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ABSTRACT 

This paper presents findings from an ethnographic study of two genomics and bioinformatics labs. The focus of this research 

is on the day-to-day practices of using multiple technologies to integrate data across different platforms. We argue that 

sociotechnical challenges (including technical, contextual, and political challenges) emerge when data integration practices 

are carried out, due to the embedded nature of the important, yet unrecorded and implicit historical information that each 

dataset carries. We observed that sociotechnical sensemaking was common place in lab work, and was the only method for 

working out the complexity of the challenges which arose during data integration activities. We suggest that due attention be 

given to this matter, as challenges related to assessing data are likely to arise once more when such data travels back to the 

bedside, where it is poised to directly impact human health.   

KEYWORDS  

genomics, bioinformatics, personalized medicine, translational research, sense-making, sociotechnical practices, science, 

technology and society studies. 

INTRODUCTION 

A promising area in the practice of medicine is that of personalized medicine (e.g. Bottinger, 2007; Cascorbi, 2010; Evans, 

Meslin, Marteau, and Caulfield 2011; Lesko, 2007), defined as “the application of genomic and molecular data to better 

target the delivery of health care, facilitate the discovery and clinical testing of new products, and help determine a person’s 

predisposition to a particular disease or condition” (Abrahams, Ginsburg, and Sliver, 2005: 396). In personalized medicine, 

knowledge of a person’s genetic and molecular profile has the potential to guide preventive care, and the selection of 

therapies that are most effective and safe (Abraham et al. 2005). This has major implications for revolutionizing the health 

care system, through cost reductions (Fackler and McGuire, 2009) and improved health outcomes. Research in the area of 

personalized medicine is data intensive. The creation of knowledge from data requires researchers to integrate large and 

diverse data sets, which presents numerous challenges in areas such as data representation, and the linking of heterogeneous 

data sets (data integration) (Louie, Mork, Martin-Sanchez, Halevy, Tarczy-Hornoch, 2007). Indeed, data integration has been 

considered a major deterrent to the success of personalized medicine (Louie et al. 2007; Payne, Embi, and Chandan, 2009). 

Despite the promise of data integration platforms, adoption has been low, owing in part to sociotechnical barriers, data 

ownership and data security (Payne et al. 2009). As efforts to wed genetic data to electronic medical records are reported in 

the popular press (MacArthur, 2011), scientists are quick to point out that few examples of the utility of personalized 

medicine exist in clinical settings (Laurence, 2009).  

 

Few studies to date have considered the sociotechnical issues arising from the practices of data integration in its most raw 

form: at the bench side (i.e. in health science laboratories). Here, we report findings from research focused on the day-to-day 

practices of using new technologies in genomics and bioinformatics labs to carry out scientific research which, we suggest, 

will be essential to the translation of lab based scientific discoveries to health system use. We argue that without 

consideration of the underlying processes involved in the data integration work at the micro level, the often-promised benefits 

of personalized medicine will remain elusive.  
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With backgrounds in information system research, and science, technology and society studies, we developed a research 

project aimed at exploring practices associated with the use of genomics data within the context of personalized medicine. 

This approach provided a unique vantage point from which to study sociotechnical challenges associated with data 

integration. Although translational bioinformatics has received only limited attention amongst scholars and practitioners in 

information systems research, this domain offers a unique opportunity through which to examine emergent challenges 

associated with the increasingly prevalent practices of creating software tools and data resources intended for use in multiple 

contexts. Our findings provide insight into the increasingly common practices of integrating multiple data sources, in order to 

gain insight about a variety of issues. We have identified three levels of sociotechnical challenges that emerge when using 

multiple tools and technologies in scientific labs, where local data integration practices are common place. Material reported 

here seeks to fill gaps in knowledge about sociotechnical challenges which arise with data integration, by reporting about the 

many data integration and sense-making practices we observed in our study sites.  

Below, we provide an overview of the theoretical fields which frame our approach. This is followed by an overview of our 

methodology. We then present our findings and analysis, followed by a discussion of our results. We end with a conclusion 

and recommendation for further research.  

BACKGROUND  

Our current work- which is concerned with data integration practices of pre-clinical genomic scientists
1
 can be understood in 

relation to three related literatures: translational bioinformatics, information infrastructures, and the sociotechnical approach. 

Each is outlined briefly below.  

Translational Bioinformatics 

Achieving the goals of personalized medicine relies upon the movement of genomics and bioinformatics research from bench 

(science labs) to bedside (clinical settings). This ‘movement’ is commonly referred to as translational research or translational 

bioinformatics. The term translational research refers to the need to move research from ‘bench-to-bedside’ by improving the 

interface between basic science and clinical medicine (Woolf, 2008). Translational bioinformatics refers to “the development 

of storage, analytic, and interpretive methods to optimize the transformation of increasingly voluminous biomedical data, and 

genomic data in particular, into proactive, predictive, preventive, and participatory health.” (AMIA, n.d.). Translational 

bioinformatics sits between and (ideally) interoperates with electronic medical records, clinical research informatics systems, 

statistical analysis and data mining. It includes—and draws on—the areas of genomic sciences, biomedical sciences, and 

health informatics.  

 

The majority of literature about translational bioinformatics has addressed macro level aspects of this translation, including a 

range of topics in the ethical, legal, and political domains related to the need to develop new policy and governance structures 

in the genomics field (Gaskell and Bauer 2006, Atkinson, Glasner, and Lock 2009). These are not insignificant issues. 

However, while important, they are not the focus of our current inquiry. Payne et al. (2009: 131) suggested that although the 

need to collect, manage, integrate, analyze and disseminate large-scale heterogeneous (biomedical) data sets is a common 

theme in translational bioinformatics research, “well-established and broadly adopted theoretical and practical frameworks 

and models intended to address such needs are conspicuously absent.” The study we report about here was undertaken with 

this is mind, and focuses on the issues and challenges arising in relation to the management and integration of large scale 

heterogeneous biomedical data.  

Information Infrastructures  

Definitions of information infrastructures (also referred to as cyberinfrastructures (CIs) and eSciencee) abound. They vary in 

the extent to which infrastructural issues are conceptualized as technical problems to be solved or as sociotechnical processes. 

In information systems (IS) research, early definitions of information infrastructures were provided by Hughs (1983) who 

defined them as large technical systems with sociotechnical power structures. For the purposes of this study, we define 

information infrastructures as “the set of organizational practices, technical infrastructure and social norms that collectively 

provide for the smooth operation of scientific work at a distance” (Edwards et al., 2007:6). This definition recognizes the 

                                                           

1
 It is noteworthy to mention here that our two labs are ‘research labs’, which often experiment with new and emerging tools, many of which are new to 

researchers’ practice.  Research labs such as those we studied differ from diagnostics labs and bedside data use. In contrast to research labs where new tools 
and procedures are constantly being used and procedures may not be repeated over and over, in diagnostic labs the same procedures are carried out 

repeatedly so the scientists are very well versed with the data handling and analysis they are performing and the software they use. Presently there are few 

implementations of genomic data use in bedside settings, so it remains unclear to what extent clinicians working at the bedside are cognizant of data issues 
which may have occurred ‘upstream’ from use. 
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inter-relatedness of the social and technical in the production of information infrastructures, and also recognizes the 

contingent nature of technology. Star and Rudheler (1996) characterized information infrastructures as emerging with five 

properties: they are embedded, transparent, have a reach or scope, can be learned as part of membership in communities, link 

with conventions of practice, allow for the embodiment of standards, are built on an installed base, and become visible upon 

breakdown. More recently in information systems research, the term digital infrastructure is used (Tilson, Lyytinen and 

Sorenson 2010). 

Sociotechnical Approach  

Our basic object of study in this research is not a single element, but rather a network of heterogeneous elements, including 

technology, people, and institutions. Considering a sociotechnical approach allows us to identify the many elements at play in 

translating bioinformatics research. The sociotechnical perspective has been widely researched in the information systems 

field (Bostrom and Heinen 1977, Kilng and Saachi 1982, Mumford 1983, Orlikowski 1992, Lin and Cornford 1995, Avgerou 

2002, Orlikowski and Scott 2008). Here we define the sociotechnical approach as the interrelatedness of ‘social’ and 

‘technical’ aspects of an organization or a society as a whole (Trist and Bamforth 1952). The term ‘technical’ does not 

necessarily refer to material artifacts, but is used in the broader sense and incorporates technicalities, including structures, 

formalities and procedures. Two main premises of this approach are that organizations need to keep in mind that we cannot 

expect the ‘social’ to behave like the technical’ (i.e. people are not machines), or vice versa (machines, even if inscribed with 

human-like procedures, cannot have a mind of their own). The second principal is that we need to strive for a joint-

optimization of both the ‘social’ and ‘technical’ aspects of a given system, in order to realize their full potential (Walker et al. 

2004).  

METHODOLOGY 

Ethnographic Case Studies of Two Genomics and Bioinformatics Labs 

In an effort to meet our commitment to our funder
2
 to produce deliverables of strategic importance to the regional genomics 

research community, we conducted research in two genomics labs in order to gain micro-level insights about the day-to-day 

work practices of scientists. Our data collection begun in September 2011 and will continue until August 2012. We used 

several data collection methods, including semi-structured interviews with researchers, in situ observations of researchers at 

work, analysis of documents pertaining to regular meetings (lab presentations and lab meeting minutes), and data from two 

widely-used discussion forums about bioinformatics, to gain insights about genomic scientists’ everyday work practices. 

These will be supplemented by interviews with genomic scientists and stakeholders external to the labs, about issues arising 

in working with genomic data, including ethical and legal issues. Here we are reporting only on our ethnographic work in the 

two lab settings; which we refer to here as the ‘Alpha’ and ‘Zeta’ labs.  

Ethnographic, participant observations were carried out in two laboratory settings, during regular weekly and bi-weekly lab 

meetings, and were supplemented by day-to-day observations of researchers working in both the wet and dry genomics and 

bioinformatics labs. For purposes of data collection, we identified the unit of analysis as data handling processes surrounding 

two specific technologies that are commonly used in both lab settings: Perl programming language and Structured Query 

Language (SQL) in the dry lab. Our focus during observations was on how these technologies were used to handle and 

analyze data, how data were used, produced, and integrated within or across different technological platforms, and 

identifying the sociotechnical challenges that arose with these practices.  

Semi-structured interviews are underway with 28 lab members. Research participants are a combination of graduate students, 

postdoctoral fellows, lab technicians, bioinformaticians (web and database developers), and tenured faculty. Field notes were 

taken during observations, and later transcribed. All interviews are recorded, and transcribed as well. Data analysis was 

undertaken on an ongoing basis. All data has been formally coded (Strauss and Corbin 1990, Miles and Huberman 1994) 

using qualitative data analysis software NVivo 9. All research participants gave their informed consent to take part in this 

research.  

In the next two sections, we present the objects of particular interest to our discussion here: the two lab case studies, and the 

technologies that were at the centre of most of the scientists’ research.   

                                                           

2
 We were funded through Genome BC’s Strategic Opportunities Fund #4. 
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Description of Alpha and Zeta Labs 

Although the Alpha and Zeta Labs are situated in the same department and institution, each lab is slightly different in terms 

of research orientation and focus. Alpha Lab consists of an interdisciplinary wet lab and dry lab (computer lab) environment 

used to investigate pathogenomics questions. Computational analyses of genomics are combined with individual proteins and 

other lab data to facilitate experimenting with new hypotheses and testing them in model host systems
3
. At the time of this 

research, the lab was comprised of 12 members.. The staff members were primarily responsible for the ongoing maintenance 

of either the wet or dry lab. There was a wet lab technician, as well as web/database developers involved in managing the 

four databases that were created and continue to be supported by the lab. The remaining 8 lab members were mostly 

scientists-in-training in the form of graduate students and postdoctoral fellows. The majority of research that was observed in 

this lab was carried out in the dry computer lab, as only 1 postdoctoral fellow occasionally carries out work in the wet lab. 

Within the Alpha Lab, our observations were comprised of two settings: general lab meeting observations and lab work 

observations. The ethnographer (MAF) attended 18 lab meetings, and conducted 5 dry lab work observations. Each lab 

meeting lasted an hour on average, while lab work observations lasted an average of 2 hours. The ethnographer’s role as 

participant observer included volunteering to help with testing the usability and functionality of two of the lab’s databases.  

In comparison, the Zeta Lab’s objective is to develop bioinformatics programs and tools for understanding genomic 

architecture and expression. There are two parts to this lab, a dry lab and a wet lab both of which are regularly used.  In the 

wet lab, Caenorhabditis elagens (c.elagens) worms were used to carry out experiments. Dry labs are where computers 

(supported by powerful servers and grid technology) were used to run genomic computations. At the time of this research, the 

lab consisted of 17 members, including volunteers, master’s students, PhD students, postdoctoral fellows and lab technicians. 

A total of 19 general lab meeting observations, 7 wet lab work observations, and 3 dry lab work observations were carried 

out. Lab meeting observations lasted an average of 3 hours, while the wet and dry lab observations lasted 2.5 hours on 

average.  

In both labs, during the lab meetings, members would report about recent research progress to the lab director, who mentored 

and supervised students and staff, led discussions, and was quite involved in helping with on-going analyses of data, fine-

tuning of scientists’ methods, and carrying-out quality-control checks of the scientist’s research standards. The lab meetings 

allowed each member to share their best practices in relation to tool use.  Constructive feedback was constantly given to 

researchers along with advice about possible future research avenues they might pursue. In contrast to this setting, the wet 

and dry lab work settings were quite different. Here, the scientists mostly worked in solitude on their individual projects. 

Collaboration with other scientists was commonplace, but mostly in the form of trouble shooting in the dry lab, or carrying 

out a part of an experiment in the wet lab. 

Technology in Use: Perl and SQL 

Through our ethnographic work, we came to understand that most of the work of integrating data from multiple sources in 

our two lab field sites was accomplished with the use of two technologies: Perl programming language and SQL database 

quarrying language. Both of these technologies are situated in the dry labs. The Perl programming language is a high-level, 

general purpose, dynamic programming language that has become widely used by biologists in bioinformatics research. It 

was originally developed in 1987 by Larry Wall as a general purpose scripting language to make report processing easier 

(Sheppard 2000). Perl facilitates easy manipulation of text files, with its ability to processes and detect patterns in data. The 

release of Perl version 5, which supports object-oriented programming, made it much easier to develop reusable modules of 

biology across research centers (Tisdall 2000). Perl was commonly used in the dry lab for string processing of biological data 

like gene or protein sequences. The core work of dry lab scientists was in the manipulation of textual data sets from multiple 

databases and resources. Structured Quarry Language (SQL), on the other hand was vital for running quarries across 

databases. Both programming languages allowed scientists to access, extract, divide, or insert data sets from one or a 

combination of databases and convert them to other forms of output. Many scientists in bioinformatics did not necessarily 

receive formal training in the use of Perl or SQL, yet these two languages (amongst others) had become such important tools 

in bioinformatics in recent years that scientists routinely learned how to use them either on their own or from peers.  

FINDINGS AND ANALYSIS 

Here we discuss findings which emerged from observation of day-to-day practices primarily in the dry lab. We identify three 

levels of sociotechnical challenges that lab scientists face in their day-to-day work practices involving technology. These 

                                                           

3 The Alpha lab used both human and non-human data, and the sociotechnical challenges mentioned here applied to both types of data. 
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sociotechnical challenges include: technical challenges, contextual challenges, and political challenges, each of which is 

more complicated than the previous type. These challenges are outlined below, using examples from our fieldwork.   

Technical Challenges    

Technical challenges are those that can be resolved with the enhancement or redistribution of resources. Examples include 

attracting suitable personnel, training and developing researchers, providing better access to information, investing in high 

performance computing infrastructure at the local level, or purchasing software. 

An example of a technical challenge is that databases were often ‘down’ and/or out of service. This meant that scientists 

could not carry out their usual work until the databases or sites were functional again. This type of problem was caused by 

either maintenance work on those sites, or servers being out of order due to poor resource support. This was mostly observed 

with a database named Geoffrey. Another technical issue was related to the knowledge and training level of researchers, 

especially in relation to computer science proficiency. As most of these scientists were biologists or chemists by training, 

they either had a minor degree (or a few courses) in computer science, or learned bioinformatics techniques as they practiced 

their research. It was hence not surprising to witness repeated examples of scientists facing obstacles related to bugs in a 

piece of code they wrote.  

These challenges were further aggravated by the fast evolving nature of the bioinformatics field, which presented new 

tools and methods often and demanded that scientists learn how to use them. Obstacles also emanated from the poor design 

(e.g., broken links, missing complete protein or gene curations) and usability functions (e.g., difficulty in navigating a given 

database interface) of many databases and/or tools. Researchers often identified bugs in different databases and sites, and 

reported them back to developers. Additionally, poor documentation of tool development or best practices concerning 

usability meant that knowledge of usability issues could only be obtained through practice, or learned informally through 

‘socializing’ with other users. Scientists routinely turned to verbal conversations for trouble shooting, and used online 

discussion forums as a means of finding solutions to common problems. Although this informal sharing may on the surface 

appear to be a waste of time, in an environment where documentation may be absent or out of date, verbal communication 

and use of discussion groups are what allow scientists to overcome problems which would otherwise obstruct their work (Orr 

1992).  

When researching dry lab practices, some reoccurring obstacles were so common that they became taken-for-granted by the 

researchers. An example of this was evident when a scientist was trying to figure out why her SQL query was not yielding 

the results she expected. She described that this ‘starring at the screen’ (in attempting to make sense of the obstacle) is what 

she does most of her day. Although taken for granted, these technical challenges were not minor: during our observations 

they had a direct effect on delaying the continuity of participant’s work, and led to frustration. The scientists we observed 

explained that many of the technical challenges resulted from the fact that tools and databases were developed for short-term 

projects. Limited time and funding resources are invested in making tools bug and error free, or more user friendly or 

functional. This created multiple problems when the same tools were subsequently used by masses of users, often at a 

distance from where they were developed. These sorts of technical challenges were influenced by the broader political 

context, which (for example) came to bear on funding, and hence influenced documentation, tool development, etc.  

Contextual Challenges   

Contextual issues presented a second level of challenge. These stem from the combination of more than one technical 

challenge, or the emergence of unforeseen contextual issues that may arise with the use of databases. Unlike technical 

challenges that can be resolved with the increase in resources, in order to resolve contextual challenges, there is a need to 

coordinate and cooperate with other stakeholders in the community through knowledge sharing, or collaborative practices. 

Many of the contextual challenges were faced when integrating data from multiple sources, such as from different databases. 

Another contextual challenge was the knowledge inscribed into the technology. For example, knowing that a tool was 

developed for a given purpose makes clear what limitations and biases that tools might have if used in a different context for 

a different purpose. The quality of output of different tools also differed substantially. There was often mention of how 

certain sequence alignment tools provided different (and sometimes biased) results. There is no gold-standard for which tool 

is best used for which type of sequences, which had multiple consequences for the scientists. We observed one scientist 

comparing data from one sequencing technology with an isolate that had been sequenced with a different sequencing 

technology. It appeared that the scientist had to be mindful of issues such as which alignment tools were used to generate 

particular sequences, which meant that two sequences could naturally differ. Hence, this would not necessarily mean that any 

missing segments would be representative of mutations or deletions in a given sequence read, but may rather reflected the use 
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of different tools in sequencing. The researchers were ‘trained’ to consider such biases of tools when running analyses. 

Knowledge of the context in which tools were developed was essential to making sense of genomic data. 

Another contextual challenge arose in relation to integrating data and the lack of data standards. Because of the diverse 

types of databases and tools that are constantly developed by different scientists, it is often critical to integrate data from 

multiple sources in order for them to achieve meaningful results. This means that complicated quarries need to be written 

specifically to make such integrations of multiple data formats from multiple databases. This usually also entails layers of 

data cleaning activity, and other adjustments that need to be carried out in order to have results that are truly useful. 

Collaborative practices are one of the leading reasons that bioinformatics is developing at such a quick pace. However, 

these same collaborative practices do result in contextual challenges. While scientists share their data and tools with others in 

hope of recognition for their contribution, those very tools often reflect limitations (e.g., of resources) at the local level, 

which result in very little standardization and/or stabilization. This relates to the third type of  challenge we observed, 

which is that of the political will to fund projects over a long period of time so that the stabilization efforts are possible in the 

form of reconfiguring a generic system to local practices (Bjiker and Law, 1992). This would allow for the continuity of work 

that would result in more sustainable efforts at the local level that could be used (and hence translated) at the inter-

organizational domain. We elaborate on this challenge next. 

Political Challenges 

The third level of challenges and issues that arise at the local level of lab work in bioinformatics can broadly be categorized 

as political challenges. These challenges encompass the wider environmental subsystem that influences the bioinformatics 

domain. It includes the rules and regulations, whether formal or informal, that govern relationships between lab scientists, 

their respective disciplines, their collaborators, and society at large. In order for these challenges to be resolved, change in 

regulation or policy has to occur either within or outside of the organizations involved. A common characteristic of these 

political challenges is that they tend to have long-term implications, and require a long time to resolve. 

Funding and data ownership were two political challenges of greatest concern to scientists. Scientists in our study were 

concerned that funders preferred to go for the ‘low-hanging fruit’. That is, to fund projects that would guarantee results in the 

short term. This meant that many projects with a longer life span would not be funded simply because their completion was 

incompatible with funders’ needs to demonstrate results. Also, projects that were more exploratory in nature were difficult to 

fund, since the results were not as certain. This phenomenon lead to the clustering of ‘over researched’ topics, while other 

areas of bioinformatics were left under-explored. Another funding-related problem was that of discontinuity. Once projects 

ended, it was difficult to obtain funding for ongoing maintenance or further development of existent databases or other tools 

that were devised for the project. Hence, it was impossible to maintain the benefits of a project’s results after it ended. This 

resulted in many databases of limited usefulness being available to the public. This was closely related to the concern that 

funders did not seem to realize the importance of bioinformaticians as key contributors to the maintenance and sustainable 

advancement of research tools, which related to the ‘articulation work’ (the invisible work required to keep things running 

smoothly, see Strauss 1985) they perform.   

Data ownership was also an issue of concern. There was careful recognition given to data used from other researchers, as 

credits were often acknowledged both verbally as well as in publications. Latour and Woolgar (1979) have pointed to this 

phenomenon using the term ‘cycles of credits.’ There was also some concern about data produced as part of projects that 

were funded by pharmaceutical companies. This concern was related to the ownership being given to the private sector 

funders, which meant that results were locked for their own use. Scientists were concerned that while they would not be able 

to carry out research without such funding, that reliance on funding from companies could delay the potential benefits of the 

research if the data generated through the research was not made available beyond the funder. Such practices could possibly 

delay wider drug development or even the potential eradication of disease. Closely related to data ownership were questions 

of ethical considerations, which are of considerable interest and importance but beyond the scope of this paper.  

DISCUSSION 

As many technical challenges can be resolved with an increase in resources, of greater concern to this study is addressing the 

second level of challenges outlined above: the contextual challenges. Our findings suggest that this particular level of 

challenges is especially sociotechnical in nature: they consist of both social and technical elements, which interact in complex 

ways (Bygstad 2008). In a more general sense, the contextual challenges can be classified as a data integration problem 

(Louie et al. 2007), which entail critical collaborative challenges as well. What makes practices of data integration 

challenging is the need for tacit or implicit knowledge at the local level of practice, which need to be re-created or 

instantiated for collective organizational learning, as well as for work to carry on and reach a completion stage. The 

knowledge we refer to is characterized as ‘not immediately tellable’ (Orr 1996: 119). This problem has been cited before, 
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where researchers turned to focusing on tacit knowledge and reflective practice (Schön 1991; Lanzara 1991; see also Yanow 

and Tsoukas 2005); perhaps as a solution to the problem of ‘tell-ability (Yanow 2006:1747). The term ‘articulation work’ has 

also been coined to explain this phenomenon, defined as “a kind of supra-type of work in any division of labor, done by the 

various actors” Strauss (1985: 8). Strauss (1985) describes articulation work as containing three parts: work involving the 

meshing of numerous tasks, work involving meshing the tasks of multiple unit workers (individuals, departments, institutions 

etc.), and the meshing of actors with their various types of work and implicated tasks (Strauss 1985). 

We have observed that there is much articulation work that is carried out due to the distributed nature of sharing data and 

technologies across the bioinformatics community. There are of course many practices that can be objectified and recorded 

and made visible, and then passed on along with the data and technologies, and which could yield predictable results if 

applied. These are in the form of protocols, formal structures, plans, and procedures or schemas (Schmidt and Bannon 1992). 

However, the real concern of our research is the phenomenon observed by Gerson and Star (1986) as local and temporary 

practices, which within themselves require articulation work. Gerson and Star (1986: 266) point out that “reconciling 

incommensurate assumptions and procedures in the absence of enforceable standards is the essence of articulation. 

Articulation consists of all the tasks involved in assembling, scheduling, monitoring, and coordinating all of the steps 

necessary to complete a production task. This means carrying trough a course of action despite local contingencies, 

unanticipated glitches, incommensurate opinions and beliefs, or inadequate knowledge of local circumstances.”  

New technology (such as those created commonly in the bioinformatics community) results from the coordination of vast 

networks of people, machines, processes, and materials, what Latour (2005) calls actor networks. The technologies we live 

with seldom represent the only technological solutions possible; but rather, represent the outcome of a complex series of 

negotiations, which occurred within a web of both human and non-human actors (e.g., the installed base of a computer 

system). Technology development and use are both social processes, whose outcomes depend upon social and technical 

factors, yet the need for and consequences of these social factors is often under-recognized in scientific and technological 

development processes. Lab scientists, though perhaps lacking concepts such as articulation work, are very aware of the 

consequences if it is not performed. Yet the invisibility of that work arguably contributes to difficulties in getting it funded.  

In response to the need for articulation work, it seemed like scientists engaged in a new form of articulation work, that of 

sociotechnical sensemaking. We use the term sociotechnical sensemaking to refer to those practices that scientists engage in 

when trying to find solutions to obstacles that have no known or documented solution. We denote this sensemaking as 

specifically ‘sociotechnical’, since there was a constant consideration of reasons for why a given obstacle might have arisen, 

both on a social as well as a technical level, or both levels at once. Scientists considered for example, if a given problem was 

caused by inherent database structures, or by purely social causes such as the practice followed by colleagues in gene 

annotation practices. They used sociotechnical mechanisms to make sense of the problems they faced and to overcome them. 

Examples include troubleshooting by reviewing technical specifications related to the database/tool in use, or more socially 

by asking more experienced colleagues or turning to web-based discussion forums for answers. We refer to these underlying 

processes of trying to make sense of the issue at hand, as sociotechnical sensemaking. It echoes the work of Payne and 

Mendonka (2007) who argue for the importance of attending to the semiotic nature of the day-to-day processes of translating 

research information to practice and practice information to research.  

Issues and challenges related to data re-use and data integration have been identified in several areas including electronic 

health records (Tolar & Balka, 2012) and enterprise resource planning systems (Volkoff, Strong and Elmes 2005; Light and 

Wagner 2007). In their discussion of secondary usage of EMR data, Tolar and Balka identified successful information 

infrastructure implementation and the ability to sustain initiatives associated with data use as pre-conditions for secondary 

use of data in a primary care setting. Work undertaken during our current study suggests that similar issues arise in pre-

clinical lab settings, where data collected have demonstrated that several areas identified by Tolar and Balka (the need for 

software functionality and knowledge of software, the need to test and tailor data to fit the new purpose, (data 

cultivation), and the need for designated personnel and other resources to sustain activities related to secondary use of data) 

are required to sustain data integration activities in the pre-clinical labs which are our focus here. Work reported here, 

together with previous work concerned with issues arising during data integration and data re-use  

activities suggests that although the specific activities required to support data integration activities may vary from setting to 

setting,  it may nevertheless be useful to conceptualize these varied activities as ‘sociotechnical sensemaking’ processes, and 

to recognize that time, attention and resources must be allocated to support these activities during certain kinds of new 

technology implementations. 
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CONCLUSION 

This study essentially reports on the dilemma that has emerged with the development of technology, and the rise of the 

Internet. It has become a common practice for scientists to share their data, databases and other locally created tools and 

technologies across organizational boundaries, and in fact such practices are often mandated when development has been 

supported with public-sector funds. However, these very practices of sharing data and technologies present problems at the 

receiving end. Shared tools are only able to carry limited amounts of information that allow extra-local users to make sense 

and contextualize the data that they produce and carry. This is because data and databases, when shared, are abstracted from 

the context of their development, which can lead to a host of problems (see Schuurman and Balka, 2009 for a more in depth 

discussion of this phenomenon). We refer to these challenges as contextual challenges. 

In order to understand how these contextual challenges are being resolved or worked out, we conducted ethnographic 

research to identify and understand the mechanisms undertaken on a day-to-day basis by scientists to make sense of, and 

eventually overcome such challenges. The issues we have identified may be magnified as data move via information 

infrastructures away from the laboratory environment (bench-side) and into clinical settings (bed-side). The greater the 

distance a data user is from the supports required for sociotechnical sensemaking, the higher the probability that an end user 

of data (e.g., a clinician interpreting test results) will have access to information that might allow the end user to make sense 

of particularly unusual or possibly irregular findings in data. In the absence of recognition that articulation work is occurring 

and is essential to the success of translational bioinformatics, adequate resourcing of such activities is unlikely, and 

development of methods for capturing and making explicit the tacit knowledge and practices (articulation work) required to 

use emerging and rapidly changing information infrastructures, is likely to remain inadequate. Yet these issues are likely to 

grow in importance as the distance from the lab to the bedside increases. It is very likely that healthcare professionals at the 

bedside will lack an understanding of the affordances and constraints of the tools used to develop data, or the biases inherent 

to data produced with particular sequencing tools, which may have contributed to tests or diagnostics they will be expected to 

use. Hence the failure to recognize the need to support articulation work practices in labs not only poses a threat to research 

(and possibly data quality) in lab settings, but also threatens the quality of medicine to be delivered “at the bedside” as front 

line practitioners will lack access to the very information (e.g., documentation about limitations inherent to a particular 

dataset which was used to formulate a particular diagnosis) they will require to assess the integrity of results they obtain in 

clinical use of tools.  

This research has implications for the development of tools that can translate research findings cultivated at the bench-side, 

for their use and application at the bed-side, through personalized medicine. Without the consideration of these often ignored 

contextual challenges, the goal of operationalizing personalized medicine may be undermined by inappropriate 

interpretations of data, and are likely to take longer to achieve. 
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