization is a representation in terms of part of a total area (e.g., a pie 
chart). Three-dimensional visualization is a representation of a volume. Multidimensional visualization consists of 
items with n attributes becoming points in n-dimensional space, with n > 3. Temporal visualization places data in 
relation to a timeline having a distinct start and finish. Network visualizations include items linked to any number of 
other items. Trees are special cases of networks having a link only to a parent item. Items and links can have 
multiple attributes and can be represented either as a node and link diagram or a square matrix of the items with the 
value of a link attribute in the row and link in the column. 
 
Examples of each possible combination of the above data types and visualization types may be found in Bertin’s 
(1983) comprehensive inventory of visualizations. To illustrate this point, Table 1 provides the page number and 
figure number for each data/visualization combination in Bertin’s work, thus offering at least face validity for the claim 
that all combinations are possible and, therefore, possibly useful. Other sources of examples include examples 
given by Geisler (1998) of visualizations in terms of Shneiderman’s (2002) taxonomy and by Herman et al. (2000) of 
visualizations of networks. 

 
Table 1: Data/Visualization Combinations Found in Bertin (1983), by page(figure number) 

 

Visualization 

Data 

Dimensional Multi-
dimensional 

Temporal Network 

Absolute 102(1) 103(2) 380(2) 109(4) 

Ratio 110 (1) 103(3) 398-399(1) 281(2) 

Ordinal 353(3) 123(4) 182(4) 274(6) 

Nominal 352(2) 307(8) 354(1) 282(1) 

 

The above framework, therefore, provides considerably more context to the use of information visualization in 
scientific research than would be provided simply by classifying the visualizations themselves. To the extent that 
each of the above typologies is salient in research in computing and related sciences, a reasonable null hypothesis 
is that there will be no particular tendency toward one distribution of visualizations across the typologies. We 
address this hypothesis in two ways. First, we examine the distribution of visualizations across each two adjacent 
levels in the framework (i.e., goal vs. process, process vs. data, data vs. visualization). This is accomplished by 
examining visualizations of the study data, and by conducting more formal statistical testing. Second, we visually 
examine the distribution of visualizations across all possible values in the framework, and conduct a multivariate test 
that is analogous to the bivariate test conducted in the first part of the study. 

STUDY DESIGN 

Twenty highly-ranked journals in computing and associated sciences were first identified using the results of a 
recent ranking (Rainer and Miller 2005). A list was first compiled of all 147 issues published in these journals during 
the study period (2004–2005). A target sample size of approximately 500 visualizations was determined and an 
estimate made of the approximate number of articles that would need to be surveyed to furnish a sample of this size. 
A random sample of 119 articles was, therefore, selected from those published in these journals during the study 
period. Each visualization in a given article was first identified, then classified using Shneiderman’s (2002) typology. 
Next, the type of data used in the visualization was determined using Roberts’s (1979) typology, followed by the 
system process (Widmeyer 2003) pertaining to it and the corresponding research goal (Leigh 1992). 
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This coding procedure was undertaken by two independent human coders using written instructions that defined the 
framework, the elements in it, and how to record the results of the coding. To assess reliability of the coding 

instructions, Cohen’s κ (Cohen 1960) was computed and found to be at an acceptable level (above 0.87 for all 
typologies). A description of the data set is provided in Table 2, which shows the name, ranking, volume (issue) 
range over the study period, the total number of issues in the study period, the number of articles sampled, and the 
total number of visualizations for the articles sampled from a given journal. 

 
Table 2: Description of Study Sample 
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1 Academy of Management Journal 17 47(3)–48(2) 6 2 2 

2 Academy of Management Review 22 29(3)–30(2) 4 6 3 

3 ACM Tr. on Database Systems 13 29(2)–30(1) 4 4 47 

4 Communications of the ACM 2 47(6)–48(5) 12 14 28 

5 Decision Sciences 8 35(3)–36(2) 4 1 1 

6 Decision Support Systems 9 37(4)–40(2) 4 10 42 

7 European Journal of Information Systems 11 13(2)–14(1) 3 2 0 

8 Harvard Business Review 7 82(7)–83(6) 4 5 8 

9 IEEE Tr. on Engineering Management 6 51(3)–52(2) 12 6 10 

10 IEEE Tr. on Knowledge and Data Engineering 6 16(8)–17(7) 4 12 111 

11 IEEE Tr. on Software Engineering 6 30(6)–31(5) 12 6 31 

12 IEEE Tr. on Systems, Man and Cybernetics (A, B, C) 6 34(4)–35(3) 12 17 179 

13 Information and Management 10 41(7)–42(6) 16 7 24 

14 Information Systems Journal 16 29(7)–30(6) 11 2 25 

15 Information Systems Research 3 15(2)–16(1) 8 4 13 

16 Journal of Management Information Systems 4 21(1)–21(4) 4 2 6 

17 Management Science 5 50(6)–51(5) 4 11 28 

18 MIS Quarterly 1 28(2)–29(1) 13 3 4 

19 Organization Science 15 15(3)–16(2) 4 1 4 

20 Sloan Management Review 12 45(3)–46(2) 6 4 4 

  Total     147  119  570  

 

RESULTS 

The 119 articles in the sample contained a total of 570 visualizations (an average of 4.8 visualizations per article), 
with 95 articles (79.8 percent) containing at least one visualization. Therefore, visualizations may be said to be in 
widespread use within this sample. Further detail on this use is obtained by examining how visualizations are 

distributed across each level of the hierarchy implied by the framework (i.e., goal→ process→ data→ 
visualization). A summary of the data for this study is given in Tables 3 through 5. The data may be illustrated using 
the top panel of the figure, which shows the distribution of visualizations between goal and process levels. A total of 
340 visualizations are associated with the goal of system understanding, and eighty-five of them concern relational 
processes. Also provided in Tables 3 through 5 are normalized scores, which are used below to enable comparisons 
across any two levels in the framework. The normalized score is computed as a(count/max)+b, where count is the 
number of visualizations in the combination of typology values of interest, and max is the highest count value among 
all combinations of typology values of interest (a and b are simply scale parameters, and are set arbitrarily to a = 0.9 
and b = 0.1). For the example above, the levels are goal and process, with count = 85 and max = 195, resulting in a 
normalized score of 0.49. The implications of the normalized scores across levels in the framework are presented 
below. 
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As shown in Tables 3 through 5, most of the visualizations are associated with the goal of system understanding 
(340), followed by influencing system behavior (198) and system design (32). A total of 278 visualizations are 
associated with transactional processes, 176 with informational processes, and 116 with relational processes. As 
may be seen in the second panel, most (312) of the visualizations are based on nominal data, with 235 for ratio, 16 
for absolute and 7 for ordinal. The visualizations themselves are mainly dimensional (227) or network (213), with 121 
multidimensional, and 9 temporal. 

 

Table 3: Count and (Normal Score) for Goal→→→→Process 

 

Process 

 

Goal 

Transactional Relational Informational Total 

System 
Understanding 

195 

(1.0) 

85 

(0.49) 

60 

(0.37) 
340 

System  

Design 

17 

(0.18) 

13 

(0.16) 

2 

(0.11) 
32 

Influencing System 
Behavior 

66 

(0.40) 

18 

(0.18) 

114 

(0.63) 
198 

Total 278 116 176 570 

 

Table 4: Count and (Normal Score) for Process→→→→Data 

 

Data 

 

 

Process 

Absolute Ratio Ordinal Nominal Total 

Transactional 
9 

(0.14) 

82 

(0.50) 

5 

(0.12) 

182 

(1.0) 
278 

Relational 
2 

(0.11) 

22 

(0.21) 

0 

(0.1) 

92 

(0.55) 
116 

Informational 
5 

(0.12) 

131 

(0.75) 

2 

(0.11) 

38 

(0.29) 
176 

Total 16 235 7 312 570 

 

Table 5: Count and (Normal Score) for Data→→→→Visualization 

 

Visualization 

 

Data  

Dimensional Multi-
dimensional 

Temporal Network Total 

Absolute 
14 

(0.16) 

0 

(0.1) 

0 

(0.1) 

2 

(0.11) 
16 

Ratio 
108 

(0.58) 

120 

(0.63) 

2 

(0.11) 

5 

(0.12) 
235 

Ordinal 
2 

(0.11) 

0 

(0.1) 

3 

(0.11) 

2 

(0.11) 
7 

Nominal 
103 

(0.55) 

1 

(0.1) 

4 

(0.12) 

204 

(1.0) 
312 

Total 227 121 9 213 570 

 
The first objective of this work is to compare the distribution of visualizations between levels in the hierarchy. This is 
done in two parts. First, star plots of the normalized scores (given in Figures 1 to 3) are examined. A star plot is a 
visualization used in representing multivariate observations, where one ray is assigned to each single variable, with 
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the length of a ray proportional to the value of the variable (Chambers et al. 1983). In Figures 1 to 3, the maximum 
value with respect to a given axis is unity, corresponding to the case where max = count, as may be seen for the 
combination goal = system understanding and process = transactional shown in Figure 1. The second part of work 
toward the first objective of the study is testing of a null hypothesis of independence between adjacent levels in the 
hierarchy. The null hypotheses reflect an a priori assumption that the distribution of visualizations will not depend on 
the values in the typologies of the levels. (It should be noted, under the null hypothesis, each ray would have a 
length of unity, so that all polygons would be overlapping,) 
 
Figure 1 depicts the results for the goal→process levels, where each value for goal is indicated by a different line 
type. The axes correspond to the values of process (where rel = relational, tran = transactional and inf = 
informational). The relative frequency of appearance of visualizations for each type of goal is reflected in the size of 
the corresponding polygon in Figure 1 (e.g., far more visualizations are used to support the goal of system 
understanding rather than the goal of system design). The distances from the origin of points on a given polygon 
indicate the relative frequency of appearance of those visualizations within a given category. For example, when the 
goal is system understanding or system designing, visualizations are most often used to explain transactional 
processes. When the goal is influencing system behavior, visualization are most often used to explain informational 
processes. Figure 1 strongly suggests that the proportion of visualizations used to explain a given type of process 
varies by goal. More formally, a null hypothesis of independence between goal and process is rejected: 
visualizations tend not to be distributed at random across the various combinations of goal and process (χ² = 108.6, 
p < 0.0001). 
 

 

Figure 1: Goal→process levels. 

 
Considering the process→data levels, the results are considerably more uniform. Most strongly associated with 
transactional and relational processes are visualizations of nominal data, while for informational processes the use 
of visualizations based on ratio data predominates. As shown in Table 4 and the corresponding star diagram in 
Figure 2, some process→data combinations (e.g., transitional-ordinal) are not found in the sample. The hypothesis 
of independence between process and data is rejected (χ² = 127.1, p < 0.0001). 

 

 

Figure 2: Process→data levels. 
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Finally, considering the data→visualization levels, absolute data tend to be represented in a dimensional 
visualization, ratio data in multidimensional visualization, ordinal data in temporal visualization, and nominal data in 
network visualization. As shown in Figure 3, there are no observations for a number of combinations of data and 
visualization, including (i) abs and multi-d, (ii) ord and multi-d and (iii) abs and temp. The hypothesis of 
independence between data and visualization is rejected (χ² = 406.1, p < 0.0001). 
 

 

Figure 3: Data→visualization levels. 

 
The second stated objective of this work is to examine the distribution of visualizations across all levels of the 
hierarchy. This is done by identifying combinations of goal-process-data-visualization that are infrequently 
observed or not observed at all. Tables 3 through 5 suggest that there is a high degree of variability—sometimes two 
orders of magnitude—in the distribution of visualizations across the framework. One example is the combination 
goal = system design and process = informational (two visualizations) versus goal = system understanding and 
process = transactional (195 visualizations). This high degree of variability is also found within a given level (e.g., 
goal = system understanding versus goal = system design). It is immediately obvious, then, that certain 
combinations of values within individual levels and between adjacent levels are more predominant than others. We 
now examine these gaps graphically and statistically. 
 
The distribution of visualizations throughout the framework may be represented visually in a tree diagram. Figure 4 
shows all combinations of goal–process–data–visualization as either present or absent in the data set. It, 
therefore, provides an expanded view of the data in Tables 3 through 5 (albeit one where all nonzero values are 
visually equally weighted). Since the focus is on identifying gaps, combinations that are not found in the data set are 
highlighted. One example is the combination where goal = system understanding, process = transformational, data = 
absolute and visualization = multidimensional. (A hypothetical example would be a three-dimensional visualization of 
count data showing a transformative process in order to explain how a system functions. A practical situation calling 
for this combination could be in showing the difference in the final versus initial number of operational, managerial, 
and strategic users of a given system over some time period.) The lighter paths show observed combinations (e.g, 
goal = system understanding, process = transformational, data = absolute and visualization = dimensional). 
 
As shown in Figure 4, visualizations are found for all nine goal/process combinations of the framework, as are most 
(i.e., twenty-six of thirty-six possible) process/data combinations. Gaps at the process/data level may be found 
exclusively for visualizations employing data of type absolute and ordinal. At the data/visualization level, gaps are 
frequently found for temporal and network visualizations—regardless of the type of data. It may also be noted that, 
of the 144 possible combinations of goal, process, data, and visualization (represented as the lowest set nodes in 
the figure), forty-eight (i.e., ⅓) are found (recall that the total sample includes 570 visualizations). These results 
suggest that visualizations are used to support all goals via consideration of all process types. But on the other 
hand, absolute and ordinal data are under-observed, as are temporal visualizations (see Tables 3 through 5). 
 
A more formal and holistic method may be used to investigate whether there is systematic departure from uniformity 
in the distribution of visualizations across all the combinations of goal, process, data, and visualization. The null 
hypothesis in the simultaneous test of proportions (Johnson and Wichern 1992) is one of independence between all 
levels. The result is strong rejection of the null (p < 0.0001), suggesting that the at least two of the levels are 
dependent. This result—which mirrors that of the qualitative assessment above—may be interpreted to mean that 
visualizations tend to be found with certain combinations of goal, process, data, and visualization but not others. 
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Figure 4: Unobserved goal–process–data–visualization combinations. 

DISCUSSION AND CONCLUSIONS 

The results of the application of the study framework show clearly that visualizations are in widespread use in top 
journals in the computing and related sciences. The first objective of this work is to compare the distribution of 

visualizations between adjacent levels in the hierarchy. At the goal→→→→process level, visualizations are used 
predominantly to support the goals of system understanding (through examination of transactional processes) and 
influencing system design (through examination of informational processes). An implication, then, is that results 
concerning system design are seldom communicated through visualizations. 
 

A striking feature of the results at the process→→→→data level is the relatively infrequent use of visualizations employing 
absolute and ordinal data to explain any type of process. The lack of visualizations based on absolute data is 
perhaps not surprising: many performance and psychometric measures are typically expressed using ratio data 
(e.g., percent of maximum throughput or attitude toward particular technology). The lack of visualizations of ordinal 
data to explain system processes is more surprising, but perhaps may in part be due to the lack of statistical 
methods for treating ordinal data, as well as to the ready availability of more precise (i.e., ratio) data. 
 

At the data→→→→visualization level, ratio and nominal data are most predominantly used, but chiefly for 
multidimensional and network visualizations, respectively. One obvious gap here is in the visualization of time series 
data (typically based on ordinal or ratio data). Given the well documented advantages of visualizations in explaining 
time series, it may be that this gap is reflective of a larger gap—and hence an opportunity—in examining time-based 
processes in computing and related sciences (Avital 2000). The need for further work in developing “time-dependent 
visualizations” has been emphasized by Johnson (2004), which would include interacting with time-dependent data 
as it unfolds. 
 
Taking this first set of results as a whole, there are clear and significant departures from uniformity in the distribution 
of visualizations across adjacent levels in the framework. The results may be evidence simply of preference among 
researchers for different (pairwise) combinations of goal, process, visualization, and data. A possibly fruitful direction 
of inquiry for future research, then, is to investigate these preferences more closely, perhaps in terms of assessing 
perceived cognitive fit between, say, temporal visualizations using ratio versus ordinal data in relation to a given 
process and research goal (for additional perspective on this issue, see [van Wijk 2006]). 
 
The second stated objective of this work is to examine the distribution of visualizations across all levels of the 
framework. Visual inspection of a tree diagram showing the distribution of visualizations throughout the framework 
reveals many unexplored branches at the process, data, and visualization levels. The result is reinforced via 
statistical testing, which shows that there are systematic departures from independence across the framework. 
Consequently, we conclude that the use of visualization is less expansive than it could be, perhaps impoverishing 
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scientific discourse. Two distinct but related research paths may lead to further insight on these issues. First, 
additional work may be devoted to examining the expressive possibilities of existing visualizations (Bertin 1983; 
Tufte 1983) in light of particular values of goal, process, and data. Second, research may be directed toward 
developing new visualizations with the intention of providing a good fit with particular combinations of values of goal, 
process, and data. Johnson (2004) has argued for applying the scientific method to the task of visualization 
development. Guidelines for visualization development range widely, from Tufte’s (1983) principles of graph design, 
to Card and Mackinlay’s (1997) demarcation of an information visualization design space. In seeking to understand 
the actual genesis of visualizations, it may be useful to examine cognition during initial design. Evaluation with 
respect to efficacy of the resulting visualization has an important role here, a point emphasized in studies on 
task/visualization fit (Shneiderman 2002), as well as methods for evaluation of visualizations (North 2006; 
Shneiderman and Plaisant 2006). 
 
In conclusion, use of visualization is widespread in top journals in the computing and related sciences, but this use is 
focused on a comparatively narrow range of goal→process→data combinations. A more systematic approach to 
developing and evaluating visualizations in the underexplored regions of the study framework may help enrich 
scientific discourse, while contributing to our understanding of the circumstances under which certain visualizations 
lead to better understanding than others. 
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