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ABSTRACT 

Attributed to climatic change and uncertainty of weather conditions, drought has become a recurrent phenomenon. It is 

manifested by erratic and uncertain rainfall distribution in rainfall dependent farming areas. The hitherto methods of 

monitoring drought employed conventional methods that rely on availability of metrological data. The objectives of this 

research were to: 1) identify the critical factors for efficiently implementing geo-spatial information for drought monitoring, 

2) develop a new approach for extracting knowledge from satellite imageries for real time drought monitoring in food 

insecure areas, and 3) validate and calibrate the new approach for national and regional applications. For this research, 

satellite data from MSG and NOAA AVHRR were used. The preliminary results confirmed that real time MSG satellite data 

can be used for monitoring drought in food insecure areas. The output of this research helps decision makers in taking the 

appropriate actions in time for saving millions of lives in drought affected areas using advanced satellite technology. 

 

Keywords: Data mining; Geospatial Information; Knowledge Discovery; Satellite Images; AgIS 

 

INTRODUCTION 

Due to climate change and uncertainty of weather conditions, drought has become a recurrent phenomenon. It is manifested 

in erratic and uncertain rainfall distribution in rainfall dependent farming areas, especially in arid and semi arid ecosystems  

Frequent and severe droughts have become one of the most important natural disasters in sub-Saharan Africa resulting in 

serious economic, social and environmental crisis. Ethiopia is one of the countries that have been affected by the drought in 

the sub-Saharan region. As a result, millions of lives have been lost due to recurring droughts in the past several decades. In 

addition, the cycle of recurrence is shortening while the area of coverage is widening, affecting additional parts of the country 

that were once unaffected. To respond to the effects of drought, Ethiopia has been conducting drought assessment and 

monitoring missions. 

In Ethiopia, the hitherto efforts of drought assessment and monitoring have been based on conventional methods, which rely 

on the availability of metrological data. Gathering metrological data is very tedious and time consuming. Consequently, 

millions of lives may be lost before the actual information is submitted to decision makers. The information produced using 

conventional approaches is usually highly uncertain for employing rescue missions. Therefore, producing reliable and timely 

information for decision makers is of utmost importance.  

Technologically, there are several drought indices operational in drought assessment and monitoring that are based on rainfall 

data. These indices are usually not easily accessible and are rarely useful for decision makers (Ji and Peters, 2003). The 

common approach used to derive the necessary information is the use of a drought monitoring index, such as Palmer Drought 

Monitoring Index (PDMI), which was widely utilized by the U.S. Department of Agriculture (Jain et al., 2009). Mckee et al. 

(1993) developed a standard precipitation index (SPI), which can identify emerging drought months for regional and global 

applications. Mishra and Desai (2005) have adopted SPI for parts of India and developed a drought severity area frequency 

curve. These drought severity and monitoring indices are based on point data that is measured in different metrological 

stations located in a wide area, resulting in high uncertainty of their application in real time rescue missions. 

http://us.mc1133.mail.yahoo.com/mc/compose?to=satnafu@cs.aau.edu.et
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Presently, decision makers in developed countries use remote sensing for getting the desired information. Remote sensing 

data or data from satellite sensors can provide continuous datasets that can be used to detect the onset of a drought, its 

duration and magnitude (Thiruvengadachari and Gopalkrishana, 1993). Remote sensing is far superior to conventional 

methods (Jain et al., 2009) for drought monitoring and early warning applications. The challenge in applying remote sensing 

data in drought monitoring and early warning is that the various indices serving this purpose have to be validated and 

calibrated to the intended region and ecological conditions (Singh et al., 2003; Jain et al., 2009). So far, there had been no 

efforts, in Ethiopia, to validate and calibrate remote sensing data in food insecure areas. Thus the available information is 

unclear, uncertain and not easily accessible by the decision makers (FEWS NET, 2009). 

The main objective of this research was: mining knowledge from high temporal resolution satellite products for drought 

monitoring and early warning system. The specific objectives were: 1) identify the critical factors for efficiently 

implementing geo-spatial information for drought monitoring, 2) develop a new approach for extracting knowledge from 

satellite imageries for real time drought monitoring in food insecure areas, and 3) validate and calibrate the new approach for 

national and regional applications. 

The study has the following research questions: 

1. Is it possible to model and predict drought as a spatial object in food insecure areas? 

2. How would one model drought indicators taking into account uncertainties related to class definitions of drought? 

3. What are the appropriate satellite imageries temporal resolutions for modeling drought as a 3 D spatial object? 

Advanced technology satellite products with high temporal resolution (every 15 minute data for example from MSG), are 

cost effective, and can serve to detect the onset of a drought, its duration and magnitude. Such information can help decision 

makers to take appropriate actions in a timely manner, reduce the impact of drought conditions, and mitigate its adverse 

effect on the environment. 

The remaining parts of this paper are organized as follows. Section two presents the literature review, section three, the 

detailed methodological approach of the research, section four, GIS data processing and preliminary results, and section five 

presents the conclusions. 

LITERATURE REVIEW 

Drought monitoring 

Drought is defined as an extended period of abnormally dry weather that causes water shortage and damage to vegetation 

(Rulinda, et al., 2009). Drought is also defined as prolonged abnormally dry period when there is not enough water for users’ 

normal needs, resulting in extensive damage to crops and loss of yields (Wilhite, 2005). These definitions of drought are 

conceptual definitions and are the basis for the operational definition, which focuses on identifying the beginning, end, spatial 

extent and severity of the drought in a given region and is based on scientific reasoning. The analysis is done using hydro-

metrological information and is beneficial in developing drought policies, early warning monitoring systems, mitigation 

strategies and preparedness plans (Smakhtin and Hughes, 2004). There are three types of drought: metrological, agricultural 

and hydrological (Obasi, 1994). The focus of this research is on agricultural drought analysis and early warning system. 

Monitoring agricultural (vegetative) drought usually requires a large amount of temporal data, and remote sensing 

technologies. The major source of such data is the normalized difference vegetation index (NDVI) (Rulinda, et al., 2009). 

NDVI is commonly calculated by using image data from polar orbiting satellites, which carry sensors detecting radiation in 

red and infrared wavelengths (Fensholt et al., 2006). NDVI is used in this case by comparing the deviation of the long time 

period data with the time period (window) of interest (i.e., the deviation of the current NDVI from past average values). The 

formulas for calculating NDVI and deviations of NDVI (Dev_NDVI) are presented in the method section of this paper. 

In the analysis of droughts, the onset, duration and severity of a drought are often difficult to determine and the 

characteristics may vary significantly from one region to another (Rulinda, et al., 2009). In rainfall dependent agriculture 

production area, seasonal rainfall variability is inevitably reflected in both highly variable production levels and in the risk-

averse livelihoods of local farmers (Cooper et al., 2008). Africa has a long history of rainfall fluctuations of varying lengths 

and intensities (Nicholson, 1994). Recent studies showed different behavior of rainfall trends in Africa, at different spatial 

and temporal scales. Recent study also demonstrated a decrease in rainfall in East Africa between 2003 and 2008 (Swenson 

and Wahr, 2009) where drought and famine situations were periodically reported (FEWS NET, 2009). Drought has 

particularly negative impact on agricultural production in the Eastern African region, as most of its agriculture is dependent 

on rainfall (Thorton et al., 2009) rather than irrigation.  
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The conventional approach to drought monitoring and early warning systems using ground based data collection is tedious, 

time consuming and difficult (Prasad et al., 2007). In recent years, remote sensing data has been used for monitoring agro-

climatic conditions, the state of the agricultural fields, vegetation cover and to estimate crop yield in various countries. In 

particular, the advanced Very High Resolution Radiometer (AVHRR) NDVI data has been used in vegetation monitoring, 

crop yield assessment and forecasting (Hayes et al., 1982; Benedetti and Rossini, 1993; Quarmby et al., 1993; Unganai and 

Kogan, 1998; Kogan et al., 2003). The National Oceanic and Atmospheric Administration (NOAA) AVHRR series satellite 

data provides a long term record of NDVI data that can be used in the prediction of crop yield (Prasad et al., 2007), which is 

part of drought monitoring, in that crop yield is very important for deciding food assurance of a given region. 

Presently, NDVI is used as a primary source of data in remote sensing based drought monitoring. Rulinda, et al. (2009) 

indicated that other parameters, which can best explain drought, such as soil moisture, rain fall and surface temperature were 

not included in past analyses. The authors further added that the development of drought monitoring and early warning 

systems need a priori knowledge of the characteristics of the study areas’ vegetation and the time of the day for the 

acquisition of the satellite imageries. However, past research has not addressed these factors (Rulinda et al., 2009). 

To summarize the review, the following research agenda was identified for this study: 

1. The accuracy of drought monitoring using NDVI is highly dependent on the vegetation type of a given area. If the 

vegetation type is not known, misleading information (e.g. false drought warning) may be obtained (Rulinda, et al., 

2009). Therefore, a priori knowledge of the vegetation type of the area under monitoring has to be examined, the 

NDVI values calibrated and the model validated. 

2. Past drought monitoring and early warning systems were using only NDVI as data input  and other parameters such 

as soil moisture, rain fall and surface temperature, which can be obtained from satellites and have direct relation to 

drought were not included (Rulinda, et al., 2009). 

3. The time of the day when the satellite imageries were acquired has a great influence on the accuracy of the 

information, and thus needs further research (Rulinda et al., 2009). 

4. In the past, the yield estimation using conventional methods of drought monitoring and early warning systems were 

found to be very far from reality. These discrepancies resulted in repeated complains and have been seriously 

affecting the quality of drought-response decisions (FEWS NET, 2009). 

 

Data mining and satellite technologies 

Data mining is a technique that uses a variety of data analysis tools to discover patterns and relationships of physical 

variables. This technique has shown promise in multiple disciplines bringing together techniques from machine learning, 

pattern recognition, statistics, databases, and visualization to address the issue of information extraction from large databases 

(Cabena et al., 1998; Groth, 1998). Studies in ecological research have also introduced data mining techniques and found that 

these techniques are a powerful tool in addressing complex ecological problems handling both numeric and categorical data 

(De’ath and Fabricius, 2000). Although drought effects on vegetation often result from complex atmospheric and biophysical 

phenomena, data mining could provide mechanisms for understanding drought characteristics in space and time (Tadesse et 

al., 2004; Harms et al., 2002). These studies illustrate the potential of data mining for drought analysis and prediction. 

Extracting relevant information from the huge amounts of available data has been a challenge for decision makers and 

practitioners in different disciplines (Han and Kamber, 2006). The analysis and conversion of large amounts of data to 

meaningful information, calls for a new generation of computational techniques and tools, such as knowledge discovery from 

database (KDD) and data mining. Satellite remote sensing is one example of data source used for various applications. 

Remote sensing is the science and art of obtaining information about an object, area or phenomenon through the analysis of 

data acquired by a device that is not in contact with the object, area or phenomenon under investigation (ITC, 2004). The 

process involved in acquiring remote sensing data is presented in Figure 1 and include A= energy source or illumination; B= 

radiation and atmosphere; C= interaction with the target; D= recording of energy by the sensor (satellite); E= transmission, reception and 

processing; F= Interpretation and analysis; G= application). The process of aquiring remote sensing data, depending on the 

platforms used, includes two main categories: airborne remote sensing and space borne remote sensing. Airborne remote 

sensing is carried out using aircraft equiped with sensors (cameras), with a flight heights of 100m to 40km (ITC, 2004). 

Space borne remote sensing is carried out using satellites positioned at orbit at about 150km and above (ITC, 2004). This 

research is mainly concerned with satellite remote sensing. 

 

Satellites are artificial bodies placed in orbit around the planet for observing the earth. Details on satellite products used in 

this research are presented in Appendix 1. For example, the primary interest of Earth Observing System (EOS) from MODIS 

satellite program is to study the role of terrestrial vegetation in large global process with the goal of understanding how the 
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earth functions as a system. This requires an understanding of the global distribution of vegetation types as well as their 

biophysical and structural properties and spatial variation (Huete, 2002). Vegetation indices (VI) are used to extract such 

information. VIs are spectral transformation of two or more satellite bands designed to enhance the contribution of vegetation 

properties and allow reliable spatial and temporal inter-comparisons of terrestrial photosynthetic activity (Huete, 2002). 

 

Figure 1: The seven major elements involved in acquiring remote sensing data (adapted from Canada Center for Remote Sensing, 2007) 

MATERIALS AND METHODS 

Study area 

Five study sites will be selected for this research. These study sites are located in five different drought affected areas of 

Ethiopia. The specific localities of the sites will be determined after the researchers have gathered preliminary data and 

information at federal, regional and local levels. These sites will be used to develop the analysis model for the drought years 

of 2009 and 2010. Currently the first author is conducting preliminary surveys of the selected sites which include an 

assessment of the socio-economic status of the proposed study sites. Spatial and attribute data from the Central Statistical 

Authority will be used in the preliminary reconnaissance survey of the localities to be selected. 

Methodology 

Case study for assessing the critical factors 

To identify the determinant factors for efficiently utilizing geospatial information for drought monitoring, exploratory case 

study methodology is used. Case study is an empirical inquiry that investigates a contemporary phenomenon within its real 

life context (Yin 2003). A semi-structured interview is used to select a set of potential sites. The units of analysis in this case 

study are both national and international drought monitoring organizations in Ethiopia and with special emphasis on the use 

of geospatial information technology. Once the determinant factors are identified, the appropriate information system is 

designed for drought monitoring and early warning systems. The interview questions are available from the first author. 

Data mining for modeling drought 

In this study, Cubist1 data mining software is used to generate models from a combination of satellite, climate, and 

biophysical data. The technique is generally referred to as regression-tree modeling. Cubist analyzes data and generates rule-

based linear models that are a collection of rules, each of which is associated with a linear expression for computing a target 

value (Tadesse et al., 2005). To acheive a more reliable estimate of accuracy, the data is automatically divided into a number 

of folds used to validate the rules. The data is divided into five blocks of almost equal size and target value distribution. For 

each block, Cubist constructs a model from the cases in the remaining blocks and tests it on the cases in the hold-out block. 

The analysis uses data from a satellite source, climate based drought indices, and biophysical variables. For the climate data, 

drought indicators are calculated for weather station locations (in the five study sites). These locations became the model 

generation locations. The satellite data and many of the biophysical, variables are extracted using geographic information 

systems (GIS) techniques for the same weather station locations. The Standardized Precipitation Index (SPI) and the Palmer 

Drought Severity Index (PDSI) are used to define and quantify precipitation deficits (McKee et al., 1994; Palmer, 1965). The 

SPI and PDSI are calculated in such a way that the values correspond to the temporal resolution of the satellite data. Satellite-

derived measures of vegetation stress, the Percent Average Seasonal Greenness (PASG) are calculated based on smoothed 

temporal NDVI curve characteristics. 

ILWIS 3.6 software is used in the analysis of the remote sensing imagery. The real time data, which is downloaded from 

AtlanticBird satellite, is used to produce the drought monitoring and early warning systems. During the analysis, cloud 

contaminated pixels are removed from each individual image by examining the reflectance and temperatures. After 

completing the preprocessing of the satellite images, the NDVI values of the images are calculated. NDVI is calculated using 

Equation 1: 
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rednir

rednirNDVI
ρρ

ρρ

+
= −

     (1) 

where redρ  (0.4–0.7 mm) and nirρ (0.75–1.1 mm) are reflectance in red and near infrared bands of the satellite imageries. 

NDVI is the most commonly used vegetation index and has been shown to be related to vegetation vigor, percentage green 

cover and biomass (Myneni and Asrar, 1994; Anyamba and Tucker, 2003; Tucker and Stenseth, 2005). It is a non-linear 

function that varies between -1 and +1, and is undefined when both redρ  and nirρ are zero. NDVI values for vegetated land 

areas generally range from approximately 0.1 to 0.7, with values greater than 0.5 indicating dense vegetation. Values lower 

than 0.1 indicate near zero vegetation, such as in barren area, rock, sand or snow (Tucker, 1979). 

The daily NDVI values are aggregated into decadal basis. In a year, there are 36 decades (one decade is equal to 10 days).  

The decadal NDVI values are compared with the long-term mean NDVI value of the same decade from NOAA AVHRR 

satellite data. The difference of these two data elements is called deviation of drought severity index, or the deviation of the 

NDVI (Dev_NDVI) (Tucker, 1979). Dev_NDVI is calculated using Equation 2. When Dev_NDVI is negative, it indicates 

below normal vegetation condition and, therefore might suggest a drought situation, if this condition remains for a prolonged 

period (Tucker, 1979). We use Dev_NDVI for spatially locating the occurrence of drought. This information can be used by 

decision makers in setting drought related actions and policies 

 

iMeanNDVIiNDVINDVIDev ____ −=    (2) 

where iNDVI _  and iMeanNDVI __ are the actual 10 day composite NDVI, and  the long term mean for the same 

decade NDVI values respectively. The overall conceptual framework of the information produced from the various 

parameters mentioned above is integrated and the knowledge is delivered to the decision maker in a user friendly format. 

This can help decision makers in setting an action plan that is likely to save drought victims in food insecure areas. The 

conceptual framework is depicted in Figure 2.  
 

 

Figure 2: Conceptual framework demonstrating the process used to produce information for decision making (Tadesse et al., 2005). 

The overall method for this research is presented in Figure 3 which illustrates the major steps in Knowledge discovery from 

satellite images for real time drought monitoring and early warning systems. The bbreviation for the independent variables, 

NDVI = normalized difference vegetation index; SM = soil moisture; ST = surface temperature; and RF = rainfall. 
 

MATERIALS 

For this research, satellite data from Meteosat Second Generation (MSG), National Oceanic and Atmospheric Administration 

(NOAA) AVHRR and Moderate Resolution Imaging Spectroradiometer (MODIS) are used (Appendix 1). 

GIS DATA PROCESSING AND PRELIMINARY RESULTS 

As mentioned above, NDVI is one of the best drought assessment parameters. In this section, we present the status of drought 

conditions in parts of Eastern African and Southern Asian countries in 2009 using the NDVI parameter. This analysis was 

conducted with the aim of testing the applicability of MSG data for spatio-temporal drought monitoring. The preliminary 

results were obtained by using October 2009 MSG data and the long term average NDVI NOAA AVHRR data. The raw 

MSG data was obtained from the Ethiopian Metrological Agency in Addis Ababa. The long term records of decadal NDVI 
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data from NOAA, was downloaded from http://earlywarning.cr.usgs.gov/adds/datathemephp and covered the first decade of 

October from 1982 to 2009. Using these two datasets, the deviation of NDVI was calculated.  

 

Figure 3: The major steps in Knowledge discovery from satellite images. 

 

The actual drought condition was obtained by comparing the NDVI for the first decade of October 2009 with the long term 

mean NDVI using NOAA satellite data. The data was analyzed using ILWIS 3.6 software. The 10 days images of MSG (1-10 

October 2009) were imported to ILWIS raster image format (Figure 4), using the “Multiple times in one file” option. This 

means that we have all the 10 bands stacked (maplist) together and ready for the NDVI calculation. After importing the three 

bands image data to ILWIS 3.6 raster format, a script was written for calculating the deviation of NDVI (Dev_NDVI). The 

sample script is presented in Appendix 2. 

 

Figure 4: MSG data retriever of ILWIS 3.6 for importing the raw data to raster image. 

 

Our results show that about 40% of the area observed exhibit negative deviation (Figures 5 and 6). This indicates drought 

conditions in 2009 in east Africa. These results align with recorded rainfall in 2009 in most parts of Ethiopia. That is, the 

rainfall amounts recorded were below the overall average (FEWS NET, 2009). 

Satellite dataSatellite dataSatellite dataSatellite data    Ground dataGround dataGround dataGround data    

Real time 
MSG data 

NOAA AVHRR 
data 

MODIS data Meteorological data Agricultural yield 
data 

Dependent variable (crop yield) and 
metrological data 

Independent variables (NDVI, SM, 
ST, RF)  

Analysis, model building, validation and calibration of model 

Real time drought monitoring and early warning 
information delivery system 

New approach for drought monitoring and early warning system 

http://earlywarning.cr.usgs.gov/adds/datathemephp
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Figure 5: Dev_NDVI comparison of the change in vegetation 

 

Figure 6: Dev_NDVI spatial distribution.  

 

In figure 6, the red colors are areas where there is no change or positive deviation from the long-term average. The blue colors are 

areas with negative deviations indicating the prevailing drought. The black colors are country boundaries. The analysis of 

Vegetation Condition Index (VCI) also shows that there had been drought in the study area (Figure 7). In figure 7, the 

areas in white are areas where there had been no vegetation in the past and/or found to be water bodies. Country boundaries are 

marked in red. VCI shows (in percentages), the vegetation condition of the actual decade NDVI compared to long term 

maximum and minimum of the corresponding decade. In principle, about 50% reflects a fair vegetation condition. Our 

geo-spatial analysis shows that about 37% of the total area was found to have less than 40% VCI, indicating the 

occurrence of drought. Areas with below normal vegetation cover were located in the central part of Sudan, and Northern 

and Southeast Ethiopia. Only 18% of the area was found to have optimal and above normal vegetation conditions (Figure 

7). These areas are found in the central part of Sudan and Northwest corner of Ethiopia. 

 

 

Figure 7: Vegetation Condition Index (VCI) map for monitoring drought.  
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CONCLUSSIONS 

The findings of this research are based on an ongoing PhD research project. The preliminary results produced promising 

scientific outputs for implementing satellite data for drought monitoring using data mining techniques. The answer to the 

research question; is it possible to model drought as spatial object is: yes. At present, the above research is in its early stages 

and there is some convincing evidence that it is possible to model and predict drought conditions using real time MSG data. 

The research questions; how to model drought indicators taking into account uncertainties related to class definitions of 

drought, and what are the appropriate satellite imageries temporal resolutions for modeling drought as a 3 D spatial object, 

are still pending and will be addressed in future research. 

The preliminary results confirm that real time spatio-temporal MSG data can be used for drought monitoring and early 

warning systems in food insecure areas. In 2009, there had been drought in most parts of Ethiopia and Sudan. Our analysis 

confirms this fact. The drought was due to rainfall shortage during the crop growing season (July to September). 

Water and food shortage are a major concern and our results can be helpful in using advanced satellite technology for 

effective drought monitoring and early warning systems in various regions. Combined with proper policies, these systems can 

help avert femine and starvation in food insecure regions. In the past, satellite technologies have mostly been used in areas of 

meteorological applications. In this research, the main emphasis is in mining knowledge for drought hazard assessment and 

saving millions of lives that are being affected by recurring droughts. The output of this research helps decision makers to 

take the appropriate actions, in time for saving millions of lives in drought affected areas using advanced satellite technology. 
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APPENDIX 1: DATA PROPOSED TO BE USED IN THIS RESEARCH 

MSG data 

 MSG stationed over Africa provides a continuous eye in the sky. Its recordings provide relevant (dynamic) environmental 

variables that can be used to assess the actual conditions of the area’s natural resources. Details about this satellite are 

obtained from Maathuis et al. (2006). The advanced Spinning Enhanced Visible and Infrared Imager (SEVIRI) radiometer 

onboard the MSG series of geostationary satellites enables the Earth to be scanned in 12 spectral channels from visible to 

thermal infrared at 15 minute intervals. The specifications of SEVIRI have been chosen carefully to match operational 

requirements. Each of the 12 channels has one or more specific applications, either when used alone or in conjunction with 

data from other channels. Meteosat-8 data can be directly received via the EUMETSAT Multicast Distribution System 

(EUMETCast) or obtained from the archive at EUMETSAT (http://archive.eumetsat.int/). 

From its geostationary position Meteosat-8 continuously scans the Earth surface and transmits the data to the EUMETSAT 
Primary Ground Station in Darmstadt (Germany). The received data is pre-processed and rectified into a so called Level 
1.5 data-format; furthermore the data is compressed and split into small data packages. These packages are sent to the 
uplink station in Usingen (Germany) and are subsequently transmitted to the HotBird-6 satellite (combined with some 
other services) for European reception. Figure 2-1 shows how EUMETCast fits within the overall EUMETSAT Ground 
Segment architecture. 

The dissemination service for Africa is a C-band based transmission also covering selective regions outside the EUMETSAT 

Member States and Cooperating States. For Africa the EUTELSAT AtlanticBird-3 satellite carries the C-Band dissemination 

service for MSG. The format of the C-band dissemination is the same as for HotBird-6 dissemination. The data is re-

transmitted to AtlanticBird-3 via the Fucino ground station in Italy (Figure 2-1). C-Band covers the frequencies 3.70 GHz to 

4.2 GHz. The EUMETSAT Council decided to use EUTELSAT’s AtlanticBird-3 satellite for the C-Band dissemination of 

MSG data to Africa as this frequency is less susceptible to intensive rainfall as it causes attenuation of the Ku-band signal 

which might result in reception failure. This satellite is stationed at 5° West and is one of EUTELSAT’s ‘Atlantic Gate’ 

series of satellites. The C-band beam used covers the whole of Europe and Africa.  

 

 

Figure 2-1: EUMETCast system overview for Ku and C-Band reception (Maathuis et al., 2006). 

NOAA AVHRR 

NOAA is owned by the U.S. government. The sensor on board NOAA mission that is relevant for earth observation is the 

advanced very high resolution radiometer (AVHRR). The platform is 850 km from the earth at 98.7
0. 

Cloud cover map based 

on AVHRR data are used for rainfall estimates, which can be used in crop growing models. Another derived product of 

AVHRR data is the NDVI, which is used for quantifying quantity of biomass (ton per ha). NDVI data is used in crop growth 

models and climate change models. 

http://archive.eumetsat.int/
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NOAA and NASA have jointly produced long term AVHRR datasets that have been processed in consistent manner for 

global change research. These datasets cover the period from July 1981 to present. The datasets are 10-day composites of 

daily data (red, near infra red (NIR), and thermal wavelengths), mapped to a global equal area projection at 0.10 resolution. 

To minimize the effects of cloud and atmospheric contaminants, the compositing procedure selects the observation for each 

0.10 pixel that has the fewest clouds within a 10-day period, as identified by the highest NDVI values (maximum value 

compositing). There are three 10-day composites per month and the first is for days 1 through 10, the second is for days 11 

through 20, and the third is for the remaining days. The composite dataset is similar to the daily data in structure but the 

process of compositing removes much of the cloud and atmospheric contamination found in the daily dataset (Holben, 1986). 

The data also contain NDVI, a highly correlated parameter to surface vegetation, derived from the visible and near IR 

channel reflectance. This pathfinder dataset has gone through many stages of calibration and correction (Smith et al., 1997). 

MODIS image 

The MODIS sensor is mounted on Terra and Aqua platforms and has 36 spectral bands, seven of them are primarily designed 

for the study of vegetation and land surface. The MODIS sensor acquires daily images of the globe at a spatial resolution of 

250m in red and NIR band, 500m for the blue, green and SWIR/MIR bands, and 1000m for the rest of its bands. The MODIS 

sensor is supported by a scientific program to produce high quality, calibrated physical parameters of the earth’s surface and 

the atmosphere (Van Laake and Sanchez-Azofeifa, 2004). All MODIS data products can be obtained from the EOS (Earth 

Observing System) Data Gateway (http://edcimswww.cr.usgs.gov/pub/imswelcom) using file transfer protocol (ftp-pull) 

procedure.  

 

APPENDIX 2: SCRIPT DEVELOPED USING ILWIS 3.6 FOR CALCULATING THE DEVIATION IN NDVI. 

 

http://edcimswww.cr.usgs.gov/pub/imswelcom
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