
Association for Information Systems
AIS Electronic Library (AISeL)

BLED 2012 Proceedings BLED Proceedings

Spring 6-20-2012

Exploiting XML Technologies in Medical
Information Systems
Christian Forster
University of Münster, Germany, christian.forster@ercis.uni-muenster.de

Gottfried Vossen
University of Münster, Germany, vossen@uni-muenster.de

Follow this and additional works at: http://aisel.aisnet.org/bled2012

This material is brought to you by the BLED Proceedings at AIS Electronic Library (AISeL). It has been accepted for inclusion in BLED 2012
Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

Recommended Citation
Forster, Christian and Vossen, Gottfried, "Exploiting XML Technologies in Medical Information Systems" (2012). BLED 2012
Proceedings. 9.
http://aisel.aisnet.org/bled2012/9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301355772?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fbled2012%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/bled2012?utm_source=aisel.aisnet.org%2Fbled2012%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/bled?utm_source=aisel.aisnet.org%2Fbled2012%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/bled2012?utm_source=aisel.aisnet.org%2Fbled2012%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/bled2012/9?utm_source=aisel.aisnet.org%2Fbled2012%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

25th Bled eConference
eDependability:

Reliable and Trustworthy eStructures, eProcesses, eOperations
and eServices for the Future

June 17, 2012 – June 20, 2012; Bled, Slovenia

Exploiting XML Technologies in Medical Information
Systems

Christian Forster
University of Münster, Germany

christian.forster@ercis.uni-muenster.de

Gottfried Vossen
University of Münster, Germany

vossen@uni-muenster.de

Abstract
Integration of clinical research data and routine care data, in order to streamline the
process of conducting clinical studies, has been a problem for quite a while now. The
Single Source project at the University of Münster aims at contributing to this area. The
approach is based on a vast usage of XML technology together with a novel integration
architecture. The emphasis in this paper is on the former: The seamless usage of XML
technology throughout the entire application is presented, and mismatches of
programming paradigms are averted by exploiting the features of XML, XQuery and
XForms. In particular, this is demonstrated by the example of a component used for
handling forms, by how it is built and used in the entire scenario.

Keywords: XML, XQuery, XForms, software engineering

1 Introduction
Source integration in medical information systems has been a problem for quite a while
now, since typically clinical research data as well as routine care data are collected,
stored, and maintained independently of each other [Dugas et al., 2009]. An immediate
consequence is that utilizing data from one source in conjunction with data from the
other, for example in the context of a given clinical study for which this would be
highly beneficial, is difficult, if not impossible. The Single Source project aims at
changing this situation fundamentally; its basic approach is based on a vast usage of
XML technology, together with a novel integration architecture. The emphasis in this
paper is on the former; it is demonstrated how the form handler is built and used in the
entire scenario.

The Single Source Project is a research project conducted at the authors’ institute in
Germany and the software design presented here has evolved from this. The project

70

mailto:christian.forster@ercis.uni-muenster.de
mailto:vossen@uni-muenster.de

aims to provide a flexible platform that is independent of a particular hospital
information system and through which care data available for patients in a hospital can
be integrated with research data. In our approach, the actual integration is based on
electronic forms. These forms are filled with default values originating medical
knowledge, completed with care data, and then extended with research data, yielding a
comprehensive data set for evaluation. The software design presented here reflects our
experience with the development of the form handler. The form handler is part of the
x4T system architecture [Dziuballe et al., 2011], designed to store form definitions and
their associated form data, and to perform operations on it. This work presents a
software design used in the domain of clinical trials and shows how this can benefit
from a homogeneous XML software stack composed of W3C standards.

Object orientation is often seen as the state-of-the-art in present-day technology, which
is why we initially considered following an object oriented approach. However, we
abandoned this for the following reason: The data collected in clinical trials is given by
a set of data capture forms that have to be filled in for every patient participating in a
given study. These forms consist of a hierarchy of elements representing a study at the
highest level and a single item at the lowest. Breaking down these elements into objects
would have resulted in a vast set of objects and relationships between them to represent
a study, and that would have been difficult and tedious to handle. Therefore, we
consider the domain elements of clinical studies not to be candidates that are
appropriately modeled the object oriented way. Although the paradigm definitely has its
benefits in many cases and application areas [Bhattacharya and Neamtiu, 2011], it is not
necessarily the best choice in terms of productivity [Myrtveit and Stensrud, 2008]. What
makes it even worse is the fact that there is a paradigm shift when using relational
DBMS as data layer and HTML forms based on key-value pairs in the presentation
layer, in combination with an object oriented business layers which is an often proposed
technical stack. Many more or less heavy-weight frameworks and mappers address
these paradigm transformation issues, thereby complicating the code by adding layers
and solving problems related to paradigm mismatch instead of the given domain tasks at
hand.

Clinical trials are very data centric, and the standard exchange format for forms is
CDISC ODM (the Operational Data Model, a standard for the transfer of case report
form data developed by the Clinical Data Interchange Standards Consortium) which is
XML-based and comprises both form definition and data. Forms for trials must be
generated based on those definitions, and besides CRUD operations (short for “create,
read, update, delete”) there is need for business functions in order to pre-populate forms
with values from routine care systems, and for administrative functions like access
protection and user management. These considerations made us design and implement
our XML-based approach using a mostly functional programming paradigm, in order to
avoid the aforementioned pitfalls.

The remainder of this paper is organized as follows: Section 2 gives an overview of
related work. Section 3 highlights key components of the XML-based architecture and
describes their generic design. In Section 4 we describe scenario-specific solutions of
the form handler, and Section 5 concludes with an outlook on future work.

71

2 Related Work
XML and the various standards and languages based on it have been used for quite a
while now in data-intensive applications; we here review work only that can be
considered relevant to the context of medical information systems and to our work.
Approaches for implementing business logic in XQuery have been undertaken in
[Kaufmann and Kossmann, 2009], where the development of an online publication
repository is described. The authors state that XQuery was well suited, but maturity of
application servers was the biggest concern and that further experience with other
applications was needed. We took this as starting position to build on and extended the
approach by the usage of XForms and adapted it to our needs.

The label XRX refers to the idea of using XForms, REST and XQuery. The XRX
concept is described and discussed on the Web [McCreary, 2007, Cagle, 2008,
Wikibooks, 2010]. Though no sharp classification seems to be generally accepted,
offering REST access— an architectural style relying on HTTP commands containing
all state related information— to data seems to be crucial. As our application does not
offer a pure REST interface, we do not consider it to be classified as XRX, but some
parts of the concepts overlap.

A recently published approach is using Java and the Spring Framework to embrace
XML related technologies offering RESTful services in the field of healthcare [Davis
and Maguire, 2011]. Although their domain is closely related to ours, we have
purposely avoided the usage of object oriented Java and a framework like Spring.
Finally, the industry consortium IHE offers a set of specifications in order to make
healthcare systems interoperable, among them the Retrieve Form for Data Capture [IHE
International, 2009]. This specification proposes the use of XForms as form definition
and exchange standard.

For the particular task of form design and handling, various commercial products are
available, including Adobe LiveCycle and Microsoft Infopath. However, we have
deliberately excluded solutions that are built on a proprietary software stack from our
considerations.

3 The Architectural Approach
This section highlights key components of the XML-based architecture and describes
their generic design.

3.1 The Components: XML Family as Technical Base
XML and related technologies found the basis of the XML-based architecture; this
section points out the most relevant technologies and their characteristics.

3.1.1 XML
 XML [Bray et al., 2008] is a framework for markup languages often called semi-
structured, meaning the data is embedded in its metadata. The term semi-structured is to
some extent misleading [Sperberg-McQueen, 2005], as the data is completely
structured, but in a flexible rather than a static way. In our case, the structure
representation in XML is an important feature. XML documents are structured as trees
and thus suit hierarchically organized data well. XML schemata are used for defining
the specific structure of XML documents. Though not necessarily required, schemata

72

ensure that the XML document is structured according to defined rules. The schema
used for documentation of clinical trials, ODM [CDISC, 2010a], is both a format to
design the study and to store its data. The support of namespaces allows for vendor-
specific extensions in a separate namespace; thus we can both gain compatibility
benefits from supporting a standardized schema and implement new features.

3.1.2 XQuery
 XQuery is a Turing complete functional programming language [Kepser, 2004] that is
intended to work on XML documents and that has been specified by the W3C [Boag
et al., 2010]. Having its origin in querying XML, update expressions were not
standardized by W3C for long, but since 2011 the XQuery Update Facility 1.0 [Robie
et al., 2011] is available and has started to replace various vendor specific mechanisms.
At least since then, XQuery has evolved beyond being a simple data query language. To
us, it has shown to be a practically usable language supported by a sufficient number of
libraries and nowadays even stable application servers. In 2009 the absence of those
impeded productive usage of XQuery [Kaufmann and Kossmann, 2009].

XQuery supports the functional paradigm to a vast extend, though it is not purely
functional. Basically, a program written in XQuery is composed of functions. The
output of a function is solely depending on its input, hence there is no internal state of
the program and there are no side effects of a function. Along with these features come
several benefits: Testing of decomposed functions is easy, since no initialization is
required and a function can be tested by a set of input parameters and the expected
outcome. As functions do not rely on an internal program status, parallel execution of
functions is possible without additional synchronization code.

The implementation we have chosen is not purely functional, since it supports reading
and writing to external media which reflects a kind of program state. Thus—in
contradiction to the pure functional paradigm—some functions have empty return
values because their purpose is realized by side effects, e.g., writing data on disk. It is
up to the programmer to stick to the functional implementation whenever it is useful and
take care of side effects when necessary.

The basic expression in XQuery is the FLWOR expression, an acronym for the
keywords for, let, where, order by and return, used to specify the nodes that
operations are based on (for), to define variables within that expression (let), to filter
elements by conditions (where), to sort them by criteria (order by) and to build the
result (return).

A subset of the XQuery specification that deals with paths in XML documents is XPath
[Berglund et al., 2010]. It provides means to address nodes and to navigate through a
given XML structure.

3.1.3 XSLT
Besides XQuery, there is XSLT [Kay, 2007], an earlier proposal for processing XML
documents. It has similar features as XQUERY and is also Turing complete [Kepser,
2004], but it follows a different design approach. The original focus was on a
transformation of XML documents rather than on querying databases. XSLT uses XML
syntax and is intended as a style sheet language based on templates. It has XPath
support in common with XQuery.

73

3.1.4 XForms
Pure XHTML forms do not use a specific approach to data modeling, but submit form
data as a set of key-value pairs, which is different from the data model present in most
business and data layers. In our case, the model in both business and data layer is XML-
based; it is therefore preferable to use the same technique in the presentation layer. The
W3C standard XForms [Boyer, 2009] provides a way to embed forms into a host
language such as XHMTL. XForms provides several advantages over standard XHTML
forms that even the upcoming version 5 does not have. The most important of these is
the separation between model, view, and controlling structures.

There are server-side XForms implementations which generate XHTML and JavaScript
from XForms. Ideally, this transformation is done automated, and the developer is not
concerned with any XHTML or JavaScript forms code. The XForms implementation
takes care of synchronization between client and server state, and provides both client
(for quick response and comfort) and server (for security because it cannot be bypassed)
side validation based on the model definition. Thus, clients do not need any additional
XForms interpreter but just a common Web browser, a fact that is relevant to the
clinical scenario, where additional software deployment to clients is regulated and
arduous.

3.2 The Composition: A Homogeneous Structure
The XML-based architecture proposed here consists of distinct layers for storage,
business logic, and presentation. Although the single language approach would allow
for a direct access of the data layer from the presentation layer, the multitier architecture
is kept for an easy integration of additional presentation techniques and a better
reusability. Figure 1 illustrates the various layers and their associated technologies:
XQuery is used for the data and business layers, while the presentation layer is
implemented in XHTML and XForms.

Figure 1: Layers of the XML-based architecture and their techniques.

The business logic consists of two parts. Functions are separated into reusable modules.
For every function there is an HTTP-specific fixture called by the controller to
transform HTTP parameters into XQuery variables and to call the functions from the
modules.

The homogenous XML technology stack allows for usage of a single data model for the
storage, business, and presentation layers. Additional patterns for bridging the paradigm
mismatch, such as object-relational mappings or patterns of abstraction like DAO [Sun
Microsystems, 2001] and DTO [Fowler, 2003], are no longer necessary in this approach
and hence do not add complexity. On the storage layer, a native XML database supports
document oriented storage and XQuery for data access without a separate layer of
shredding and publishing [Tatarinov et al., 2002]. The business logic can directly

74

operate on the data. No additional layer or transformation is needed, because XQuery is
used as both a business logic programming language and a data query language.

The integration of XForms allows using the data schema in the presentation layer.
Again, no transformation of the model is needed, and the conversion to XHTML and
JavaScript is done by the XForms engine on the server. The XForms capability of
supporting a distinct model in the presentation brings the benefit that schema constraints
like data types can automatically be bound to the corresponding form elements. Parts of
the web application that do not contain forms consist of XHTML templates, where
dynamic elements are realized with embedded XQuery expressions.

4 Our case: x4T Form Handler
In this section we describe scenario-specific solutions of the form handler outlined in
Section 3.

4.1 Scenario Overview
Our form handler is embedded into a clinical information system landscape that consists
of a hospital information system (HIS) and one of several clinical study information
systems. Our particular hospital information system in which most of the medical data is
kept is Agfa Orbis and an Oracle relational database. Since Orbis does not offer a
sufficient interface to access patient data on the business layer, we had to perform
integration at the data layer and set up an additional mediator referred to as HIS handler
to make data accessible. All HIS specific implementations are encapsulated in the
mediator. It offers Web services to gather data and authentication information.

As medical staff should be able to access the trial documentation from Orbis, which is
their daily working environment, access to x4T forms is given by dynamically created
Web links. One-time access tokens are created by the HIS handler and written to the
database, from which they are fetched by Orbis and encoded within those links. The
x4T form handler, in particular the controller (cf. Figure 1), extracts the token and
checks its validity using the authentication Web Service. Doing so, no manual user
authentication is needed and access grants in HIS and x4T are consistent. Updated
patient data is integrated into the form handler from the HIS before every access to a
patient’s study documentation, in order to ensure that staff has a consistent view and can
see all recent entries from the routine documentation.

While filling the form, the researcher decides which of the pre-populated values are
correct or whether a completely different value, entered manually, is needed. The
integration is based on semantic annotations describing medical phenomena that are
present within the study form definition and can be resolved into SQL queries by the
HIS handler. Note that a fully automated integration is mostly not possible, due to often
complex requirements beyond the pure item value and its origin, so that expert
knowledge is needed to decide on the correctness of an entry. The form handler allows
an export of study data into common study information systems (CDMS) via the ODM
[CDISC, 2010a] format. Figure 2 shows the components and their interfaces.

75

Figure 2: Components of the Single Source scenario.

4.2 Towards Practical Usage of x4T
The standard that is supported by a large number of vendors to exchange clinical trial
data and metadata is CDISC ODM. It is freely available, defined by an XML schema,
well documented, and open to vendor-specific extensions. Thus, it supports the
integration approach of the Single Source project and is used in an initial practical
exploitation of x4T to store all study-related data. The ODM schema consists of four
complex elements at the first level: Study, AdminData, ReferenceData, and
ClinicalData. Study and ClinicalData are most important, as they hold the metadata and
data. They are structurally similar: Study holds the definitions of elements comprising
references to subordinated elements, which is indicated by suffixes Ref and Def.
ClinicalData holds the actual data, and thus element names are suffixed with Data.
Listing 1 shows their structure by way of a simplified example. The schema actually
stores more information, such as descriptions, measurement units, value ranges etc.,
using child elements and attributes. The study documentation consists of hierarchically
arranged elements, which is reflected in the schema as follows: The Study element
contains a MetaDataVersion element that is used to distinguish several versions of the
same study. Within the MetaDataVersion element, there is one Protocol element that
can have one or more references to StudyEvents. StudyEvents are a group of Forms that
belong to a clinical concept. Each Form reflects a traditional paper form and consists of
ItemGroups. ItemGroups collect Items of a similar type. Items correspond to a single
question. Every element has a unique object identifier (OID) by which it is referenced.
Element definitions of all hierarchies starting with the StudyEvent can be reused by
referencing several times. The ClinicalData element holds the collected study data for a
single MetaDataVersion. For every patient included, there is a SubjectData element that
holds a nested set of Data elements, consistent with the metadata defined above. Thus,
ItemData is identified by the path of ItemGroupData, FormData and StudyEventData
that it is nested in. To give an overview, the data model of patient data in ODM is as
depicted in Figure 3.

76

Figure 3: Basic parts of the data model representing a study in ODM.

<ODM>
 <Study OID="ST.1" >
 <MetaDataVersion OID="MD.1" >
 <Protocol>
 <StudyEventRef StudyEventOID="SE.1" /><!-- refers to
StudyEvent, multiple allowed -->
 <Protocol>
 <StudyEventDef OID="SE.1" >
 <FormRef FormOID="FO.1" /><!-- refers to Form, multiple
allowed -->
 </StudyEventDef>
 <FormDef OID="FO.1" >
 <ItemGroupRef ItemGroupOID="IG.1" /><!-- refers to Item,
multiple allowed -->
 </FormDef>
 <ItemGroupDef OID="IG.1" >
 <ItemRef ItemOID="IT.1" />
 </ItemGroupDef>
 <ItemDef OID="IT.1" />
 </MetaDataVersion>
 </Study>
 <ClinicalData StudyOID="ST.1" MetaDataVersionOID="MD.1" >
 <SubjectData SubjectKey="Subject1" ><!-- one for each subject -->
 <StudyEventData StudyEventOID="SE.1" ><!-- refers to defined
StudyEvent -->
 <FormData FormOID="FO.1" ><!-- refers to defined Form -->
 <ItemGroupData ItemGroupOID="IG.1" ><!-- refers to defined
ItemGroup -->
 <ItemData ItemOID="IT.1" Value="Item Value" /><!--
refers to defined Item -->
 </ItemGroupData>
 </FormData>
 </StudyEventData>
 </SubjectData>
 </ClinicalData>
</ODM>
Listing 1: Simplified ODM showing Study Definition and Clinical Data Section.

Each study is contained in one ODM file; setting up a study in the form handler is done
by importing the corresponding ODM file. To store pre-population data, we have
extended the original ODM schema. In compliance with the CDISC specification for

77

vendor extensions, all extensions happen in a separate namespace and can be removed
on export.

declare function x4tPat:addPatient($subject-key, $study-oid,
$metadataversion-oid){
 (: some checks on parameters omitted :)
 (: check if patient already exists in study :)
 if (collection('/db/x4t/')/odms/ODM/ClinicalData[@StudyOID = $study-
oid]/SubjectData[@SubjectKey = $subject-key]) then <error>Patient no.
{$subject-key} already existent</error>
 else
 (: create SubjectData :)
 (
 local:build-subjectData(collection('/db/x4t/')/odms/ODM[Study/@OID =
$study-oid], $study-oid, $subject-key, $metadataversion-oid),
 <success>Forms for patient no. {$subject-key} generated</success>
)
};

(: create the SubjectData XML structure for one subject :)
declare function local:build-subjectData($odm, $study-oid, $subject-
key, $metadataversion-oid){
 (: omitted: create empty ClinicalData node if not already present :)
 (: use XSLT to generate a SubjectData :)
 let $insertion := transform:transform($odm/Study,
xs:anyURI("../subjectDataGenerator.xsl"), <parameters><param
name="SubjectKey" value="{$subject-key}"/><param
name="MetaDataVersionOID" value="{$metadataversion-
oid}"/></parameters>)
 return
 update insert $insertion into $odm/ClinicalData[@StudyOID=$study-
oid and @MetaDataVersionOID=$metadataversion-oid]
};

Listing 2: Adding a subject to ODM as an example for Business Logic realized in XQuery.

Listing 2 shows subject adding as an example for business logic in XQuery. The code
consists of two functions: The first checks if adding this subject is possible by querying
the database for a subject with the same subject-key in the given Study, and returns an
XML fragment indicating the error in that case. Otherwise the second function, that
builds the SubjectData, is called. This function makes use of an XSLT style sheet that
generates the XML nodes for the subject’s data according to the definition given in the
Study element. Values for SubjectKey and MetaDataVersion are passed as parameters
to the style sheet. Afterwards, the generated SubjectData node is written to the
ClinicalData element. Notice the tight data layer integration in XQuery, accessing the
database via the collection function, and the lean code of applying a transformation
and writing back to the database. Unlike the traditional stack, there is no conversion of
relational schema to objects, neither implicit by a framework nor explicit by coding.

<xsl:template match="Study">
 <html>
 <head>
 <title>
 <xsl:value-of select="$txtStudyID"/><xsl:text>
</xsl:text><xsl:value-of select="$study-oid" />;

78

 <xsl:value-of select="$txtPatientID"/><xsl:text>
</xsl:text><xsl:value-of select="$patient-oid" />
 </title>
 <xf:model>
 <xf:instance id="data_instance"
xmlns="http://www.cdisc.org/ns/odm/v1.3"
xmlns:odm="http://www.cdisc.org/ns/odm/v1.3"
resource="/exist/x4t/patient/getClinicalData.xql?{$URLparameters}"
method="get"/>
 </xf:model>
 </head>
 <body>
 <xsl:apply-templates
select="MetaDataVersion[@OID=$metadataversion-oid]">
 </body>
 </html>
</xsl:template>
...
<xsl:template name="itemInput">
 <xsl:param name="storagePath"/>
 <xsl:variable name="destination"><xsl:value-of
select="$storagePath"/>/odm:ItemData[@ItemOID='<xsl:value-of
select="@OID"/>']/@Value</xsl:variable>
 <xsl:if test="@DataType='text' or @DataType='string'">
 <xf:textarea ref="{$destination}" />
 </xsl:if>
</xsl:template>
Listing 3: XSLT style sheet to generate the XForms form presentation.

The generation of forms for data capture by researchers is a main aspect of the form
handler. The XML basis allows the usage of a single model through all layers and
concerning the presentation layer, the ODM patient-specific SubjectData element is
used as the XForms’ model. The user interface consists of XForms code embedded in
XHTML that is generated based on the ODM Study element defining the study. The
generation is done via XSLT. For every element within Study, there is a matching
XSLT template to construct the corresponding view elements, e.g., Study is used to
generate the page header, containing information about the study. StudyEvent, Form
and ItemGroup are used to generate further grouping, where an ItemGroup results in
an XHTML table containing items row-wise. Items are converted to XForms elements
that support input based on their data type, e. g., textual input fields for strings and date
picker for dates. Listing 3 shows parts of the XSLT template, which in total consists of
nearly 900 lines, to illustrate the way it works. The xsl namespace contains XSLT
elements, the xf namespace is for XForms elements and the default namespace is
XHTML. The xf:model element contains the XForms model, in this case the instance
is loaded from an URL. The apply-templates element is the entry point of the
ODM traversal that results in calling the template element named itemInput. The
given example shows the xf:textarea element that is rendered if the data type is
plain text.

79

The link to the corresponding ItemData element is generated along the template calling
path and handed over in the variable storagePath: As the template traverses the
hierarchy of the study by following the element references, an XPath expression is
constructed by analyzing the OID attributes resulting in a path as shown in Listing 4.
That expression ($destination in Listing 3) is used as reference attribute within the
XForms input element. Note again that this expression used in the presentation layer is
totally compatible with the data model used in the database.

4.3 Details of the Implementation
Several implementations of XML databases and XForms interpreters exist. To allow a
broad adoption of the x4T system by clinical sites, it is necessary to keep the per-
instance costs low. Thus, we have searched for free software implementations that fulfill
our requirements concerning sufficient functions and stability. In an early project phase,
we found BaseX1 and eXist2, which are free XML databases and suitable in general.

XForms interpreter have to be classified into server and client side implementations. As
our scenario does not allow the installation of additional software on the client side,
only server-side implementations are relevant here. There are two major free
implementations of those, Orbeon3 and betterFORM4.

The eXist database is distributed with an integrated betterFORM implementation and
developers of both cooperate. Both applications are developed and maintained by
companies offering commercial support. They also have an active community
discussing on mailing lists. The integration of betterFORM and eXist has been the core
driver to prefer these implementations over the other ones mentioned.

Figure 4 shows a form generated by betterFORM in a Web browser. It is based on
XForms that is generated by XSLT from the ODM definition.

The described software stack has been implemented and is currently used for setting up
a dermatology database that is expected to comprise thousands of patients. Though it is
currently too early for any form of final judgement, preliminary experiences look
promising: The system replaces an Excel file that was used to store data that was
manually extracted from the source system. The ODM-based approach and the XML
technology-based generation of data structure and presentation layer now allow for a

1 http://basex.org/

2 http://exist-db.org

3 http://www.orbeon.com/

4 http://www.betterform.de/en/index.html

ClinicalData[@StudyOID = "ST.1" and
@MetaDataVersionOID="MD.1"]/SubjectData[@SubjectKey="Subject1"]
/Study[@StudyOID="SE.1"]/FormData[@FormOID="FO.1"]
/ItemGroupData[@OID="IG.1"]/ItemData[@ItemOID="IT.1"]
Listing 4: XPath generated by traversing ODM Study element to access ItemData.

80

quick adaption on setup. At runtime, there are indications for an enormous benefit
concerning the staff’s time used for documentation. Technically, the study setup is
facilitated by the fact that the study definition solely depends on the ODM file and
adoptions can be done by changing that.

Figure 4: Form generated by betterFORM based on XForms standard.

5 Conclusion and Future Work
We have designed and implemented an architecture for generating forms in the clinical
trials domain based on an XML definition. We are currently exploring the usability,
performance, and scalability for studies under live conditions comprising up to thousand
patients.

It has turned out to be beneficial to be able to generate studies out of the ODM
definitions for which a variety of graphical editors is available5. We have found that
clinical staff in research driven studies often uses Excel-based spreadsheets that are
manually implemented and hard coded for each study. The setup time for studies is
reduced considerably by automatic creation as described in this paper, and is immensely
simplified by the XML stack. The ability to generate forms even attracted the interest of
physicians who are not interested in the Single Source approach in general. The focus of
our research has not primarily been on software architecture, but to handle a domain
specific integration problem; the software architecture presented in this paper has turned
out to be very helpful.

5 e.g. ODM Study Designer (http://www.xml4pharma.com/CDISC_Products/ODMDesigner.html) or
STUDY COMPOSER (http://www.xclinical.com/en/study-composer)

81

http://www.xml4pharma.com/CDISC_Products/ODMDesigner.html
http://www.xclinical.com/en/study-composer

Prospectively an assisted process execution of studies is preferable in order to ensure
that the actual study activities comply with the study protocol. There is an addition to
ODM called SDM [CDISC, 2010b] that defines how study execution information can
be embedded into ODM. As the SDM extension is quite new, we are not aware of
specific modeling tools. The generic approach of business process modeling as
described by [Schönthaler et al., 2011] is based on Petri nets and their extension into
XML nets, and on tool support through the Horus Business Modeler; our plan is to
exploit both in the clinical research domain. As Horus supports XML nets, we expect it
to fit well into the XML architecture stack.

Acknowledgements
The authors would like to thank the anonymous reviewers for their constructive
comments. The work of Christian Forster was supported by Deutsche
Forschungsgemeinschaft (DFG) under grant DU 352/5-1 AOBJ: 570946.

References
[Berglund et al., 2010] Berglund, A., Boag, S., Chamberlin, D., Fernández, M. F., Kay,
M., Robie, J., and Siméon, J. (2010). XML Path Language (XPath) 2.0. W3C
recommendation, W3C. http://www.w3.org/TR/2010/REC-xpath20-20101214/.

[Bhattacharya and Neamtiu, 2011] Bhattacharya, P. and Neamtiu, I. (2011). Assessing
Programming Language Impact on Development and Maintenance: A Study on C and
C++. In Proceeding of the 33rd International Conference on Software Engineering,
ICSE ’11, pages 171–180, New York, NY, USA. ACM.

[Boag et al., 2010] Boag, S., Chamberlin, D., Fernández, M. F., Florescu, D., Robie,
J., and Siméon, J. (2010). XQuery 1.0: An XML Query Language (Second Edition).
W3C Recommendation, W3C. http://www.w3.org/TR/2010/REC-xquery-20101214/.

[Boyer, 2009] Boyer, J. M. (2009). XForms 1.1. W3C recommendation, W3C. http://-
www.w3.org/TR/2009/REC-xforms-20091020/.

[Bray et al., 2008] Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., and
Yergeau, F. (2008). Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C
recommendation, W3C. http://www.w3.org/TR/2008/REC-xml-20081126/.

[Cagle, 2008] Cagle, K. (2008). Metaphorical Web and XRX. O’REILLY Community.
http://broadcast.oreilly.com/2008/09/metaphorical-web-and-xrx.html.

[CDISC, 2010a] CDISC (2010a). Operational Data Model. Technical Report 1.3.1,
Clinical Data Interchange Standards Consortium.

[CDISC, 2010b] CDISC (2010b). Study Design Model in XML. Norm 1.0, Clinical
Data Interchange Standards Consortium.

[Davis and Maguire, 2011] Davis, C. and Maguire, T. (2011). Xml technologies for
restful services development. In Proceedings of the Second International Workshop on
RESTful Design, WS-REST ’11, pages 26–32, New York, NY, USA. ACM.

[Dugas et al., 2009] Dugas, M., Breil, B., Thiemann, V., Lechtenbörger, J., and Vossen,
G. (2009). Single source information systems to connect patient care and clinical
research. Stud Health Technol Inform, 150:61–65.

82

[Dziuballe et al., 2011] Dziuballe, P., Forster, C., Breil, B., Thiemann, V., Fritz, F.,
Lechtenbörger, J., Vossen, G., and Dugas, M. (2011). The Single Source Architecture
x4T to Connect Medical Documentation and Clinical Research. In Proc. 23rd
International Congress of the European Federation for Medical Informatics (MIE
2011).
[Fowler, 2003] Fowler, M. (2003). Patterns of enterprise application architecture.
The Addison-Wesley signature series. Addison-Wesley.

[IHE International, 2009] IHE International (2009). Ihe iti technical framework
supplement retrieve form for data capture (rfd).

[Kaufmann and Kossmann, 2009] Kaufmann, M. and Kossmann, D. (2009).
Developing an Enterprise Web Application in XQuery. In Proceedings of the 9th
International Conference on Web Engineering, ICWE ’9, pages 465–468, Berlin,
Heidelberg. Springer-Verlag.

[Kay, 2007] Kay, M. (2007). XSL Transformations (XSLT) Version 2.0. W3C
Recommendation, W3C. http://www.w3.org/TR/2007/REC-xslt20-20070123.

[Kepser, 2004] Kepser, S. (2004). A Simple Proof of the Turing-Completeness of
XSLT and XQuery. In Usdi, T., editor, Extreme Markup Languages 2004.

[McCreary, 2007] McCreary, D. (2007). Introducing the XRX Architecture:
XForms/REST/XQuery. Dr. Data Dictionary. http://datadictionary.blogspot.com/2007/-
12/introducing-xrx-architecture.html.

[Myrtveit and Stensrud, 2008] Myrtveit, I. and Stensrud, E. (2008). An empirical
study of software development productivity in C and C++. In Norsk
informatikkonferanse, NIK 2008.

[Robie et al., 2011] Robie, J., Chamberlin, D., Dyck, M., Florescu, D., Melton, J., and
Siméon, J. (2011). XQuery Update Facility 1.0. W3C Recommendation, W3C. http://-
www.w3.org/TR/2011/REC-xquery-update-10-20110317/.

[Schönthaler et al., 2011] Schönthaler, F., Vossen, G., Oberweis, A., and Karle, T.
(2011). Geschäftsprozesse für Business Communities — Modellierungssprachen,
Methoden, Werkzeuge. Oldenbourg.

[Sperberg-McQueen, 2005] Sperberg-McQueen, C. M. (2005). Xml. Queue, 3:34–41.

[Sun Microsystems, 2001] Sun Microsystems (2001). Core J2EE Patterns - Data Access
Object. http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html.

[Tatarinov et al., 2002] Tatarinov, I., Viglas, S. D., Beyer, K., Shanmugasundaram, J.,
Shekita, E., and Zhang, C. (2002). Storing and querying ordered xml using a relational
database system. In Proceedings of the 2002 ACM SIGMOD international conference
on Management of data, SIGMOD ’02, pages 204–215, New York, NY, USA. ACM.

[Wikibooks, 2010] Wikibooks (2010). Web Development with XRX. http://-
en.wikibooks.org/wiki/XRX.

83

	Association for Information Systems
	AIS Electronic Library (AISeL)
	Spring 6-20-2012

	Exploiting XML Technologies in Medical Information Systems
	Christian Forster
	Gottfried Vossen
	Recommended Citation

	1 Introduction
	2 Related Work
	3 The Architectural Approach
	3.1 The Components: XML Family as Technical Base
	3.1.1 XML
	3.1.2 XQuery
	3.1.3 XSLT
	3.1.4 XForms

	3.2 The Composition: A Homogeneous Structure

	4 Our case: x4T Form Handler
	4.1 Scenario Overview
	4.2 Towards Practical Usage of x4T
	4.3 Details of the Implementation

	5 Conclusion and Future Work
	Acknowledgements
	References

