
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2012 Proceedings Proceedings

Teaching Secure Programming to Information
Systems Students via OWASP Techniques and
Libraries
Carey Cole
James Madison University, Harrisonburg, VA, United States., colecb@jmu.edu

Michel Mitri
James Madison University, Harrisonburg, VA, United States., mitrimx@jmu.edu

Follow this and additional works at: http://aisel.aisnet.org/amcis2012

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2012 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Cole, Carey and Mitri, Michel, "Teaching Secure Programming to Information Systems Students via OWASP Techniques and
Libraries" (2012). AMCIS 2012 Proceedings. 20.
http://aisel.aisnet.org/amcis2012/proceedings/ISEducation/20

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301356339?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2012%2Fproceedings%2FISEducation%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2012?utm_source=aisel.aisnet.org%2Famcis2012%2Fproceedings%2FISEducation%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2012/proceedings?utm_source=aisel.aisnet.org%2Famcis2012%2Fproceedings%2FISEducation%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2012?utm_source=aisel.aisnet.org%2Famcis2012%2Fproceedings%2FISEducation%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2012/proceedings/ISEducation/20?utm_source=aisel.aisnet.org%2Famcis2012%2Fproceedings%2FISEducation%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Cole et al Teaching Secure Programming via OWASP

Proceedings of the Eighteenth Americas Conference on Information Systems, Seattle, Washington, August 9-12, 2012. 1

Teaching Secure Programming to Information Systems
Students via OWASP Techniques and Libraries

Carey Cole

James Madison University

colecb@jmu.edu

Michel Mitri

James Madison University

Mitrimx@jmu.edu

ABSTRACT

Current and future Information Systems (IS) personnel and management need to understand SQL Injection, cross-site

scripting (XSS), and other web-originating information security vulnerabilities. These can have severe negative impacts, and

minimizing these threats is an important consideration for application developers. There are many resources on the Internet

and in books to help educate people about these and similar intrusions. The Open Web Application Security Project

(OWASP) includes a robust amount of information on this subject and is an excellent starting point in the creation of lecture,

demonstration, and student practice on the subject. Using OWASP resources and active software examples is an effective

and efficient method to teach IS students on potential security breaches and their prevention.

Keywords

SQL Injection, cross-site scripting (XSS), enterprise security API, OWASP, IT security education.

INTRODUCTION

IT Security is a major concern in many organizations, especially those providing web-based access to their systems.

Although security measures like SSL and firewalls provide important protection measures, these do not go far enough in

addressing vulnerabilities that exist via inputs from users on browsers. The two most common such vulnerabilities are SQL

Injection and Cross Site Scripting (XSS).

SQL Injection and cross site scripting attacks happen frequently and can be very damaging. From 2005 to 2007, Albert

Gonzales and two Russians were involved in stealing about 130 million credit card numbers from several companies of

which one was 7-11 (Bhushan, 2009). The first Cross Scripting attack on October 4, 2005, was called the “Samy Worm”.

The target was the personal profiles for 32 million users in MySpace. MySpace had to shut down to fix the attack (Grossman

2007).

These and other security attacks and vulnerabilities have made it increasingly important to improve educational coverage of

IT security issues in core Information Systems curricula. This is true in the managerially oriented coursework, in which best

practices and security policy formation would be discussed, and also in the technical coursework such as software

development courses, in which students should learn about effective coding techniques for preventing SQL injection, XSS,

and other security threats.

Traditionally, computer programming classes that include security components have concentrated on the development of

security algorithms. But for an Information Systems curriculum, unlike a computer science curriculum, students typically do

not gain sufficient coding skills to be able to implement these algorithms; nor should this be necessary from a practical

perspective. Rather, a more appropriate venue for these students would involve training in how to utilize existing class

libraries and methods for securing their software applications.

In this paper, we explore the use of the Open Web Application Security Project (OWASP) and it Enterprise Security API

(ESAPI) for teaching students about the best practices for secure coding as well as the use of pre-existing security classes and

methods.

Cole et al Teaching Secure Programming via OWASP

Proceedings of the Eighteenth Americas Conference on Information Systems, Seattle, Washington, August 9-12, 2012. 2

THE OPEN WEB APPLICATION SECURITY PROJECT (OWASP)

Many different types of potential security issues exist for any business application. The Open Web Application Security

Project (OWASP) is an open source community that targets web application security issues and provides resources to help

people prevent them from occurring.

Periodically, OWASP documents a Top 10 list of web application risks (OWASP 2010), based on a rating methodology

centered on two main components: the threat agent and the system vulnerability. Threat agent factors include skill level,

motive, opportunity and size. Vulnerability factors include ease of discovery, ease of exploit, awareness, and intrusion

detection. Figure 1 illustrates the metrics particularly as they are applied to vulnerabilities. In this figure, we see that there is

much unknown about the threat agents themselves; as for the business impacts, these depend on the particular needs and

circumstances of the organization involved. So, the primary considerations that come into play are the vulnerabilities

themselves, which include the attack vectors (e.g. input tags on HTML forms), the system weaknesses (e.g. injection flaws,

coding holes, insufficient authentication, etc.), and the technical impacts of exploitation. Indeed some of these elements tie

into the threat agents themselves. For example, the prevalence and detectability of system weakness impacts the opportunity

and motive of the agent; the easier the system is to exploit, the greater the likelihood that the agent will continue to pursue his

or her exploitation attempt.

Figure 1: OWASP metrics for evaluating web application security risks (from OWASP, Top 10 – 2010)

According to the OWASP 2010 Top 10 ratings (OWASP, Top 10 – 2010), SQL Injection Flaws are the number one risk,

most notably because they are so easy to exploit and the technical impact of exploitation is so severe. Cross site scripting

vulnerabilities are second on the list largely because they are extremely prevalent in web applications and they are also very

easy to detect.

OWASP provides cheat sheets for each of the various web risks. The details in each cheat sheet vary but some of the items

that may be included in each are an introduction that describes the risk, risk defenses, prevention measures that do not work,

rules, and general recommendations. Cheat Sheets may include best practices to minimize a risk from occurring and include

excellent links to related articles.

The SQL Injection prevention cheat sheet is particularly good (OWASP, SQL Injection Prevention Cheat Sheet). This cheat

sheet includes an introduction, primary defenses, and additional defenses. The introduction describes SQL injection

prevention methods that are available to minimize potential issues with end-users inputting invalid data and the use of

dynamic queries by programmers. The following are the defenses and examples listed on the web site:

Primary Defenses

• Option #1: Use of Prepared Statements (Parameterized Queries)

• Option #2: Use of Stored Procedures

• Option #3: Escaping all User Supplied Input

Additional Defenses:

• Also Enforce: Least Privilege

• Also Perform: White List Input Validation

The various defenses from the SQL Injection Prevention cheat sheet are presented using several different programming

languages. For the purposes of this paper, the focus will be on the Java examples. Not all of the Cheat Sheet Java code

Cole et al Teaching Secure Programming via OWASP

Proceedings of the Eighteenth Americas Conference on Information Systems, Seattle, Washington, August 9-12, 2012. 3

required is included in the examples below. For all of the Java code needed, refer to the OWASP SQL Injection Prevention

web site. The following is a basic dynamic query in Java.

String query = "SELECT account_balance FROM user_data WHERE user_name = " +

request.getParameter("customerName");

The variable called customerName is where the information entered by an end-user on web page is stored and used by the

query. If the user enters something like Tom' or '1'='1 the statement will executed as

SELECT account_balance FROM user_data WHERE user_name = 'Tom' or '1' = '1' which will always work

since 1 is always equal to 1. Of course this is not what the programmer intended to happen.

The use of parameterized of queries is the first option that should be used to minimize SQL injection. A parameterized query

will treat what is entered by an end-user like it has quotes around it and literally look for a customerName of 'Tom' or '1' = '1'

. Of course there will not be a customer with that name so the query will not process as SQL injection but as a query looking

for a customer name of 'Tom' or '1' = '1'. An example of a Java parameterized query that revises the dynamic query on the

website follows where the ? is where the parameter will be added:

String query = "SELECT account_balance FROM user_data WHERE user_name = ? ";

The use of stored procedures is the second option that should be used to minimize SQL injection. Like a parameterized

query, a stored procedure query will treat what is entered by an end-user like it has quotes around it and literally look for a

customerName of 'Tom' or '1' = '1' (as long as the stored procedure is implemented correctly). Of course there will not be a

customer with that name so the query will not process as SQL injection but as a query looking for a customer name of 'tom’

or '1' = '1'. An example of a Java stored procedure query that revises the original dynamic query on the website follows

where the stored procedure will be used. The stored procedure must be already created on the database server and accept the

customerName as a parameter.

The use of escaping is the third option that should be used to minimize SQL injection. OWASP provides a free API that you

can download called ESAPI (The OWASP Enterprise Security API). This API will encapsulate anything passed to it with a

single quote on each side of it and like a parameterized query and stored procedure, the query will literally look for a

customerName of 'Tom' or '1' = '1' . Again, there will not be a customer with that name so the query will not process as SQL

injection but as a query looking for a customer name of 'Tom' or '1' = '1'.

In addition to either using parameterized queries, stored procedures, or escaping, validation and white list input validation

should be incorporated into a web application Validation is where you verify that the data entered into a form is reasonable.

For example when expecting a zip code only numbers should be allowed. White list input validation is where you explicitly

state what is acceptable in a field in a form. For example, a last name may only include upper and lower cases letters,

hyphens, and single apostrophe. If anything else is input, an error message would be displayed.

The Cross Site Scripting (XSS) Cheat Sheet is also very good. This cheat sheet includes an introduction and eight prevention

rules. The introduction includes information on XSS untrusted data, escaping or encoding, Injection theory and escaping up

or down, prevention model. The following eight prevention rules are listed on the web site:

• Rule 0 - Never Insert Untrusted Data Except in Allowed Locations Option #2: Use of Stored Procedures

• Rule 1 - HTML Escape Before Inserting Untrusted Data into HTML Element Content

• Rule 2 - Attribute Escape Before Inserting Untrusted Data into HTML Common Attributes

• Rule 3 - JavaScript Escape Before Inserting Untrusted Data into JavaScript Data Values

• Rule 4 - CSS Escape And Strictly Validate Before Inserting Untrusted Data into HTML Style Property Values

• Rule 5 - URL Escape Before Inserting Untrusted Data into HTML URL Parameter Values

• Rule 6 - Use an HTML Policy engine to validate or clean user-driven HTML in an outbound way

• Rule 7 - Prevent DOM-based XSS

Cole et al Teaching Secure Programming via OWASP

Proceedings of the Eighteenth Americas Conference on Information Systems, Seattle, Washington, August 9-12, 2012. 4

In addition, OWASP provide excellent PowerPoint slides in their Presentation web page (OWASP, Category: OWASP

Presentations). There are numerous presentations on SQL Injection and other topics

OWASP’S ESAPI AS AN EDUCATIONAL TOOL FOR TEACHING SECURE CODING PRACTICES

There have been many attempts to incorporate secure coding practices into information systems and computer programming

curricula. Ralevich and Martinovic (2010) describe an IS security curriculum for which one of the major goals is that

students will be able to develop secure programming solutions in object-oriented and procedural programming languages.

Taylor and Kaza (2011) presented a coding project specifically geared to various security injections, with the idea to instill a

“security mindset” in the student population, and found that student awareness of security coding concepts improved

significantly as a result. Although security is an increasing focus in many undergraduate IS programs, most secure coding

content is done via computer science courses (Perez et al, 2011), which tend to focus on higher-level programming skills for

actually implementing security-related algorithms. This material may be too technically demanding for the average

information systems student.

For most IS students, the important technical question is not how to implement a security algorithm, but how to recognize and

use the appropriate algorithms for mitigating an organization’s IT security vulnerabilities within their software applications.

This is where the OWASP Enterprise Security Application Programmer Interface (ESAPI) can be of great assistance as a

pedagogical tool.

The ESAPI is a library of classes and functions developed by members of the OWASP community that address the major

vulnerabilities typically found in web-based applications. Figure 2 shows the overall ESAPI architecture. While the ESAPI

library supports a wide variety of security needs, in this paper we focus on the top two vulnerabilities identified by OWASP:

SQL Injection and Cross Site Scripting.

Figure 2: OWASP’s enterprise security API (Williams 2008)

As you can see, the ESAPI includes classes that address a wide variety of security concerns, including authentication, access

control, input validation and encoding (which will be discussed in detail below), encryption, user logging, and intrusion

detection. This library is not intended as a substitute for a particular framework’s existing security features, but instead as a

supplement. The library is currently available for Java and PHP, and there are efforts by the OWASP community to extend it

to .NET.

Cole et al Teaching Secure Programming via OWASP

Proceedings of the Eighteenth Americas Conference on Information Systems, Seattle, Washington, August 9-12, 2012. 5

Because it is free, is accompanied by a strong supporting contingent of OWASP methodologies and best practices, and is

very to use, the ESAPI serves as an ideal pedagogical framework for teaching secure programming practices. In the following

two sections, we address OWASP and ESAPI approaches to the top two web security risks: SQL injection and cross site

scripting.

From a pedagogical perspective, an initial presentation on the OWASP definitions and information is a great way to start

people’s education. The concepts can be strongly reinforced by a demonstration that shows on how easy it is to make a

successful attack. It is one thing to describe how easy SQL Injection can be used in a negative way; it is another to actually

demonstrate that fact. The students’ awareness of the ease of something like SQL Injection increased significantly based on

the classroom response after they saw SQL Injection for the first time. Lastly, a hands-on piece would be ideal to reinforce

the concepts even more.

SQL INECTION EXAMPLE

SQL injection flaws are currently ranked as #1 on OWASP’s Top 10 risk list. Figure 3 illustrates OWASP’s ratings on the

important vulnerability indicators for SQL injection.

Figure 3: OWASP’s assessment of SQL Injection risk (from OWASP, Top 10 – 2010)

Before showing a SQL Injection example it is important to spend some time reviewing the concept of SQL and how injection

can occur. SQL is the mechanism needed to select, update, insert, and delete records in a Relational database such

Microsoft’s SQL Server or Oracle. In general, the term injection refers to inserting characters into a string in the attempt to

break out of a data context and into a code context. In the case of SQL injection, this involves characters with special

meaning to a SQL database engine. In the case of XSS, it involves characters with special meaning to web browsers. SQL

Injection can occur when an application requires end-users to complete a form where the input from the form is used to

dynamically generate a SQL statement. When an end-user enters data in the way that it was intended (i.e., the user name

includes only valid last user name type characters), the SQL statement will perform as desired and expected. However, SQL

Injection occurs when an end-user enters special characters in a form in an attempt to cause a SQL statement to perform in a

manner that was not intended (notice in the examples below, an extra quote and hyphens were added). There are several

other considerations, such as permissions, that will impact of the effect of the SQL statement but this illustrates the main

concern: SQL Injection can cause an application to execute SQL that was not intended.

For the purposes of the following example a typical login screen will be used with Java as the programming language and

SQL Server as the database. Initially, the login screen will appear like the following figure.

Cole et al Teaching Secure Programming via OWASP

Proceedings of the Eighteenth Americas Conference on Information Systems, Seattle, Washington, August 9-12, 2012. 6

Figure 4: Typical user login screen

Initally the Java code will use a dynamic query that is written as follows where LoginCredentials was table created to

emmulate the storage of a username and password, and EmployeeID a link to an Employee table. None of the data is

encrypted for the purposes of the example in order to show the actual query results.

String SQL = "SELECT USERNAME, PASSWORD, EMP_ID FROM [LoginCredentials] where USERNAME = '"

+ userName + "' and PASSWORD = '" + passWord + "'";

If a valid username and password is entered as shown in the following figure:

Figure 5: Legitimate user login

The dynamic query will run as SELECT USERNAME, PASSWORD, EMP_ID FROM [LoginCredentials] where

USERNAME = 'colecb' and PASSWORD = 'colecb'.

However, if SQL Injection is attempted as shown in the following figure

Figure 6: SQL injection attempt

The dynamic query will run as SELECT USERNAME, PASSWORD, EMP_ID FROM [LoginCredentials] where

USERNAME = '' or 1=1 --' and PASSWORD = ''. Notice in the code above that everthing is commented after the 1=1

statement thus the statement is really processed as SELECT USERNAME, PASSWORD, EMP_ID FROM

[LoginCredentials] where USERNAME = '' or 1=1. The results are that anyone could login to the system this way.

If we change the dynamic query to a parametrized query the query will run as SELECT USERNAME, PASSWORD,

EMP_ID FROM [LoginCredentials] where USERNAME = ? and PASSWORD = ?. The login used in this attempt will not

work since the query looks for a user name of ' or 1=1 and one does not exist.

An invalid login will also occur if a stored procedure is called from Java that looks like the following:

PROCEDURE [dbo].[sp_getUserName] @UserName varchar(25), @Password varchar(25) AS BEGIN

Cole et al Teaching Secure Programming via OWASP

Proceedings of the Eighteenth Americas Conference on Information Systems, Seattle, Washington, August 9-12, 2012. 7

SELECT USERNAME, PASSWORD, EMP_ID FROM [LoginCredentials]

where USERNAME = @UserName

and PASSWORD = @Password

END

Escaping is the third option to consider as a way to minimize the possibility of SQL Injection, but according to OWASP this

should be a last resort (OWASP, SQL Injection Prevention Cheat Sheet). The term escaping (also called encoding) refers to

a programmatic means of converting code-triggering characters in strings to harmless (i.e. data context) characters. If the

effort to update a legacy system to parameterized queries or stored procedures is too time consuming or risky, then escaping

should be considered. Remember that OWASP provides an API for these purposes. The following figure shows a possible

input of the string ' or 1=1 --. The first System.out.println example uses escaping and the second one does not.

Figure 7: Java code containing OWASP ESAPI library call for encoding SQL

Notice that the figure below displays the output of the initial string in two ways. The first example below shows the SQL

with the API. Notice that this code cannot be used for SQL Injection. The second example shows the SQL without escaping.

This condition allows for the possibility of SQL Injection.

Figure 8: Output of encoded and unencoded strings from Figure 7’s code

It is worth noting that the SQL presented above does not include sophisticated or advanced statements; they are basic ones

that are taught in any introductory database class. People abusing SQL Injection can be performed by anyone who knows

basic SQL.

CROSS SITE SCRIPTING EXAMPLE

Cross site scripting (XSS) is currently #2 on OWASP’s Top 10 risk list. Figure 9 illustrates OWASP’s ratings on the

important vulnerability indicators for XSS.

Cole et al Teaching Secure Programming via OWASP

Proceedings of the Eighteenth Americas Conference on Information Systems, Seattle, Washington, August 9-12, 2012. 8

Figure 9: OWASP’s assessment of XSS risk (from OWASP, Top 10 – 2010)

XSS vulnerabilities are especially prevalent in web applications that allow HTML and/or JavaScript to be input by end users.

Social networking sites and email applications are two common examples. In this section, we consider an example of a job

posting site (like a monster.com) in which job applicants submit information about themselves including a resume, and

employers search for and read the information input by the applicants. In this scenario, we imagine that a job applicant (the

threat agent) inserts HTML and JavaScript code into his or her posted resume, and we explore the potential impact that this

action can have. We follow with a simple OWASP ESAPI object reference and method call that mitigates this intrusion

attempt.

Consider a job applicant page in which the user enters a name, email address and “About Me” blurb, which could be a

resume and/or other personal information about the job applicant. Assuming the About Me posting is a large enough text area

on the web page, a user might enter quite a bit of text. Figure 10 illustrates such a page. Note that the user has entered HTML

and JavaScript code into the About Me area.

Figure 10: Example XSS code attempt by evil job candidate (HTML form with JavaScript)

Cole et al Teaching Secure Programming via OWASP

Proceedings of the Eighteenth Americas Conference on Information Systems, Seattle, Washington, August 9-12, 2012. 9

In the above web page, the user has inserted an HTML form with a Submit <input> tag, along with a <script> tag with a

JavaScript function that will be invoked when an unsuspecting user (a potential employer in this example) clicks the button.

When the user submits this information, the web application will insert it into the database. As a result of this input, and in

the absence of preventative validation and/or encoding measures in the web application itself, the host’s database will store

the About Me information exactly as entered.

Note that none of the items in this entry involve SQL injection attempts. Unlike the examples from the previous section, there

is no danger of doing damage to the web application host environment by injecting into the SQL engine itself. Therefore, the

precautions mentioned above are of no use. Parameterized queries are important for preventing SQL injection, but are useless

for preventing XSS.

An employer who subsequently logs in may be presented with a list of job candidates, as shown below.

Figure 11: Unsuspecting employer selects a job candidate to look for

Selecting an innocent job candidate may result in display of that person’s information:

Figure 12: Selecting a legitimate job candidate results in information display from database query

But selecting the hacker who entered the HTML and JavaScript would produce this result:

Figure 13: Selecting the evil candidate results in XSS injection code displaying the form and button; clicking the

button sends sensitive data to the bad guy’s web site

Cole et al Teaching Secure Programming via OWASP

Proceedings of the Eighteenth Americas Conference on Information Systems, Seattle, Washington, August 9-12, 2012. 10

The Push Me button is a classic example of social engineering, an attempt to manipulate the employer’s behavior (Workman,

2007). If the employer pushes that button, his or her email and password will be sent to the hacker’s web site, where it could

be stored into a database and/or used for further nefarious activities. Note that social engineering is not necessary for XSS; it

was only used in this example for illustrative purposes.

The solution for this particular example is to perform what is commonly called escaping, or to use another term, encoding.

For example, OWASP’s Java-based ESAPI includes an Encoder interface (implemented by a DefaultEncoder class). This

interface includes methods for a wide variety of encodings, including SQL, HTML tags and attributes, JavaScript, CSS,

LDAP, URL, XML tags and attributes, and XPath. (OWASP, Java API documentation). In general, these encoders work by

converting the symbols that could be used for injection of the relevant interpreters into harmless substitutes; i.e., mitigating

the threat agent’s attempt at converting a data context into a code context. For example, key HTML injection symbols include

the open and close angle brackets “<” and “>”. HTML encoding converts these symbols into “<” and “>” respectively

(http://www.w3schools.com/html/html_entities.asp).

For, example, assume this was the original code for inserting a job applicant’s data into the database via a parameterized SQL

statement and parameter settings:

Figure 14: Unprotected code setting SQL parameters directly from form fields

The following change to the code mitigates the injection attempt by encoding the HTML symbols:

Figure 15: Utilizing OWASP ESAPI HTML encoding functionality

The resulting HTML encoding will result in the database containing this data instead of the original data entered by the job

applicant:

Cole et al Teaching Secure Programming via OWASP

Proceedings of the Eighteenth Americas Conference on Information Systems, Seattle, Washington, August 9-12, 2012. 11

Figure 16: Resulting string stored to database replaces HTML symbols with their encoded values

Therefore, the display that will occur to the employer when selecting the hacker will look like this:

Figure 17: Bud guy’s injection attempt becomes a harmless display on employers screen

In this simple case, the solution was to perform HTML encoding, which is what the encodeforHTML method does.

According to OWASP the best practices recommendations, HTML entity encoding by itself is not sufficient for guarding

against XSS risks (OWASP, XSS Cross site Scripting Prevention Cheat Sheet). But it is one tool in a web developer’s

arsenal, and when used in conjunction with other tools and techniques, it can help minimize these kinds of threats. It is also

important to consider that sometimes a web developer may want users to be able to enter certain (but not all) HTML and even

JavaScript code. For these purposes, OWASP’s ESAPI includes an HTML policy engine and sanitizer that can be used to

selectively allow a subset of HTML symbols and/or JavaScript functions (Weinberger et al 2011). Once students learn the

Cole et al Teaching Secure Programming via OWASP

Proceedings of the Eighteenth Americas Conference on Information Systems, Seattle, Washington, August 9-12, 2012. 12

methodologies espoused by OWASP and gain practice in using the simpler classes of the ESAPI library, they can get more

advanced experience by utilizing the policy engine and sanitizer provided for more refined encoding and validation.

CONCLUSION

The OWASP website has a significant amount of information that includes guidelines and recommendations related to

security risks, and software tools and libraries which enable programmers to put these guidelines into practice. Our paper has

only scratched the surface on the types of possible security attacks and the information available. Using the OWASP is an

excellent resource and should be considered when training students about best practices with regard to securing web

applications. Additional training using demonstrations and hands-on exercises will enhance the learning experience. As you

can see SQL Injection and Cross Site Scripting are easy to take advantage of but equally as easy to minimize or eliminate. It

will be less costly if people understand how to write code correctly so that they will not have to rewrite them or allow the

business to suffer as a result of web attacks. Integrating the knowledge and skills OWASP provides, along with the security

features of the ESAPI, into a school’s IS curriculum helps prepare students to respond effectively to the information security

threats they will encounter throughout their professional lives.

REFERENCES

1. Bhushan, A. (2009) Review on master hacker Albert Gonzalez: SQL injection attacks- led to Heartland, Hannaford,

7-Eleven breaches, CEOWorld Magazine, available at http://ceoworld.biz/ceo/2009/08/19/review-on-master-hacker-

albert-gonzalez-sql-injection-attacks-led-to-heartland-hannaford-7-eleven-breaches (checked 5/4/2012).

2. Grossman, J. (2007). Cross-site scripting worms and viruses: the impending thread & the best defense, WhiteHat

Security Whitepaper, available at https://www.whitehatsec.com/assets/WP5CSS0607.pdf (checked 5/4/2012).

3. Open Web Application Security Project (checked 5/4/2012) OWASP presentations,

https://www.owasp.org/index.php/Category:OWASP_Presentations.

4. Open Web Application Security Project (checked 5/4/2012) OWASP enterprise security API,

https://www.owasp.org/index.php/Esapi.

5. Open Web Application Security Project (checked 5/4/2012) OWASP Java API, http://owasp-esapi-

java.googlecode.com/svn/trunk_doc/latest/index.html.

6. Open Web Application Security Project (checked 5/4/2012) SQL injection prevention Cheat Sheet,

https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet.

7. Open Web Application Security Project (checked 5/4/2012) Top 10 – 2010: the ten most critical web application

security risks, http://owasptop10.googlecode.com/files/OWASP Top 10 - 2010.pdf.

8. Open Web Application Security Project (checked 5/4/2012) XSS (cross site scripting) prevention cheat sheet,

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet.

9. Open Web Application Security Project (checked 5/4/2012) OWASP Risk Rating Methodology

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology.

10. Perez, L, Cooper, S., Hawthorne, E., Wetzel, S, Brynielsson, J, Gokce, A, Impagliazzo, J, Khmelevsky, Y, Klee, K,

Leary, M, Philips, A, Pohlmann, N, Taylor, B, Upadyaya, S.(2011), Information assurance education in two- and

four-year institutions, in Liz Adams, Justin Joseph Jurgens (Eds.) ITiCSE '11 Proceedings of the 16th annual joint

conference on Innovation and technology in computer science education - working group reports, June 27-29,

Darmstadt, Germany, 39-53.

11. Ralevich V and Martinovic, D. (2010) Designing and implementing an undergraduate program in information

systems security Education and Information Technologies: Special Issue: Information Systems Curriculum 15,4

293-315.

Cole et al Teaching Secure Programming via OWASP

Proceedings of the Eighteenth Americas Conference on Information Systems, Seattle, Washington, August 9-12, 2012. 13

12. Taylor, B. and Kaza, S. (2011) Security injections: modules to help students remember, understand, and apply

secure coding techniques. ITiCSE '11 Proceedings of the 16th annual joint conference on Innovation and technology

in computer science education. June 27-29, Darmstadt, Germany, 3-7.

13. Weinberger, J., Saxeena, P., Akhawe, D., Finifter, M., Shin, R., Song, D. (2011) A systematic analysis of XSS

sanitation in web application frameworks. ESORICS'11 Proceedings of the 16th European conference on Research

in computer security. Sep. 12-14, Leuven, Belgium, 150-171.

14. Williams, J. (2008) Establishing an enterprise security API to reduce application security costs, Aspect Security,

http://owasp-esapi-java.googlecode.com/files/OWASP%20ESAPI.ppt

15. Workman, M. (2007) Gaining access with social engineering: an empirical study of the threat. Information Systems

Security, 16, 315-331.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	

	Teaching Secure Programming to Information Systems Students via OWASP Techniques and Libraries
	Carey Cole
	Michel Mitri
	Recommended Citation

	Teaching Secure Programming to Information Systems Students via OWASP Techniques and Libraries

