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Abstract  

Social network analysis is concerned with the analysis of influence of an individual within a social 
network and how the influence diffuses through the network. It has been shown useful in business 
analytics. In this paper, we extend a nonlinear dynamical system that accurately models virus 
propagation in epidemiology to model information diffusion in social networks. Our approach can 
numerically calculate each node’s probability to get activated given the initial active set. It provides an 
alternative way of estimating the number of nodes reached by the initial target set in the diffusion 
process. We validate our approach by comparing its predicting performance with diffusion simulations. 
Using the number of nodes reached in the diffusion process as an influence measure, our results show 
that the proposed method can provide a way of identifying nontrivial nodes as influencer. 

 
1.0 Introduction 

Business analytics that leverages customer data through profiling, segmentation and 

predictive modelling is widely adopted by many customer-driven companies. For 

instance, a customer retention program based on neural networks aims to predict 

customers’ likelihood to churn. Typically, the predictive model is created using 

regular corporate attributes like billing history, usage behaviour and the set of products 

and services purchased. Yet many companies still face low customer response rates to 

marketing initiatives, coupled with increasing customer churn. Research (Gabbott and 

Hogg, 1994) indicates that customers rely on each other's judgment and experience 

when making purchasing and loyalty decisions. Domingos and Richardson (2001) 

argues that ignoring the network value of customers may lead to very suboptimal 

marketing decisions. Social network analysis provides an alternative view, where the 

individual customer characteristics are less important than their interactions. It is 

concerned with the analysis of the influence of an individual within a social network 

and how the influence propagates through the network. According to Doyle (2008) the 

value of analyzing customer networks is that the insight can help improving customer 

value management, churn measurement and up sell campaign performance.  



A fundamental question is to measure the influence value in customer network and 

further identify influential customers. Intuitively, high connectivity in the network 

could be a factor as the commonly used centrality based heuristics in the sociology 

literature. However, a customer who is not widely connected may in fact have high 

influence value if one of the neighbours is highly connected (Domingos and 

Richardson, 2001). A customer’s influence does not end with the immediate 

neighbours. Those neighbours may in turn influence their own neighbours and 

possibly lead to a cascade of influence. This is closely related to the diffusion 

processes in social networks – a phenomenon has been observed in many cases – the 

sudden widespread popularity of new products or services gained from word-of-mouth 

effect; the transmission of infected diseases or computer virus; the propagation of hot 

topics or rumours on blogs. Clearly, the number of customers reached by that 

customer in the diffusion process could be an important factor. The question is how to 

evaluate the number of customers reached? It’s an open question to compute this 

quantity exactly by an efficient method, but very good estimates can be obtained by 

simulating the random diffusion process thousands of times to reach equilibrium 

(Kempe, Kleinberg and Tardos, 2003). However, according to Estevez, Vera and Saito 

(2007) this approach has a heavy computation load.  

Models for the processes by which ideas and influence propagate through a social 

network have been studied in a number of domains. Most of the previous research has 

been done in the context of epidemiology and the spread of diseases over the network. 

In this paper, motivated by the great potential of social network marketing, we extend 

a nonlinear dynamical system (NLDS) that accurately models virus propagation in any 

arbitrary network (Chakrabarti et al., 2008) from epidemiology. The epidemic model 

provides our work with the following contributions: (1) our approach can numerically 

calculate each customer’s probability to get activated given the initial target set. By 

examining the probability values evolve over time step we can have a dynamic view of 

how influence spreads through customer network. (2) We provide an alternative way 

of estimating the number of nodes can be reached by an initial target set at the end of 

the diffusion process. Computational experiments results show that the sum of all 

probability values in the network gives an approximate estimation to the number of 

nodes reached by the target set. (3) Using the number of nodes reached in the diffusion 

process as an influence measure, our results show that our proposed method can 

provide a way of identifying nontrivial nodes as influencer.   
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The rest of the paper is organized as follows. In section 2 we give a general review of 

previous theoretical diffusion models and different approaches of measuring a node’s 

influence in social networks. In section 3, we describe our proposed method to 

modelling information diffusion based on a nonlinear dynamical system (NLDS) that 

accurately models virus propagations in epidemiology. In section 4, we evaluate the 

accuracy of our approach by conducting experiments over real network. In section 5, 

we investigate the influence measurement and ranking problem based on our proposed 

model. Finally, conclusions and future work direction are given in section 6. 

 

2.0 Related Works 

In this section, we provide a review of recent literature on theoretical models of 

diffusion process in social networks. We survey and compare different approaches of 

measuring a node’s influence and selecting influential nodes.  

 

2.1 Diffusion Model 

Models of diffusion process in social networks have been studied in various areas 

including epidemiology (Chakrabarti et al., 2008), sociology (Granovetter, 1978), and 

marketing (Domingos and Richardson, 2001; Kempe, Kleinberg and Tardos, 2003). 

Many empirical studies on diffusion process (Leskovec, Adamic and Huberman, 2006; 

Backstrom et al., 2006; Dasgupta et al., 2008) have examined the question of how the 

probability of adopting new behaviour p  changes as the number of friends adopting 

the behaviour k  increases. Their results (Backstrom et al., 2006) show that the plot of 

p  versus  exhibits a similar diminishing returns effect in which the curve continues 

increasing, but more and more slowly, even for relatively large number of k . Building 

upon the empirical findings, diffusion models formulate assumptions on how 

individuals respond to their friends’ influence and further describe the way influence 

flows through the network. Here we focus on the operational models that explicitly 

represent the step-by-step dynamics of adoption. Typically it assumes the dynamic 

process unfolds in discrete time unit, with each node following certain probabilistic 

rule (Kempe, Kleinberg and Tardos, 2003). For instance, an individual will adopt a 

new product or service when a certain threshold fraction of neighbours have already 

adopted (Granovetter, 1978). A set of nodes are chosen to be initial active set which 

k
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corresponds to the early adopters of the products or services. The active set count at 

the end of the process is the number of nodes reached by the initial active set. 

Among the many proposed models for diffusion process, two have garnered wide 

acceptance. In the Linear Threshold Model (Granovetter, 1978), each node is assigned 

a randomly chosen threshold, representing the fraction of neighbours required for it to 

adopt the new behaviour. A weight is assigned on each edge, indicating the extent of 

the influence. A node will adopt the behaviour if sum of the weights of its neighbours 

that have already adopted the behaviour is greater than its threshold value. The other 

popular diffusion model is the Independent Cascade Model (Goldenberg, Libai and 

Mullen, 2001) a probabilistic model in which a node catches the behaviour from its 

neighbours. In this model, when a node first becomes active it gives a single chance to 

activate its inactive neighbours with a probability - a parameter of the system. There 

are many extensions of the two basic diffusion models. For instance, Kempe, 

Kleinberg and Tardos (2005) proposed the decreasing cascade model to incorporate 

the idea that a node's receptiveness to influence depends on the past history of 

interactions with its neighbours. In their model, a node's probability of being activated 

is a function of the set of neighbours have already tried and failed to influence it. 

Unlike the discrete-time diffusion models discussed above, Song et al. (2007) 

proposed a continuous-time diffusion model based on diffusion rate. The diffusion rate 

captures how efficiently the information can diffuse among the users in the network. 

By leveraging the diffusion rate, their model can predict how likely the information 

will propagate from a specific sender to a specific receiver during a certain time 

period. Also it can estimate the expected time for information diffusion to reach a 

specific user in a network. Subsequently, they propose a DiffusionRank algorithm that 

ranks users based on how quickly information will flow to them.    

 

2.2 Measuring influence and identifying influencer 

Measuring influence and identify influential nodes in a network is important in many 

social network analysis applications. In the viral marketing context, we can target 

influential customers to spread viral marketing campaigns. The degree and centrality-

based heuristics are commonly used in the sociology literature as estimates of a node’s 

influence. As mentioned earlier, there are some problems with these centrality-based 

heuristics. According to Kempe, Kleinberg and Tardos (2003) neither of the heuristics 

incorporates the fact that many of the most central nodes may be clustered, so that 
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targeting all of them for diffusion process is unnecessary. Link topological ranking 

measures such as HITS (Kleinberg, 1999) or PageRank (Brin and Page, 1998) have 

provided a way of measuring the authoritativeness of nodes within a network. As a 

variant of the eigenvector centrality measure, the intuition behind PageRank is that the 

importance of a web page in a network is proportional to the combined importance of 

its neighbours. A critical question is which of these measures is best to select 

marketing campaign. Kiss et al. (2008) compare different centrality measures for the 

diffusion of marketing messages. They found a significant lift when using central 

customers in message diffusion, but also found difference in the various centrality 

measures depending on the underlying network topology and diffusion process. In 

most cases the simple out-degree centrality outperforms almost all other measures. 

 

3.0 Proposed Method 

In this section, we describe our approach for modelling diffusion processes based on a 

non-linear dynamical system (NLDS) that accurately models virus propagations in 

epidemiology (Chakrabarti et al., 2008). Leskovec, Adamic and Huberman (2006) 

argue that the process of new products or services diffuse through customer network is 

very similar to the transmission of infected diseases. Like the models we have 

discussed above, there is explicit notion of dynamics or time in our model. It can tell 

us the probability that each node is activated at some point during the process and say 

nothing about the particular order in which the activation occur. The calculation of the 

probability is based on probability theory. For instance, the probability of node  is 

activated at current step is the probability of the event node  is not activated at 

previous step and  get infected from its neighbours happens at the same time. The 

calculation proceeds step by step until the increment of the sum of all probabilities is 

less than one, which means the number of nodes reached by the initial active set has 

been obtained.  

v

v

v

We start by providing some definitions for the model. Follow up to the Independent 

Cascade Model, we call nodes that adopt a product or service is being active and 

inactive otherwise. The social network is represented by a graph , where V  is 

the set of nodes and 

( , )G V E

E  is the set of edges. In a customer network, nodes represent 

customers and edges represent the relationships between them. Let  denotes the 

set of neighbours of node . Let  denotes the set of initial active nodes at the 

( )N v

v A
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beginning of the diffusion process, and it corresponds to the early adopters of a 

product or service. Let the probability that a node v  is activated at time step t  by . 

Clearly, for all nodes in the initial active set  is 1 and  is 0 for the time step 

afterwards. For the rest of nodes in the network  is equal to 0. Let 

,v tP

,0vP ,v tP

,0vP   be the 

infection catch rate on a link connected by an infected node. Note in contrast to a 

constant virus birth rate in (Chakrabarti et al., 2008), in our calculation this value will 

be a variable depending on the past history of the process.  

Let’s start with the compute of node ’s probability to become active at time step t . 

Considering node ’s neighbour node , node  has no chances of getting infected 

from node  is either because node  is inactive at previous time step or node  is 

active but failed to infect node  through the link they are connected by with 

probability 

v

w

v w v

w

1

w

v

 . Therefore the probability that node  has no chances of getting 

infected from w is 

v

, 1(1 ) (1w t ,w t 1)P P     which is 1 * , 1w tP  . It’s the probability of 

the event that node  is active at time step w 1t   and succeeded in infecting node v  

through the link they are connected by has not happened. Assuming the behaviour that 

each neighbour attempting to infect node  is independent of each other, hence the 

probability of node  has a chance of getting infected from any of its neighbours is:  

v

v

 , 1* w t
( )

1 (1
w N v

 )P 


   (0.1) 

Hence node v  becomes active at time step t  if node  is inactive at time step  

and node  has a chance of getting infected from its neighbours:  

v

*

1t 

v

 , , 1(1 )*(1v t v t w t
w N

P P


   , ))P 1
( )v

 (1  (0.2) 

In epidemiology a susceptible individual can become infective on contact with another 

infective individual, and then heal herself with some probability to become susceptible 

again (Chakrabarti et al., 2008). In this paper we only focus on the case where an 

active node can not be switched back to be inactive as this scenario is more common 

in business analytics. Taking customer churn as an example, companies typically 

consider churner customers that come back to the network as new customers.  

In (Chakrabarti et al., 2008), the virus birth rate   is a constant representing the 

infectiousness of the disease. It is frequently assumed in epidemic models that 

individuals have equal probability of being infected every time they interact. 

According to Leskovec, Adamic and Huberman (2006) this may not be right. Through 

 6



observing the propagation of recommendations on a person-to-person recommendation 

network they found out that the probability of activation decreases with repeated 

interactions. For instance, if one of your friends recommended you to buy a product 

and you didn’t buy it, the next time your friends recommended it makes sense that you 

are less likely to buy it. This observation is somehow consistent with the decreasing 

cascade model (Kempe, Kleinberg and Tardos, 2005), in which a node’s propensity 

for being activated may change as a function of which of its neighbours have already 

attempted (and failed) to influence it.  

Inspired by these studies, we attempt to encode the rule that the effectiveness of the 

influence through a particular link changes as the calculation unfolds and it depends 

on the past history of interactions. When a node first tries to influence its neighbour - 

its probability of being activated is not equal to 0 – we start to keep track of the 

number of trial times. Let  denotes the number of trial times. Let the probability that 

node  attempts to infect node  through their link by the first time be 

k

v w 1p , and by 

second and afterwards times be 2p , then 

 
1

2
1 2 2,

, 1

(1 )(1 ) 2k

p k

p p p k
 

     
 (0.3) 

The reason we distinguish the first trial from the rest is motivated by a generalization 

of Independent Cascade Model (Kerchove et al., 2009) that considering different 

probabilities for being infected depending on the number of contacts with the 

information. Their results show that first and subsequent trials play different roles in 

the propagation process.  

Given the network structure and specified value of 1p  and 2p  we can calculate the 

probability for each node to get activated at every time step with the specified initial 

activate set. The sum of all probabilities values will keep increasing as the calculation 

proceeds. When the increment is less than one the calculation will terminate, as that 

means the expected infected nodes count has been obtained. Meanwhile, when a 

node’s probability of getting infected is less than the value of one divided by size of 

the network it will be considered as negligible, which means we no longer calculate its 

probability in the following time steps.  
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4.0 Experimental Evaluations 

 Having described our proposed method, we will focus on understanding its behaviour 

in practice. Following up to the lead in (Chakrabarti et al., 2008), using real network 

data we evaluate the accuracy of our approach of modelling information diffusion by 

comparing its prediction performance against diffusion simulations (Kempe, 

Kleinberg and Tardos, 2003; Estevez, Vera and Saito, 2007). We examine the time 

evolution of the infected node count at both calculation and simulation. Experiments 

show that our approach yields very close results to the simulations.  

 

4.1 The network data 

In our experiment, two different size data sets of scientific coauthorship network were 

tested. It has been argued extensively that coauthorship networks capture many of the 

key features of social networks more generally (Kempe, Kleinberg and Tardos, 2003). 

The first one is a coauthorship network of scientists working on network theory and 

experiment, as compiled by M. Newman in May 2006. It contains 1589 nodes and 

4331 edges. This data set will be referred as NS dataset in our experiments. The 

second one is a weighted coauthorship network between scientists posting preprints on 

the High-Energy Theory E-Print Archive. There are 8361 nodes and 15751 edges in 

the network. It consisted of 581 connected components, and the number of nodes in 

the largest connected component is 5835. It’s a scale-free network with a power-law 

degree distribution. This data set will be referred as Hep-th dataset in our experiments. 

Both of the networks were obtained from Mark Newman’s network data collection.  

 

4.2 The experiments 

We measure the diffusion process by examining the time evolution of the infected 

nodes count as the dynamic process unfolds. The diffusion simulation was used as a 

baseline to validate the accuracy of our approach in modelling diffusion process. More 

specifically, we keep recode of the overall infected nodes count in the network at each 

time step in both cases, then check whether they are close to each other approximately. 

In the calculation case, the overall infected nodes count refers to the integer value of 

the sum of probabilities of all nodes in the network at current time step. In the 

simulation case, at each random process the overall infected nodes count at each time 

step was stored. In (Kempe, Kleinberg and Tardos, 2003), the random process will 
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reach equilibrium after 10k simulations. Our result is generally consistent with that. 

Experiments indicate that the result of 10k times is comparable to 100k times or more. 

The overall infected nodes count at each step then estimated by get a mean value of 

the 10k simulation results.  

Meanwhile we make sure the experiments are conducted with the same set of initial 

active nodes on a given network topology.  Parameters 1p  and 2p  should be specified 

in advance like in the Independent Cascade Model. The value of 1p  should be the 

same as the universal diffusion rate in Independent Cascade Model, with typically 

value 10%, and the value of 2p  should be smaller than 1p . 

 

Figure 1. The plots show the time evolution of infected nodes count in the diffusion process 
with both simulation and calculation. The right is the NS dataset and left is Hep-

th dataset.  

The simulation was conducted using the Independent Cascade Model. In the NS 

dataset, the universal diffusion rate for the ICM simulations is 10%, and the 1p , 2p  

value for our proposed estimation method is 10% and 7.8%, respectively. In the Hep-

th dataset, the universal diffusion rate for the ICM simulations is 9%, and the 1p , 2p   

value for our proposed estimation method is 9% and 8%, respectively. The initial 

active set  was chosen randomly. With different initial active sets, the results were 

almost the same – two curves are similar two each other. In both datasets the two 

curves exhibit qualitatively similar shapes, dominated  by a diminishing returns 

property in which the curve continues increasing, but more and more slowly and 

eventually flattened. As shown, our method nicely tracks the simulation results. 

A

 

5.0 Influence Measurements and Ranking 

In this section, we look into the possibility of measuring nodes’ influence value and 

identify influential nodes in social networks based on our proposed method. As 
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mentioned earlier, the number of nodes reached by an initial target set in the diffusion 

process should be an indicator of the importance or influence of the initial target set. 

Last section we demonstrate the accuracy of method in modelling diffusion process. 

Hence we can use the sum of all probability values as an approximate estimation to the 

number of nodes reached in the diffusion process. The algorithm we used to calculate 

this quantity can be described as follows: The inputs needed are the network structure, 

proper parameters setting and initial target set. Starting with time step 1, calculate each 

node in the network’s probability to get activated at current time step and sum up all 

the probability values, and then go to next time step. Repeat this process until the 

increment of all probability values is less than one. Here we calculate this quantity 

(For simplicity, we refer to it as influence value) for each node in the NS dataset, and 

further compare the influence value calculated with node degree.  

 

Figure 2. The plot shows the 
distribution of influence value 
for all nodes in the NS dataset. 

 

Figure 3. The plot compares the 
influence value and node 

degree for all nodes in the NS 
dataset.  

 

 

As shown in Figure 2, in the NS dataset most of the nodes can only influence one or 

two nodes in the diffusion process, while only a few nodes can influence more than 

two nodes. Intuitively, it seems beneficial to target those nodes that can influence 

more than two nodes in the diffusion process to spread viral marketing campaigns. As 

shown in Figure 3, node degree and influence value calculated are not fully correlated. 

For instance, there is one node with degree 4 and influence value around 8. High 

degree does not necessarily mean high influence value, and vice versa. This implies 

that the influence value metrics provides ranking methods that in general extract 

nontrivial nodes as influential nodes.  
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6.0 Conclusion 

In this paper, we extend an epidemic model that accurately models virus propagation. 

With proper parameters setting on a given network topology, our method can 

numerically calculate each node’s probability to get infected when a set of nodes has 

been initially activated. By comparing its predicting performance with diffusion 

simulations, we validate the accuracy of our proposed method in modelling diffusion 

process. When it comes to compute the number of nodes reached by set of initial 

active nodes, our model can give a suitable estimation to this quantity. Using the 

number of nodes reached in the diffusion process as an influence measure, 

experiments results show that our proposed method provides ways of extracting 

nontrivial nodes as influential nodes.  

The development of theoretical models for diffusion process still remains to be an 

open question. First of all, are these models discussed above correctly captured the 

way influence spreads through real network? All the models take a snapshot of the 

network, and then operate upon this fixed snapshot. No dynamic aspects or network 

evolution involves – it does not consider the network growths. Also all the models 

unfold in discrete time step with each node following certain probabilistic rule, and it 

uses this rule to incorporate information from its neighbour over time. Whereas the 

dependence of probability of adopting behaviours on number of friends adopted 

expressed in this way reflects an aggregate property of the full population, and does 

not imply anything about any particular individual’s respond to their friends’ 

behaviours (Kleinberg, 2007). Secondly, the way such dynamic process is affected by 

the network structure is still poorly understood (Kiss and Bichler, 2008). How 

adoption probability depends on the structural properties of a node’s network 

neighbours? What role does weak and strong ties play in the dynamic process? Is 

information propagates more quickly on a dense network?  

While the theoretical models address the question of how influence spreads in a 

network, they are based on assumed rather than measured influence effects (Leskovec, 

Adamic and Huberman, 2006). According to Backstrom (2006) it has to date been 

easier to explore such models theoretically than to obtain reasonable estimates for 

them empirically on large-scale data. Our future work directions include obtaining 

actual information diffusion data and observing how influence propagates in real 
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network. Therefore we could develop ways to infer or estimate relevant model 

parameters with the historical diffusion data (Saito, Nakano and Kimura, 2008). With 

the support of the empirical findings we could make more general assumptions on how 

individuals respond to friends’ influence, which leads to a closer integration of the 

theoretical models to the empirical results.  
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