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ABSTRACT  

An effort to improve data accuracy that yields poorer information accuracy when the data are processed would normally be 
labeled a major failure. While popular belief discounts the likelihood of such an event, research of conjunctive and 
disjunctive decision rules suggests that a negative association between input accuracy and decision accuracy is a deeply 
rooted phenomenon. In this paper we extend the understanding of this phenomenon through an empirical investigation of 
conjunctive decision rules using Monte Carlo simulations. The implications of this research are not limited to data accuracy; 
other data deficiencies can generate a comparable effect.  

Keywords 

Satisficing decisions, Multi-criteria decisions, Information accuracy, Data quality management, Resource allocation, Garbage 
in garbage out, GIGO, Simulation 

INTRODUCTION 

Common sense advises us that an effort to improve data quality should take into account the expected utility of the 
improvement when the data are used. The recent emphasis in data quality (DQ) research on the uses of data is in line with 
this understanding. In particular, contrary to solutions that do not differentiate among  errors (e.g., Janson, 1988; Parsaye and 
Chignell, 1993) recent years have witnessed the growing popularity of approaches that take into account the intended use of 
the data (e.g., Lee, Strong, Kahn, and Wang, 2002; Pipino, Lee, and Wang, 2002; Wang, Reddy, and Kon, 1995) and 
differentiate accordingly among errors (e.g., Askira Gelman, 2010; Ballou and Tayi, 1989; Even, Shankaranarayan, and 
Berger, 2007). Obviously, an organizational effort to improve input data accuracy that yields poorer output information 
accuracy when the data are processed would be labeled a major failure by common standards, if detected. However, the 
popular belief discounts the likelihood of such an event, as expressed by the acronym GIGO (Garbage In, Garbage Out). 
Originally coined in the computer industry, this acronym, which indicates a strong positive link between input accuracy and 
output accuracy, is now widely accepted. For the most part, scientists have embraced the popular belief in GIGO and have 
treated GIGO as an axiom. Nonetheless, the scientific understanding of the relationship between input accuracy and output 
accuracy is still partial, and the sign of that relationship (positive or negative), in particular, is not well understood. Contrary 
to the widespread belief in GIGO there is, in fact, a growing literature that hints at a more complex association between input 
accuracy and output accuracy.  

One theory in this category, established in several research domains, says that statistical dependencies between data sources 
or data errors can dramatically affect output accuracy (e.g., Askira Gelman, 2004; Ali and Pazzani, 1996; Barabash, 1965; 
Berg, 1993; Clemen and Winkler, 1985; Cover, 1974; Elashoff, Elashoff and Goldman, 1967; Fang, 1979; Frantsuz, 1967; 
Kuncheva, Whitaker, Shipp and Duin, 2003; Ladha, 1995; Nitzan and Paroush, 1984) This theory implies that higher data 
accuracy can produce lower information accuracy, subject to variations in statistical dependencies. A second theory 
originates in studies of prediction model-building paradigms, which indicate that adding noise to a data sample that serves in 
the construction of a model can improve the accuracy of the model (e.g., Bishop, 1995; Raviv and Intrator, 1996). 
Apparently, controlled levels of noise can compensate for limitations of the model-building algorithms.  

A recent DQ study (Askira Gelman, 2011) examines the association between input accuracy and output accuracy, especially 
the sign of that association, from a new angle. That research explored the sign of the association in a highly used class of 
applications, namely, applications consisting of dichotomous decisions that are implemented through logical conjunction or 
disjunction of selected criteria. A mathematical-statistical analysis showed a surprising result: the sign of the relationship 
between input accuracy and decision accuracy varies. Notably, this discrepancy with GIGO is not explained by variations in 
statistical dependencies or information processing limitations, but rather by inherent properties of the logical conjunction and 
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disjunction operations. The study proposed a model for determining the sign of the relationship and concluded that a negative 
sign is not reversed when new decision variables are added.  

In this paper we extend and complement the work in (Askira Gelman, 2011) through an empirical investigation using Monte 
Carlo simulations. We verify several of the findings of the former study regarding conjunctive decision rules, and, mainly, we 
extend the qualitative understanding of its results through (1) a study of the source of the change in decision accuracy, (2) a 
study of the change in the likelihood of a discrepancy with GIGO when the number of decision criteria increases, and (3) a 
discussion of the validity of the theory under conditions that are outside the scope of the formal study.     

The new theory can be used for improving the effectiveness and efficiency of resource allocation in data quality management 
settings. Consider a catalogue or an inventory database, for example. Users of these databases often employ conjunctive 
decision rules for the purpose of item selection or item screening. Our theory can assist both users and data owners to 
prioritize resource allocation among different database attributes when the objective is high information quality. Essentially, 
the findings of this research imply a small set of rules that can guide resource allocation decisions from an information 
quality perspective. Furthermore, the increasing use of noise injection for improving the accuracy of learning algorithms 
(Bishop, 1995; Raviv and Intrator, 1996) points to a potentially profitable, counter-intuitive use of our findings, which may 
be investigated through future work. Namely, future research should examine the value of error injection for improving 
decision accuracy.  

The rest of this paper is structured as follows. A description of the conceptual foundation is given, followed by an overview 
of the intuitive insights that underlie this research.  We then present the model and data that are used by the simulations, 
introduce our hypotheses, and describe the simulation results. Finally, we offer a discussion of the managerial implications of 
this work, as well as an analysis of the validity of this theory under conditions that are outside the scope of the formal study. 
A detailed review of related literature is provided by (Askira Gelman, 2011).  

CONCEPTUAL BACKGROUND  

Decision-making instances that are implemented through logical conjunction and/or disjunction are often classified as 
“satisficing,” a term coined by Herbert Simon to denote problem-solving and decision-making that aims at satisfying a 
chosen aspiration level instead of an optimal solution (Simon, 1955). Research indicates that satisficing rules agree with 
human choices in diverse situations, often involving complex problems, such as when the number of alternatives or decision 
criteria is high (Payne, Bettman and Johnson, 1993). Evidence in this direction has been found in consumer choice settings, 
medical diagnoses, job preference decisions, university admission decisions, residential rental searches, political leaders’ 
decision-making, and in many other domains (e.g., Einhorn, 1970, 1971, 1972; Lussier and Olshavsky, 1979; Mintz, 2004;  
Park, 1976; Payne, 1976; Phipps, 1983).   

In many practical situations the source of the decision input data is a database. In these circumstances a decision variable 
corresponds to a suitable database attribute or a collection of database attributes. (Note that this paper typically uses the term 
data to describe the raw, unprocessed input of an information system; the term information mostly designates the output of an 
information system.) Consider, for example, a website that presents data about residential properties for sale in a chosen 
geographic area. Websites in this category feature varying amounts of data and property selection criteria. The selection 
criteria are compatible with the understanding that, due to the high number of available properties, the decision maker 
employs a satisficing decision strategy for the initial screening of alternatives (e.g., Lussier and Olshavsky, 1979; Payne, 
1976) or throughout the entire selection process. In our example, a relational real estate database provides a rich set of 
selection criteria. However, consistent with modern understanding of the cognitive limits on active human memory (see the 
“magical number seven, plus or minus two” principle, Miller,  1956), users, for the most part, ignore many of the available 
selection criteria. For instance, an investor may limit his or her initial decision variable set to three variables such as location, 
number of bedrooms, and price. In the remainder of this paper we will assume a decision maker who is looking for a property 
in zip code 85716 with two bedrooms or more, in the price range of $0-$50,000. This preference is expressed by a 
conjunctive decision rule that combines three criteria, i.e., zip code = 85716 and number of bedrooms ≥ 2 and price ≤ 
$50,000.  

Obviously, in agreement with common experience, one may assume that the data are not free of errors. These errors can lead 
to incorrect classifications of input values as fulfilling or not fulfilling a decision criterion. Classification errors can, in turn, 
generate decision errors. A false positive real estate investment decision includes an unsuitable property in the short list of 
suitable properties, while a false negative decision excludes a property that may actually embody the decision maker’s dream 
house. Accuracy is defined by this work as the degree to which the data or information are in conformance with the true 
values. On the output side, in particular, a decision error is registered whenever a decision based on the available inputs 
deviates from the outcome of the same decision based on error-free inputs. While the measure of input data accuracy can 
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vary, the accuracy of the output information is taken to be measured by decision error probability. Despite the fact that the 
implementation of this measure can be costly, studies that use error probability or error rate, error magnitude, or various 
fusions of the former to measure accuracy are common in the research literature. While the important question of how to 
derive the respective measures is outside the scope of this paper, there is a growing literature that offers practical solutions 
(e.g, Ballou, Chengalur-Smith and Wang, 2006; Hipp, Guntzer and Grimmer, 2001; Motro and Rakov, 1997 Parssian, 2006).  

Our approach to studying the validity of the GIGO assumption utilizes a concept labeled damage that has been offered for 
prioritization and resource allocation purposes in data quality management settings (e.g., Askira Gelman, 2010). The damage 
that errors in an input inflict on output accuracy is defined as the change in output accuracy due to a change in the accuracy 
of that input. A negative damage is equivalent to a negative association between input accuracy and output accuracy, while a 
positive damage is equivalent to a positive association between input accuracy and output accuracy.  Hence, the belief in 
GIGO is interpreted by this work as an assumption that the damage is positive—a finding of negative damage is inconsistent 
with this belief.  

THE DISCREPANCY WITH GIGO: INTUITIVE INSIGHTS   

We argue that a negative association between input accuracy and output accuracy stems from fundamental properties of the 
conjunction and disjunction operations. Therefore, it is not limited to a specific type of decision variable (e.g., numeric, 
categorical), nor is it exceedingly sensitive to statistical independence assumptions. This section lays out our understanding 
of the negative damage phenomenon in conjunctive decision rules. An equivalent explanation applies to disjunctive decision 
rules.  

Consider the truth table 1(a) below. This table refers to the logical conjunction (AND) operation where the inputs of the 

operation are denoted by p and q.  Let p̂ denote an incorrect representation of p. Let q̂  denote an incorrect representation of 

q. Table 1(b) describes a scenario in which an AND operation combines p̂  and q. Similarly, 1(c) portrays an AND operation 

that combines p and q̂ , and 1(d) captures an AND operation in which both inputs are incorrect representations of the original 

inputs. As a whole, tables 1(b), 1(c), and 1(d) cover all the possible input error combinations.  

 

p  q p and q  p̂  q p̂  and q  p q̂  p and q̂  

FALSE FALSE FALSE  TRUE FALSE FALSE  FALSE TRUE FALSE 

FALSE TRUE FALSE  TRUE TRUE TRUE  FALSE FALSE FALSE 

TRUE FALSE FALSE  FALSE FALSE FALSE  TRUE TRUE TRUE 

TRUE TRUE TRUE  FALSE TRUE FALSE  TRUE FALSE FALSE 

 

 

 

 

 

 

Table 1. Truth tables (AND) 

 

An earlier study (Askira Gelman, 2011) uses Table 1 to explain why (a) a negative damage is possible when the probability 
of satisfying one of the decision criteria is high, approaching one, while the probability of satisfying the other criterion is low, 

p̂  q̂  p̂  and q̂  

TRUE TRUE TRUE 

TRUE FALSE FALSE 

FALSE TRUE FALSE 

FALSE FALSE FALSE 

(a) AND operation, correct inputs (b) AND operation with p̂  and q (c) AND operation with p and q̂  

(d) AND operation with p̂ and q̂   
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approaching zero, and (b) given two inputs that exhibit such a disparity, a negative damage is evidenced only when we 
change the accuracy of the input where the probability of satisfying the decision criterion is high; when we change the 
accuracy of the second input the damage is positive, as one would normally expect. As an example, consider the real estate 
investment search (two bedrooms or more in the price range of $0-$50,000 in zip code 85716). Ignore the zip code variable 
for the moment. Suppose that the decision maker is assisted by a property listing database where the large majority of the 
properties have two bedrooms or more, i.e., the criterion on the number of bedrooms is typically satisfied, while only a small 
number of properties are priced at $50,000 or less, such that the price criterion is rarely met. Given this scenario, the intuitive 
explanation suggested by (Askira Gelman, 2011) implies that when the accuracy of number of bedrooms data deteriorates, 
the output of a decision based on number of bedrooms and price would typically improve. That explanation also clarifies that 
when the accuracy of price data deteriorates, the accuracy of such a decision would deteriorate.  

Negative Damage: The Source of the Change in Decision Accuracy 

If the findings of (Askira Gelman, 2011) hold true then an empirical study of a decision that is implemented through 
conjunction of two inputs should show the following: When lower accuracy of input increases decision accuracy, the 
decrease in decision error rate is exhibited as a lower rate of false positive decisions; the rate of false negative decisions does 
not decline. The logic behind this statement is simple. According to (Askira Gelman, 2011), a negative damage is evidenced 
when we change the accuracy of the input where the probability of satisfying the decision criterion is high. The author 
explains that decision accuracy increases because errors in such an input offset errors in the second input. However, due to 
the nature of the second input (i.e., the probability that it satisfies the decision criterion is low), a decision error that is caused 
by an error in that input is typically a false positive decision. Therefore, when such an input error is offset by an error in 
another input, the outcome is that the false positive decision is reversed. 

Negative Damage in Decision Rules that Combine Many Criteria  

Suppose that a negative association between input accuracy and output accuracy is shown in a conjunctive decision that 
employs two decision variables. What happens if that decision rule is extended through conjunction with additional 
variables? Is the sign of the damage preserved through the entire multi-criteria decision rule? The mathematical statistical 
analysis by (Askira Gelman, 2011) shows that the answer to this question is commonly positive. A discrepancy with GIGO is 
a lasting phenomenon in this sense. The following paragraphs explain and justify these results.  

Assuming that a discrepancy with GIGO is observed in the output of a conjunction operation involving two inputs, these 
inputs are often characterized, as explained above, by a substantial inequality in the probability of satisfying the decision 
criterion. Therefore, the proportion of input instances where both variables satisfy the criteria, such that the inputs of the 
logical conjunction operation are both “true,” is small. However, a conjunction operation has a well known property, which is 
illustrated by Table 1(a)—the output is “true” only if both inputs are “true.” Subsequently, the output of the conjunction 
operation exhibits a small proportion of “true” values when a discrepancy with GIGO comes up, and that proportion keeps 
decreasing when new variables are added to the decision rule. Now, suppose that two decision variables that have a 
conjunction showing a negative damage are combined with a third variable. Obviously, a negative sign of the damage will be 
preserved only if the association between the accuracy of the output of the first conjunction operation and the accuracy of the 
output of the second conjunction operation is positive—otherwise, the sign of the damage is reversed. A reversal is unlikely 
to happen, however. Since, as clarified above, the probability of “true” values for the output of the first conjunction operation 
is low, research (Askira Gelman, 2011) shows that errors in the output of the first conjunction are generally detrimental to the 
output of the second conjunction. That is, the association between the accuracy of the output of the first conjunction 
operation and the accuracy of the output of the second conjunction operation is positive. Therefore, the negative sign of the 
damage is preserved through a second conjunction operation for combining a third variable.   

The Likelihood of a Negative Damage When Adding Criteria  

A different question regarding a multi-criteria, conjunctive decision rule is whether the likelihood that errors in a given input 
will produce a negative damage increases, decreases, or does not change when we add criteria to the rule. Evidently, the 
answer to this question varies in general. Since an important prerequisite of a negative damage is a highly unequal probability 
of satisfying the decision criterion, and since the output of a conjunction operation exhibits decreasing probability of 
satisfying the decision criteria, approaching zero, that answer depends to a large extent on the likelihood that the decision 
variable will show a high probability, approaching one, of satisfying the matching criterion. Suppose that we adopt a 
“neutral” assumption that says that decision variables satisfy the criteria imposed on them with probabilities that vary 
randomly in the range between zero and one. One can see that, under these conditions, the likelihood of a negative damage 
increases when decision variables are added to the rule. In essence, as we continue to add criteria to a conjunctive decision 
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rule, the probability that all the criteria are met decreases steadily, approaching zero. This downtrend, however, is 
independent of the probability that the criterion on a newly added variable is satisfied. Given that this probability varies 
randomly in the range between zero and one, the likelihood that the decision output satisfies the decision criteria with a 
sufficiently low probability and the chosen variable satisfies its matching criterion with a sufficiently high probability to 
generate a negative damage increases as we continue to add new decision criteria. 

MODEL 

The empirical tests of the theory center on conjunctive decision rules that join N decision variables ( 2 10N≤ ≤ ) which are 

ordered one way or another. We denote the ideal, error-free variables , 1, 2,.. iV i = ,N. The implementation of a conjunctive 

decision is as follows. Initially, for every i, the value of iV is tested against the corresponding decision criterion (or criteria). 

The outcome of this test—zero for “false” or one for “true”—is captured by a matching, dichotomous variable iI . The values 

of the dichotomous variables that are determined in this way are combined iteratively through a sequence of logical 
conjunction operations to generate the outcome of the decision. A decision can be either zero (“false” or “reject”) or one 

(“true” or “accept”). We use the symbol iO  to denote the outcome of applying the iterative process on 1I ,.., iI , ( 1O ≡ 1I ). In 

the first iteration, the value of 1O  is combined with the value of 2I , and the output is given by 2O . In the second iteration, the 

value of 2O  is combined with the value of 3I , and the output is given by 3O , and so on. It is easy to see that NO  registers the 

outcome of a conjunctive decision that accounts for all N decision variables.  

 

Symbol Meaning 

iV , 
R
iV  

Decision variable (random variable); iV describes the 

correct data; 
R
iV describes the observed, possibly 

incorrect data 

iI ,
R
iI  

Informs us whether iV  (/
R
iV ) passes the decision 

criterion or not (dichotomous random variable) 

iO ,
R
iO  

The output of a decision based on  1V ,.., iV ,  

(/ 1
R

V ,..,
R
iV ) (dichotomous random variable) 

V
iF  Offers a measure of the error in the value of 

R
iV  

I
iF  

Informs us whether 
R
iI is correct or not  (dichotomous 

random variable) 

O
iF  

Informs us whether 
R
iO is correct or not  (dichotomous 

random variable) 

I
ip , IF

ip , O
ip , OF

ip  Expected (mean) values  

Table 2. Notation 

 

The observed, possibly incorrect representation of iV  is denoted by R
iV ; the observed representation of iI   is denoted by R

iI ; 

and the observed representation of iO  is denoted by R
iO . The symbol V

iF identifies a variable that offers a measure of the 

fault, or error, in the value of R
iV . The value domain of V

iF  varies. The symbol I
iF  refers to a variable that informs us about 

the occurrence of error in the value of R
iI ; I

iF =0 if R
iI = iI , and I

iF =1 otherwise. Likewise, O
iF =0 informs us that the 

decision expressed by R
iO  is correct (i.e., R

iO = iO ) and O
iF =1 points to an error in that decision (a false negative decision or a 

false positive decision). 

In order to simplify the model and increase the generality of the results, we limit the scope of the empirical study in terms of 
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the variables that it explores. The tests are based on the understanding that the relationship between V
iF  and I

iF   is positive. 

That is, all other things being equal, a higher value of V
iF implies a higher probability of error in the value of R

iI , in 

agreement with GIGO.1 This understanding enables us to exclude iV  and V
iF from this study; recall that the explanation in an 

earlier section (see intuitive insights) does not account for these variables. Thus, the simulations center on the relationship 

between the accuracy of R
iI , derived from R

iV , and the accuracy of the decision, R
NO . This choice minimizes the model and 

frees us of the need to make specific assumptions about the nature of the decision variables and errors in their representation. 

Ultimately, the model that is used in the simulations consists of four fundamental equations. The value of R
iI is derived from 

iI  and I
iF  using (1):   

     (1 ) (1 )R I I
i i i i iI I F F I= ⋅ − + ⋅ −            (1)   

The ideal conjunction output—where inputs are error-free—is computed using (2):  

      1 1i i iO O I+ += ⋅         (2) 

Analogously, the observed decision is derived through (3):  

      
1 1

R R R

i i iO O I+ += ⋅      (3) 

Finally, for calculating the occurrence of a decision error O
iF  the simulations use equation (4): 

     (1 (1) )R O O

i i i i iO F O O F= − ⋅ + − ⋅           (4)  

A detailed explanation of equations 1-4 is provided by [3]. 

The variables in { iI , R
iI , I

iF , iO , R
iO , O

iF :  1, 2, ..i = ,N} are viewed as random variables that accept the values zero and one. 

For each of the variables in { iI , I
iF , iO , O

iF :  1, 2, ..i = ,N}, we will mark the corresponding mean values with the symbol p 

and a combination of subscripts and superscripts that distinguishes the individual random variable, e.g., IF
ip  matches I

iF  (see 

Table 2).  

Monte Carlo Simulation  

The validity of the insights that we have proposed in a previous section are examined empirically using the Monte Carlo 
simulation method. Monte Carlo simulation is a method for iteratively evaluating a deterministic model using sets of random 
numbers as inputs. The inputs are generated randomly from selected probability distributions to simulate the process of 
sampling from an actual population. The model is evaluated for each simulated input set, and the result is taken as an average 
over the number of data points in the sample (Fishman, 1995) 

Instantiation of the Input Variables  

The simulations center on conjunctive decision rules with up to ten decision variables. The values of 1I ,.., NI  ( 2 10N≤ ≤ ) 

are generated randomly according to distributions that are determined separately for each simulation. Mainly, I
ip , the 

expected value of iI , is chosen randomly in each simulation such that 0 1I
ip< <  (note that ( ) Pr( 1)I

i i ip I IE= = = , i.e., I
ip  is 

equal to the probability that the value of the decision variable satisfies the criterion on that variable). Likewise, the values of 
I
iF  are determined individually in agreement with IF

ip , the expected value of I
iF  ( ( ) Pr( 1)IF I I

i i ip E F F= = = . In 

particular, IF
ip  is chosen randomly in each simulation such that two value ranges are explored. In one simulation set, which 

consists of 5,400 simulations, 0< IF
ip <0.1, and in a second simulation set, which also consists of 5,400 simulations, 

0< IF
ip <0.2. Table 3 summarizes the simulation parameters.  

                                                           

1 An error in the derived value of the dichotomous variable is caused by an error in the recorded value of the matching 
decision variable, although not every error in the recorded value of the decision variable results in an error in the respective 
dichotomous variable.  
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Sample Size  

Each simulation produced 
8

5 10⋅  instances of each input variable. In addition, simulations with results that were inconsistent 

with our theory were repeated using a larger sample size of 
11

5 10⋅  instances.  

 

 

N (Number of decision 
variables) 

I
ip  (i=1,2,..,N) 

IF
ip  

(i=1,2,..,N) 

Sample size 
(M) 

Total # of 
simulations 

9 simulation sets: 

N =2,3,4,5,6,7,8,9,10 

 

random value in 
(0,1) 

2 simulation 
sets: 

0<
IF

ip <0.1 

0<
IF

ip <0.2 

8
5 10⋅  9 2 600 10,800⋅ ⋅ =  

Simulations with findings that disagreed with the theory were 
repeated using a larger sample size. 

     
11

5 10⋅  
              

 

   

Table 3. Implemented parameter values and number of simulations  

 

Damage Estimates 

The simulation model implements the conjunction of 1I ,.., NI  and, analogously, the conjunction of 1 , ..,R R
NI I , based on 

equations (1)-(4). For estimating the damage values, each simulation first computes a base decision error probability o
bf  using 

(5) below. In addition, each simulation computes a series of decision error probabilities, o
if ( i =1,2,..,N), one for each input 

variable, in the following manner. For each input variable, in turn, the decision error probability is estimated again using (5), 
such that all the input samples are the same as the base samples, except for the sample that matches the chosen input. That 

sample is generated anew, such that the error probability there is 0.01 higher than the original error probability IF
ip . 

,
1

1
Pr( 1)

M
O O

N N
j

jF F
M =

= = ∑               (5) 

The values of 
,

O

N jF  in (5) are derived by applying (1)-(4) on the artificially generated input values; the letter M denotes the 

input sample size. 

The damage that errors in R
iI inflict on the accuracy of R

NO , denoted by i∆ , is computed as: 

         i∆ = o o
i bf f−      (6) 

We have also computed the change in the rate of false positive errors and the change in the rate of false negative errors due to 
a change in input accuracy by classifying each decision error and applying (5) and (6) on each of these error classes.  

HYPOTHESES 

Given the simulation settings described here, we pose the following three hypotheses.  

HYPOTHESIS 1:  If the damage that errors in 1
R

I inflict on the accuracy of 2
R

O  is negative then the change in the probability of 

a false positive error in 2
R

O  is negative; however, the change in the probability of a false negative error in 2
R

O  is not negative.  
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Hypothesis 2 expresses an insight that was suggested in our section on “Negative Damage in Decision Rules that Combine 
Many Criteria.” Namely, if a negative damage is exhibited in the output of a conjunctive decision rule and that rule is 
extended through conjunction to combine additional variables, then the sign of the damage is preserved through the entire 
multi-criteria rule.  

HYPOTHESIS 2: Suppose that, when R
iO  is combined with 1

R
iI +  through conjunction, the damage that errors in the values of 

R
iO  inflict on the accuracy of 1

R
iO +  is negative. Assume that 1

R
iO +  is combined through conjunction with 2

R
iI +  to produce 2

R
iO + . 

Then, the damage that errors in R
iO  inflict on the accuracy of 2

R
iO +  is negative.  

Finally, we will test the understanding that was introduced in the section on “The Likelihood of a Negative Damage When 
Adding Criteria,” according to which, the likelihood of encountering a negative association between input accuracy and 
output accuracy increases as we add criteria to the decision rule. 

HYPOTHESIS 3: As the number of decision variables N grows higher, the probability that errors in the observed values of a 
given decision variable will produce a negative damage increases.    

RESULTS 

Hypotheses 1-3 are supported by the results of the simulations. The findings are detailed below.   

Hypothesis 1  

The findings regarding the conditions that produce a discrepancy with GIGO are consistent with Hypothesis 1. Hypothesis 1 
has been directly validated through the computations of the change in the rate of false positive errors and the change in the 
rate of false negative errors. The rate of false positive errors decreased in all the instances in which the damage was negative, 
while the rate of false negative errors increased at the same time. The decrease in the first number was always greater than the 
increse in the second number.  

Hypothesis 2 

In a large majority of the cases, the simulations that utilized the smaller input sample size were consistent with Hypothesis 3. 
However, a small fraction of the input pairs that exhibited a discrepancy with GIGO did not reveal a similar discrepancy 
when they were combined with additional inputs. A similar inconsistency with Hypothesis 3 was registered in 8% of the 
input pairs, which had conjunctions that challenged the common GIGO assumption. These simulations were repeated using 
the larger input sample size. All the inconsistencies with Hypothesis 3 were resolved at that stage. 

                                             

Figure 1. The average percentage of inputs that produce negative damage 

(dashed line represents input error rates up to 10%; continuous line 

represents input error rates up to 20%) 
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Hypothesis 3 

Figure 1 portrays the average percentage of inputs that exhibit negative damage as a function of the number of inputs. The 

dashed line refers to the simulations that employed the lower input error rates ( IF
ip <0.1), while the continuous line 

corresponds to the findings of simulations that used the higher input error rates ( IF
ip <0.2). Clearly, the rate of inputs that 

exhibit negative damage rises as the number of inputs increases. At the lower input error rates, the average rate is lower than 
1% in rules that combine two inputs (i.e., a probability of less than 0.01). However, this average grows dramatically to nearly 
24% in rules that combine ten inputs. At the higher input error rates, the average percentage of inputs that exhibit negative 
damage is higher, varying from just below 4% to 35%. In conclusion, even at the lower input error rates that we studied, 
negative damage turned out to be a widespread phenomenon when the number of decision variables was high enough.  

DISCUSSION 

An effort to improve input data accuracy that yields poorer information accuracy when the data are processed would 
normally be labeled a major failure. While the popular belief discounts the likelihood of this scenario, this research suggests, 
in contrast, that a negative association between input accuracy and decision accuracy is a deeply rooted phenomenon in such 
rules. It is not limited to a specific type of decision variable, it is not exceedingly sensitive to variations in statistical 
dependencies, and it does not tend to disappear as the number of decision variables grows higher. Askira Gelman (2011) 
offers the following guideline for data quality resource allocation and design decisions: When the percentage of the values 
that satisfy the decision criterion varies significantly across decision variables, efforts to improve the accuracy of the output 
of a conjunctive decision should assign lower priority to errors in variables where a high percentage of the values meet the 
criterion. The findings of (Askira Gelman, 2011) imply an equivalent rule for disjunctive decision rules: When the percentage 
of the values that satisfy the decision criterion varies dramatically across decision variables, efforts to improve the accuracy 
of the output of a disjunctive decision should assign low priority to errors in variables where a low percentage of the correct 
values meet the criterion. The results of the empirical investigation presented here indicate, furthermore, that the likelihood of 
a negative damage may increase considerably as the number of decision variables goes up. In an environment where the 
probability of satisfying the decision criterion varies extensively, the likelihood that errors in a chosen input will produce a 
negative damage is expected to grow higher as the number of variables increases, such that a negative damage may actually 
be common. Therefore, resource allocation for data quality purposes should be made with great care when decision rules 
employ many variables and the probability of satisfying the decision criterion is known to vary significantly. Alternatively, a 
potentially profitable, counter-intuitive use of our theory will be investigated through future work, namely, future work will 
examine the value of error injection for improving decision accuracy.  

The observed improvement in decision accuracy when input error rate goes up has been shown to be driven by a lower rate of 
false positive decisions. In real-world settings the implications of a false positive error can differ greatly from the 
implications of a false negative error. In some domains, such as in medical diagnosis, the risk of a false negative is typically 
far greater than the risk of a false positive. A doctor may feel that missing an opportunity for early diagnosis could mean the 
difference between life and death, while a false positive, on the other hand, might result only in a routine biopsy operation. In 
other domains, such as in criminal law, the risk of a false positive is considered more consequential. In our real estate 
scenario, a wasted visit to inspect an unsuitable property may be judged to be significantly less costly than missing one’s 
ideal home when it is offered for sale at a bargain price. Accordingly, decision makers that adopt this standpoint will consider 
a false positive decision much less costly than a false negative decision. The magnitude of the economic outcome of accuracy 
improvement will vary depending on the relative weights assigned to the former two error types. However, the guidelines that 
(Askira Gelman, 2011) offers should normally apply, even if the importance assigned to a false negative decision is 
substantially higher than the importance assigned to a false positive decision. This is true because an input where errors 
generate a negative damage shows only small improvement in the rate of false negative decisions relative to other inputs.  

A practical estimate of the damage must be based on an understanding of the input set whose accuracy is projected to change. 
While our running example conveniently assumes that input accuracy improvements cover an entire database, this 
assumption may be false in practice when the change in accuracy targets a well-known, pre-defined subset of the database. 
Clearly, the choice of input set determines the values of relevant parameters. In the remainder of this section we go over the 
conditions that have been associated with a negative damage and the assumptions of this research in general. We examine 
their similarity to real-world scenarios, as well as the validity of this theory under conditions that are outside the scope of the 
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formal study. 

Wide Disparity in the Probabilities of Satisfying the Decision Criteria 

We begin with the condition of a wide disparity in the probabilities of satisfying the decision criteria. We believe that 
decision scenarios that demonstrate great inequality in these probabilities are common. Take, for instance, the real estate 
property investment decision. Real estate investment decisions are often aided by online databases, which can cover sizeable 
geographic areas. Therefore, a decision criterion that targets a specific zip code may actually match a minute fraction of the 
properties in the database. Likewise, depending on the geographic area, a price range of $0-$50,000 may match only a small 
percentage of the items. In contrast, the requirement of two bedrooms or more might be satisfied by a large majority of the 
properties. Therefore, when using this decision rule one may see a gap that is wide enough to produce a negative damage. 
Any one of the following two input pairs can demonstrate such a gap: the pair consisting of number of bedrooms and 
property price, and the pair consisting of number of bedrooms and zip code. Any one of the respective conjunctions can be 
characterized by a negative damage to decision accuracy due to errors in the data on the number of bedrooms. Furthermore, 
Hypothesis 3 suggests that a negative damage can surface at a later stage, when combining the conjunction of price and zip 
code (i.e., the two criteria that are satisfied by low percentages of the population) with the criterion for the number of 
bedrooms (which is satisfied by a high percentage of the population). Ultimately, this understanding implies that an investor 
who employs the former decision rule may be better off if s/he assigns a lower priority to the accuracy of the data on the 
number of bedrooms than the accuracy of the data about the price or zip code. Notably, however, if the accuracy of these two 
sources is brought to a high enough level, then a negative damage by errors in the data on the number of bedrooms should 
turn positive.  

For the sake of completeness we need to qualify the requirement of a wide disparity in the probabilities of satisfying the 
decision criteria. We found that, if error rates are extremely high then a negative damage is possible even when this condition 
is not satisfied. This is largely due to the fact that, under these circumstances, new errors tend to have no effect at all.   

Input Errors  

We now turn to a discussion of a second factor that has been identified by this theory, namely, the rates at which tests of 
individual decision variables show incorrect conclusions. Previous results (Askira Gelman, 2011) indicate that these rates 
form an important determinant of the sign of the damage. A given gap between the probability of satisfying the criterion on 
one variable and the probability of satisfying the criterion on another variable can be wide enough, or not wide enough, to 
produce negative damage, depending on the error rate in the input with the lower probability.  

This work examined conditions in which the upper boundary on the rate of incorrect judgments of the decision criterion is 
either 10% or 20%. Obviously, this boundary typically corresponds to a significantly higher data error rate, since not every 
error in the data causes an incorrect judgment of the respective criterion. Therefore, from a quantitative perspective, the 
parameter choice of this study, as well as its findings, suit conditions in which data accuracy is poor. However, regardless of 
data accuracy, several common data quality deficiencies, such as missing values, out-of-date data, or data that are expressed 
using non-standard units, can produce the same phenomenon as “ordinary” errors, i.e., a higher deficiency rate may actually 
improve the accuracy of a decision. Therefore, practical analyses of the sign of the damage should take into account other 
deficiencies as well. We discuss this issue in the final subsection. 

Statistical Dependencies  

Although the sign of the damage is not extremely sensitive to variations in statistical dependencies, statistical dependencies 
can affect the sign significantly.  

Statistical dependencies are widespread in practice. For example, we often face situations in which decision variables 1V  and 

2V  are not statistically independent such that 1I  and 2I  are either positively or negatively correlated. One example from the 

real estate domain is the dependence that is exhibited between the zip code of a property and its size, such that the probability 
of finding a large house in an affluent zip code is significantly higher than the overall proportion of large properties in the 

database (positive correlation between 1I  and 2I ). Alternatively, the probability of finding a large house in a poverty stricken 

zip code can be significantly lower than the overall proportion of large properties in the database (negative correlation 

between 1I  and 2I ). Likewise, we often encounter real-world settings where the probability of a false positive judgment of a 

value is different from the probability of a false negative judgment of the value ( 1I  and 1
IF  are not statistically independent).  

In the real estate instance, a disproportionately high percentage of the properties may be incorrectly registered under a zip 
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code that is preferred by the local population (a trendy zip code; implies negative correlation between iI  and I
iF ), while a 

relatively high number of properties may be incorrectly registered outside other zip codes (undesirable zip codes; implies 

positive correlation between iI  and I
iF ). Stated another way, errors may be unevenly distributed such that some zip codes 

would demonstrate a relatively high rate of false positives, while other zip codes would demonstrate a relatively high rate of 
false negatives.  

Since statistical dependencies are common in real-world settings, a deeper study of the effect of statistical dependencies on 
the conditions of negative damage would be useful. Nonetheless, a preliminary, qualitative understanding of this aspect can 
be derived based on the intuitive insight provided by this article.  

 

 

 A growing correlation 

between iI  and I
iF  

A growing correlation 

between 1I  and 2I  

negative damage ↑ ↓ 

Table 4. The effect of non-zero correlation 

 

To begin with, consider a statistical dependence between 1V  and 2V  such that the respective dichotomous criterion variables 

1I  and 2I  are positively correlated. The probability of having both criteria met (or both criteria not met) is, in this case, 

higher than the comparable probability under statistical independence conditions. Therefore, a stream of values of these two 
inputs will contain a lower proportion of “true”/”false” pairs relative to the proportion of this pair under statistical 
independence. As highlighted earlier, this pair is, however, essential to the creation of negative damage. Subsequently, all 

other things being equal, a positive correlation between 1I  and 2I  contracts the range of the parameter values ( 1
Ip , 2

Ip , 2
IFp ) 

in which a negative damage by errors in 1
R

I  is observed. A similar explanation of negative correlation between 1I  and 2I  

would conclude that it expands the range of the parameter values ( 1
Ip , 2

Ip , 2
IFp ) in which a negative damage by errors in 1

R
I   

is observed.  

A comparable analysis of the effect of statistical dependence between iI  and I
iF  suggests that, all other things being equal, if 

the correlation between iI  and I
iF  goes up then negative damage by errors in 1

R
I is observed in a wider range of the 

parameter values ( 1
Ip , 2

Ip , 2
IFp ), relative to their range under conditions of independence. In this sense, a relatively high rate 

of false negative judgments of the individual criteria increases the likelihood of negative damage. In the case of statistical 

dependence between 1I  and 1
IF in particular, it is easy to see that a higher correlation increases the proportion of “good” 

errors.  

Missing values and Other Data Quality Deficiencies  

Suppose that the (correct) value of a decision variable meets the criterion on that variable. If that value is missing from the 
data then a decision rule that employs the criterion may subsequently show a false negative decision on that data instance (a 
false positive decision is possible only if a default value is used in place of the missing value). In other words, a missing 
value can cause a false negative error, but it cannot cause a false positive error. Hence, missing values change the balance 
between the rate of false positive errors and the rate of false negative errors, such that the rate of false negative errors 
increases. Accordingly, our analysis in the previous section indicates that missing values raise the likelihood of a negative 
damage.   

An out-of-date value or a value that is expressed using a non-standard unit can cause either a false positive error or a false 
negative error. Often, however, changes in data values over time are characterized by a general trend (up or down), such as 
when prices trend up, or down, over time. Therefore, out-of-date values can have a similar, or an opposite, effect to that of 
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missing values. Again, the discussion in the previous section can be used for clarifying such an effect on the sign of the 
damage.   

Likewise, values expressed using non-standard units may have a similar, or an opposite, effect to that of missing values. A 
non-standard unit either inflates data values, or deflates them. Taken as a whole, the direction, if any, and magnitude of a 
trend depend on the choice of unit, or collection of units, that replace the standard unit.  

In conclusion, several data quality deficiencies, including “simple” data errors, missing values, out-of-date data, data that are 
expressed using non-standard units, and possibly other deficiencies, can contribute to the phenomenon that we have 
examined in this work. Mainly, a higher deficiency rate can actually improve decision accuracy. Therefore, practical analyses 
that aim to account for that phenomenon should apply a broad assessment of the deficiencies in the data.  
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