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Shannon Wavelet Chaotic Neural Network with Nonlinear Self-feedback

Yaoqun XU1*, Jian LIU
1Institution of System Engineering, Harbin University of Commerce, Harbin, 150028, China

Abstract: Shannon wavelet chaotic neural network is a kind of chaotic neural network with non-monotonous activation

function composed by Sigmoid and Wavelet. In this paper, wavelet chaotic neural network models with different nonlinear

self-feedbacks are proposed and the effects of the different self-feedbacks on simulated annealing are analyzed respectively.

Then the proposed models are applied to the 10-city traveling salesman problem (TSP) and by comparison the performance

of the model with wavelet self-feedback is superior to that of the rest others presented in this paper. Moreover, the

performance of the model with wavelet self-feedback is improved by the scale index and the location index of the wavelet.

Finally, the dynamics of an internal state of the model for the 10-city TSP is researched, including chaotic area distribution,

the largest Lyapunov exponents and the effects of the chaotic distribution on the performance of the network for 10-city

TSP. The numerical simulations show that the models can converge to the global minimum or approximate solutions more

efficiently than the Hopfield network, and the performance of the model with wavelet self-feedback is superior to that of the

others.

Key words: Shannon wavelet chaotic neural network; Nonlinear self-feedback; Optimization; Chaotic area distribution;

1 INTRODUCTION
The Hopfield network, proposed by Hopfield and Tank [1, 2], has been extensively applied to many fields in

the past years. The Hopfield neural network converges to a stable equilibrium point due to its gradient decent

dynamics. However, it causes severe local-minimum problems whenever it is applied to optimization problems.

Chaotic neural network has abundant dynamic property to move chaotically over fractal structure in the state

space so that it can suffer from the local minima. Chen and Aihara[3], by introducing a simulated annealing to

chaotic neural network, effectively improved the performance of chaotic neural network in solving

combinational optimization problems. From then on, more and more research results [4~8] turned out in chaotic

neural network. Wavelet is a strong mathematic tool in various science and technology fields, and the

combination of wavelet and neural network has been researched numerously because of the excellent properties

of wavelet such as multilayer feed-forward wavelet neural networks [9, 10]. Wavelet chaotic neural network with

non-monotonous activation function composed by sigmoid and wavelet functions has been used to solve 10-city

TSP effectively [11, 12]. In this paper, we introduce two categories of the simplest nonlinear functions into wavelet

chaotic neural network as self-feedback and use the model to solve 10-city TSP. The model is described in

Section2. In Section 3, the effects of the nonlinear self-feedbacks on simulated annealing are discussed. The

model with nonlinear self-feedbacks is applied to 10-city TSP and used to compare with other models in Section

4. In Section 5, the chaotic dynamics of an internal state of the model is analyzed in solving 10-city TSP,

including chaotic area distribution and the largest Lyapunov exponents.

2 SHANNON WAVELET NETWORK WITH NONLINEAR SELF-FEEDBACK

The model of Shannon wavelet chaotic neural network is described as follows.

))(()( tyftx ii =             (1)
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where

xi = output of neuron i,

yi = internal state of neuron i,

wij = connection weight from neuron j to neuron i,

Ii = input bias of neuron i,

g = nonlinear self-feedback,

α = positive scaling parameter for inputs,

k = damping factor of nerve membrane (0 ≤ k ≤ 1),

zi = self-feedback connection weight,

ε1, ε2 = steepness parameters of the activation function,

Sigmoid = Sigmoid function,

Shannon = ShannonWavelet function,

c = a positive coefficient before W.

Chaotic searching is generated in chaotic neural network by the introduction of self-feedback, so different

self-feedbacks can make chaotic neural network exhibit different chaotic dynamics behaviors. Besides the

non-monotonous activation function, the model has a term of nonlinear self-feedback which is distinct from

other models. Here, the form of the nonlinear self-feedback function g(x) is chosen under the following

considerations.

(1) In the region x∈[-1,1], |g(x)|<|x| for the whole region or |g(x)|>|x| for x∈[- x0, x0] and |g(x)|<|x| for the

other region where x0<1 except the point 0 where g(0)=0. This represents that the point 0 is the fixed point of

g(x), and the other region in x∈[-1,1] can be decreased or increased.

(2) In the region ]1,0(∈x , g(x)>0; In the region )0,1[−∈x , g(x)<0; In the point x=0, g(x)=0. This stands for

that g(x) can not change the sign of x and x=0 is the fixed point of g(x).

Based on the conditions given above, g(x) is taken the following three functions in term of |g(x)|.

For |g(x)|<|x|,

g1(x)=xexp(-x2/2), x∈[-1,1].       (6)

g2(x)=x(1-x2), x∈[-1,1].                (7)

For |g(x)|>|x|,

g3(x) = 4x(1-x2), x∈[-1,1].                (8)

3 EFFECTS OF NONLINEAR SELF-FEEDBACK ON SIMULATE ANNEALING

Although the chaotic neural network is a promising technique for optimization problems, the converging

process has not been satisfactorily solved in relation to chaotic dynamics. It is difficult to decide how to control

mailto:xuyaoqun@sina.com
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the chaotic behavior in chaotic neural network for converging to chaotic dynamics. To make use of the chaotic

dynamics, different forms of simulated annealing can be drawn on [3,16,17], which can introduce transiently

chaotic dynamics to chaotic neural network. In order to control the chaotic dynamic regimes, the exponential

simulated annealing strategy is also embedded into wavelet chaotic neural network. So the transiently wavelet

chaotic neural network with nonlinear self-feedback can be described as equations (1) ~ (5) together with

equation (9).

)()1()1( tztz ii −=+ (9)

whereβis the simulated annealing parameter (0 ≤β≤ 1). The larger the parameterβis, the faster the decrement
speed is, and the smallerβ conduces to the network searching the globally optimal or approximate optimal
solution. In addition, the initial temperature zi has a subtle relation with the performance of transiently chaotic
neural network. While a high temperature is required to investigate chaotic dynamics, a low temperature is
preferred for combinational optimization application[5].However, the nonlinear self-feedback introduced in the
Section 2 draws on a larger temperature as to |g(x)|<|x| and a smaller temperature with respect to |g(x)|>|x|

without destructing the performance of the network but improving it. It is because that the effects of the
nonlinear self-feedback on the network have two aspects. On the one hand, the nonlinear self-feedback can
further affect the value of the searching states of transiently chaotic dynamics besides the exponential simulated
annealing, that is, for |g(x)|<|x| the nonlinear self-feedback can decrease the values of the searching states and for
|g(x)|>|x| the nonlinear self-feedback can increase the values of the searching states to some extent. Especially
for |g(x)|<|x|, the appropriate nonlinear self-feedback can make the searching states converge earlier so that the
network has an ability to search the globally optimal solution with smaller iterations.

4 APPLICATION TO TRAVELING SALESMAN PROBLEM

A computational energy function which is to minimize the total tour length while simultaneously satisfying

all constrains takes the follow form [1].
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where xi0=xin and xi,n+1=xi1. W1 and W2 are the coupling parameters corresponding to the constrains and the cost

function of the tour length, respectively. dxy is the distance between city x and city y.

Therefore, the equation (2) can be described as follows.
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This paper adopts the unitary coordinates of 10 cities same with the conference [3]. The shortest distance of
the 10 cities is 2.6776.

In the numerical simulations, we remain the parameters W1= W2=1, ε1=20, ε2=0.8, k =1, α=1 unchanged and
change the simulated annealing parameterβand the temperature zi(1). For g1(x), zi(1)=0.4, I0=0.65; For g2(x),
zi(1)=0.4, I0=0.47; For g3(x), zi(1)=0.1, I0=0.48. 500 different initial conditions of yij are generated randomly in
the region [-1, 1] for differentβ. The results of the numerical simulations are shown in the Table 1 (RGM= Rate
of global minima; RLM= Rate of local minima; RIS=Rate of infeasible solutions; AIC=Average iterations for
convergence.).
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As is the Table 1 shown, the performance of the network with g1(x) is superior to that of the one with g2(x)

and the performance of the network with |g(x)|<|x| such as g1(x) and g2(x) is superior to that of the one with

|g(x)|>|x|such as g3(x). The explanations are given as follows.

Table 1 The results of the numerical simulations for the proposed network with nonlinear self-feedback

g (x) β RGM RLM RIS AIC

0.004 499(99.8%) 1(0.2%) 0(0.0%) 124

0.003 500(100%) 0(0.0%) 0(0.0%) 135g1(x)

0.002 500(100%) 0(0.0%) 0(0.0%) 153

0.004 497(99.4%) 3(0.6%) 0(0.0%) 126

0.003 500(100%) 0(0.0%) 0(0.0%) 131g2(x)

0.002 500(100%) 0(0.0%) 0(0.0%) 164

0.004 496(99.2%) 4(0.8%) 0(0.0%) 123

0.003 498(99.6%) 2(0.4%) 0(0.0%) 142g3(x)

0.002 500(100%) 0(0.0%) 0(0.0%) 166

First, for |g(x)|<|x|, the too small value of g(x) will make the states decreased so fast that it is difficult to suffer

from the local minima. In contrast, the appropriate value of g(x) can remain a certain searching ability of the states

so that it can prevent the states trapping into the local minima and converge to the globally optimal minima with

the help of an appropriate temperature. Seen from the Fig.1, the corresponding value of g2(x) are much smaller than

those of g1(x) in the region ]1,0()0,1[ −∈x . So the performance of the network with g2(x) is inferior to that of the

network with g1(x) and the value of g1(x) is fit for the network solving 10-city TSP.

Second, the value of nonlinear self-feedback has a strong impact on the state jump. The temperature of

simulated annealing has an effect on controlling the possibility of random jump in state space [5]. For |g(x)|>|x|, it

is easy to jump out the state space controlled by the temperature. That is to say, under the condition of the same

temperature, the possibility is larger to jump out the controlled state space for |g(x)|>|x| than that for |g(x)|<|x|.

Therefore, in order to control the state jump the network with |g(x)|>|x| needs a lower temperature.

In order to be convenient to compare the performance of the proposed network with that of the network with

the linear self-feedback g4(x) = x (WCNN), the parameters of transiently WCNN are taken asβ=0.003,

zi(1)=0.29~0.4, I0=0.65, and the other parameters remain unchanged. The results of the numerical simulations

with 500 iterations are summarized in Table 2.

Table 2 The results of the numerical simulations for the network with g4(x)

g (x) zi(1) RGM RLM RIS AIC

0.25 498(99.6%) 2(0.4%) 0(0.0%) 125

0.30 499(99.8%) 1(0.3%) 0(0.0%) 127

0.35 500(100%) 0(0.0%) 0(0.0%) 144
g4(x)

0.40 500(100%) 0(0.0%) 0(0.0%) 204

By the comparison between Table 1 and Table 2, the network with g1(x) is not only more effective than the

network with the linear self-feedback g4(x)=x in the same temperature zi(1)=0.4 but also superior to the network

with the smaller temperature zi(1). Moreover, the number of the average iterations for the network convergence

to globally optimal minima atβ=0.003 is also smaller than that of the network proposed by Chen and Aihara in

reference [3], which costs 398 iterations atβ=0.003 before reaching 100% globally minima. Such ability of the
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proposed network owes to the non-monotonous activation function and especially the nonlinear self-feedback.

And by the above analysis one can believe that there exists a better nonlinear self-feedback with appropriate

function values in the region x∈[-1,1] which is more effective to solve the 10-city TSP.

By the above analysis, now we can make sure that g1(x) is the most effective nonlinear self-feedback which

can improve the performance of the network with maximum limit among the above four self-feedback functions

and believe that there is a better nonlinear self-feedback more effective to solve the 10-city TSP. Now we try to

find such a function based on g1(x). As is known, g1(x) is the mother function of Gauss wavelet family and so

Wavelet Analysis theory can be applied to solve 10-city TSP. For continuous wavelet Φs,l,(x)=Φ[s(x-l)] the scale

index s and the location index l are real numbers that scale and dilate the mother function to generate wavelets. s

indicates the wavelet's width, and l gives its position. What makes wavelet bases especially interesting is the
self-similarity caused by the scales and dilations. g1(x) applied to solve 10-city TSP can be seen as a generated

wavelet with 1.0 as the scale index, I0 as the location index. The effect of the scale index on the g1(x) is shown

in Fig.2.

Fig.1 shows that the generated wavelet accords with the analysis in Section 3. The numerical simulations are

taken with different scale and location indexes, and the results are shown in Table 3. The parameters are set as

zi(1)=0.4, β=0.003.

As is seen from the Table 3, the performance is improved due to the decrease of the scale index. Therefore,

the generated wavelet as nonlinear self-feedback is more effective to solve 10-city TSP.

Table 3 The results of the numerical simulations for the network with the generated wavelet

scale location RGM RLM RIS AIC

0.9 0.60 500(100%) 0(0.0%) 0(0.0%) 123

0.9 0.65 500(100%) 0(0.0%) 0(0.0%) 127

0.85 0.70 500(100%) 0(0.0%) 0(0.0%) 129

0.85 0.75 500(100%) 0(0.0%) 0(0.0%) 121

0.75 0.80 500(100%) 0(0.0%) 0(0.0%) 119

Fig.1 the generated wavelets with different scales
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(a)

(b)

5   CHAOTIC DYNAMICS OF THE INTERNAL STATE

Fig.2 (a) indicates that the transiently chaotic searching of WCNN is distinct with that of the network

proposed by Chen and Aihara in that the searching state can be negative. Therefore, the transiently chaotic

researching area of the proposed model with nonlinear self-feedback is wider than that of the proposed model by

Chen and Aihara. And Fig.2 (b) and the left three pictures of (c) indicate that transiently chaotic dynamics

behavior exists during chaotic neural networks solving the 10-city TSP and the chaotic area distribution of the

chaotic neural network with different nonlinear self-feedback is distinct with each other.

Chaotic area distribution can instruct people to choose the parameters in order to generate chaos. What’s
more, chaotic area distributions of networks in solving TSP can predict the performance of the networks. The
right three pictures of Fig.2 (c) indicate that the evolutions of chaotic area distributions at k=1 with the

decrement of the simulated annealing temperature generate transiently chaotic searching. The simulation results

are summarized in Table 4. Table 4 indicates that the simulation results accords with the above analysis.

Table 4 The results of the numerical simulations for the network with g1(x), y=x(g4(x)) and g3(x).

gi(x) RGM RLM RIS AIC

g1(x) 1000(100%) 0(0.0%) 0(0.0%) 131

g4(x) 1000(100%) 0(0.0%) 0(0.0%) 213

g3(x) 996(99.6%) 4(0.4%) 0(0.0%) 580
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(c)
Fig.2 Chaotic dynamics of an internal state, the largest Lyapunov exponents and chaotic area distribution with the

parameters zi(1)=0.4, I0=0.65. (a) The transiently chaotic searching of an internal state; (b) The largest Lyapunov

exponents of the network for the 10-city TSP; (c) The chaotic area distribution of WCNN respectively with g1(x),

linear self-feedback y=x and g3(x) for the 10-city TSP; the left three pictures are chaotic area distribution on k and

the right three pictures are chaotic area distribution on z(t) at k=1.

6  CONCLUSION

The proposed nonlinear self-feedback of the model has a full impact on the performance of the model for
10-city TSP and has a significant meaning for chaotic neural network. The numerical simulations indicate that
WCNN with wavelet self-feedback is more effective to solve combinational optimization problem than the
others.
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