
Association for Information Systems
AIS Electronic Library (AISeL)

ECIS 2012 Proceedings European Conference on Information Systems
(ECIS)

5-15-2012

MEASURING THE INFLUNENCE OF
PROJECT CHARACTERISTICS ON
OPTIMAL SOFTWARE PROJECT
GRANULARITY
Moritz C. Weber
Goethe University Frankfurt

Carola Wondrak
Goethe University Frankfurt

Follow this and additional works at: http://aisel.aisnet.org/ecis2012

This material is brought to you by the European Conference on Information Systems (ECIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ECIS 2012 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Weber, Moritz C. and Wondrak, Carola, "MEASURING THE INFLUNENCE OF PROJECT CHARACTERISTICS ON
OPTIMAL SOFTWARE PROJECT GRANULARITY" (2012). ECIS 2012 Proceedings. 66.
http://aisel.aisnet.org/ecis2012/66

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301355752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fecis2012%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2012?utm_source=aisel.aisnet.org%2Fecis2012%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2012%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2012%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2012?utm_source=aisel.aisnet.org%2Fecis2012%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2012/66?utm_source=aisel.aisnet.org%2Fecis2012%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

MEASURING THE INFLUENCE OF PROJECT

CHARACTERISTICS ON OPTIMAL SOFTWARE PROJECT

GRANULARITY

Weber, Moritz Christian, Goethe University Frankfurt, Campus Westend, Grüneburgplatz 1,

60329 Frankfurt, Germany, moweber@wiwi.uni-frankfurt.de

Wondrak, Carola, Goethe University Frankfurt, Campus Westend, Grüneburgplatz 1,

60329 Frankfurt, Germany, cwondrak@wiwi.uni-frankfurt.de

Abstract

With a well-structured design of reusable software, it is possible to save costs in future software

development cycles and generate added value. Nowadays it is difficult to quantify which grade of

project structuring enhances its reusability. This is the question this paper aims to examine, based on

the financial Portfolio Selection theory and Value at Risk methods that can be adapted to the field of

software project structuring. Using these methods, the value of the reusable source code can be

evaluated and the risks of reimplementation be compared with alternative code structures. So we can

quantify and measure the effects of the software project structure on the risks of reimplementation.

This model is applied to 27 Github open source software projects and enables us to investigate the

influences of the project characteristics on the best possible software project granularity.

Keywords: Project Management, IT Project Portfolio, Software Granularity, Value at Risk.

1 Motivation

Static and monolithic information systems mark the beginning of enterprise IT infrastructures (Krafzig

et al., 2004). With the emergence of spreading network structures, these inflexible infrastructures are

split into subsystems and managed as interrelated parts of an IT portfolio (Erl, 2005). ‘The foundation

of an IT portfolio is the firm’s information technology’ (Weill and Vitale, 2002). This is — among IT

components and human infrastructures — defined by shared IT services and standard applications

(Weill and Vitale, 2002). Not only software development, but also general strategy research reflects

synergies and diversifications of portfolios. These allow the generation of additional positive

economic values gained by the merging and restructuring of financial portfolios (Amihud and Lev,

1981; Christensen and Montgomery, 1981; Farjoun, 1998). As the realization of synergistic economies

is crucial, it can be seen as a third pillar next to financial and vertical economics (Hill and Hoskisson,

1987). Markowitz’s Portfolio Selection theory (1952) defines a theoretical framework for portfolio

diversification and synergies which can be extended (Myers 1982) towards strategic planning and has

the potential to be applied in other research domains (Rockafellar and Uryasev, 1999). As IT projects

are also aggregated in portfolios, this theory supports evidence as to how software portfolios should be

structured.

Synergies typically depend on the size and structure of the portfolio (Eckbo, 1983; Bradley et al.,

1983). Two kinds of synergies can be distinguished for IT portfolios (Cho and Shaw, 2009;

Tanriverdi, 2005; 2006): On the one hand bundling two components together allows sub-additive cost

savings within similar processes (Teece, 1980). On the other hand, two interrelated components can

actually enable an additional, super-additive benefit at the same time as increasing the effort for both

(Milgrom and Roberts, 1995). Economies of scope enhance the potential of those synergies (Teece,

1980; 1982) and the ability to diversify a portfolio (Willig, 1978). This gives reason to expect lower

risk costs and higher generated added value (Panzar and Willig, 1981), also for IT project portfolios.

Particularly the risk stemming from size and the structure of a portfolio can be expressed in

granularity. In the following sections granularity measurement is defined as ’quantifying the

contribution of [...] concentrations to portfolio risk’ (Lütkebohmert and Gordy, 2007). Unlike the

monolithic enterprise IT infrastructures at the beginning, it has not yet been investigated how granular

and diversified a software portfolio should be from an economical point of view (Friedl, 2011). It is

said that two thirds of all software projects fail or are not finished within the fixed requirements or the

given time. This is also due to organizational failures in software development (Standish, 2011). That

is why we ask the following research questions:

• How granular should software project structures be?

• How can project-granularity levels be measured and compared?

• How can an optimum level of granularity be determined at present, so that good reusability

and lower change risks can be expected?

• Which project characteristics have a critical influence on the optimum of granularity?

In the following section, we reflect the Portfolio Selection theory and the Value at Risk method (2.1)

as theoretical framework to value portfolio risks. Related work on IT portfolio risk, project

management (2.2) and granularity analysis (2.3) let us derive research hypotheses on risk costs, project

characteristics and granularity from literature. To analyze these hypotheses, we adopted Portfolio

Selection and Value at Risk to measure quantitatively risk costs in software project data (3.1 and 3.2).

Alternative levels of project granularities are simulated by three methods (3.3) that are applied to

software version control data for the 27 most observed Github (2011) open source projects. The Value

at Risk is measured for each method and each simulated project granularity level. Accordingly, a

regression setup is developed to explain the influences of project characteristics on optimal software

project granularity (3.4). As a result alternative project granularities are selected to show and discuss

corresponding changes of risk costs (4.1, 4.2 and 4.3). Changes in the project characteristics are

measured over time for all projects and each version. These changes are taken to explain their

influence to the granularity level and the minimal risk costs of software projects (4.4). Finally we

summarize our results, highlight limitations and provide an outlook on future research (5).

2 Related work

As it is often claimed that software projects are structured like portfolios with component assets, we

align our methodology with the Portfolio Selection theory (Markowitz, 1952) and the risk

measurement approach called Value at Risk (Wolke, 2008) in Section 2.1. This economic perspective

is applied to IT project portfolio management and risk management to link the theory to the scope of

information systems research (Section 2.2). It is often assumed that software development projects –

as a subset of IT projects – have a high risk of failure (Standish, 2011). That is why we supplement our

review of related work by recent studies on structuring of software development projects and

analyzing the quality of software granularity (Section 2.3).

2.1 Portfolio Selection and Value at Risk

A software project contains several components that are linked with each other. This is similar to a

financial portfolio where each portfolio component generates a value contribution. Since software can

be a substantial long-term investment, it is important to select portfolio components in the most

efficient way, so that a high level of reusability and lower maintenance costs can be anticipated.

Figure 1. Portfolio diversification and risk in the context of correlation effects

A theoretic-based approach for the selection of components of a financial portfolio is the Portfolio

Selection theory developed by Harry Markowitz (1952). It outlines how to structure an optimal

portfolio with minimal risks by efficiently dividing it into partial investments (so called

diversification). Thereby, interrelated influences between the components are taken into account and

assembled in a single structure, so that the total risk of value depreciation is minimized (so called

correlation). The value depreciation can be estimated using the Value at Risk (VaR) approach

(Albrecht and Maurer, 2005) (see Figure 1). It ‘can be applied to any risk-factor model of portfolio [...]

risk, and [is ...] a very general framework’ (Lütkebohmert and Gordy, 2007). Hereby, the maximum

value depreciation is a value that will not be exceeded in a given time period with a given probability

(Wilkens, 2001; Wolke, 2008). The VaR approach calculates not only the expected value of losses

(Expected Loss), but also explicitly outlines the unexpected losses (Campbell et al., 2001). Like this, it

enables us to include the extreme cases of value depreciation in our estimations.

This concept can be applied to any single evaluation, but also to multiple investment assets and entire

investment portfolios. If there are multiple investments with considerable risks in one portfolio,

additional synergy effects need to be taken into account (Wiedemann, 2002). Value fluctuations of

these components could be both chances and risks for the whole portfolio. These risks can be

diversified by combining components which compensate the interrelated value depreciation risks. The

goal is to find synergies that compensate the risks among themselves (Rockafellar and Uryasev, 1999).

Through systematic validation of different portfolio structures, it is possible to assess and valuate the

risk of value depreciation using the VaR approach. In the case of inefficient combinations, the so

called ‘clustering risks’ can emerge (Huschens and Stahl, 2004). This kind of insufficient

granularisation leads to the danger of a higher, diversified VaR (Albrecht and Maurer, 2005). The

Portfolio Selection theory allows evaluating the efficient selection of portfolio components, so that the

risk costs of value depreciation will decline for the future period. Rockafellar and Uryasev (1999)

explicitly suggest that the VaR concept should be applied as methodology in other areas. Outside of

the financial research domain we adopt this for managing the portfolio risk of IT projects.

2.2 IT portfolio risk and project management

Cho and Shaw (2009) model and simulate the influences of synergies on the IT portfolio selection by

applying the Markowitz theorem and the VaR approach to the research scope of IT portfolios. They

find that not only portfolio returns, but also portfolio risks need to be taken into account. Moreover,

they argue that only few studies investigated the influences of IT synergy on portfolio risks. Benaroch

(2002; 2006) analyzes IT risks and their influence on large portfolios of IT investments. Strong

evidence is found that IT risk management is largely driven by intuitions, which leads to suboptimal

and counterproductive results. Tanriverdi and Ruefli (2004) state that synergies of IT projects also

influence the risk of those. A failure of one IT portfolio component may cause failures in other parts of

the portfolio, which may increase the risks at higher levels of diversification (Tanriverdi, 2005; 2006).

This indicates that the following hypothesis on software project granularity should be rejectable:

Hypothesis H10: Risk costs have no crucial influence on optimal software project granularity.

The organization of software development project portfolios can be improved by a well coordinated

project management. Lichter and Mandl-Striegnitz (1999) show that most software development

projects fail because of inappropriate organizational settings and not because of the technical

implementations. In addition, inefficient processes may cause design errors and an unexpected

increase in project costs. A rule of thumb on how the cost of a single present design error influences

future development and refactoring expenditures is given by so called ‘Rule of Ten’ (Pfeifer, 2001). It

estimates that an undiscovered design error multiplies the required cost of rectification by ten for each

following period. It is possible to recognize design errors earlier by using efficient project

management and verifiable key figures (Lichter and Mandl-Striegnitz, 1999).

Especially the reuse of previously implemented software artefacts is an opportunity to reduce costs

and work effort in multiperiodic software projects. Necessarily the design of software artefacts should

not be too complex and problems with complex interdependence between the artefacts should be taken

into account (Schirmer and Zimmermann, 2008). This involves both, dependencies between different

parts of the software and a good kind of granularity. More specific, special attention must be paid to

project characteristics, the structure of the portfolio and the selection of subprojects (Schirmer and

Zimmermann, 2008). So we expect to reject the following null hypothesis:

Hypothesis H20: Project characteristics have no influence on optimal software project granularity.

2.3 Granularity analysis

Different approaches analyze optimal software project structures (Krafzig et al., 2004, p.18). Thereby,

efforts are being made to quantify the quality of structures by measuring the utility and monetary value

to software structuring decisions: Erradi et al. (2006) propose a quantitative ranking with numerical

steps up to 10, which considers the level of dependencies between the project components.

Furthermore, they criticize the lack of theory that would support the findings of correct granularity for

maximal component reuse and lower project risks (Erradi et al., 2006). Alternative research strategies

evaluate the outsourcing and awareness potential of distributed projects and identify project

structuring candidates by an economical analysis (Klose et al., 2007). In their empirical analysis

Braunwarth and Friedl (2010) took the internal cost allocation of a company as a benchmark and

simulate potential structures of granularity. In addition of this study, Friedl classified granularity

approaches based on a literature review and gave advice for designs of good granularity on typical

factors of influence in software development projects (Friedl, 2011). Katzmarik supports the

granularity decision with a micro-economical approach, in which the project structures are modeled as

‘Software as a Service’-products (SaaS) and evaluated (Katzmarzik, 2011). Therefore, we assume that

the following null hypothesis cannot be supported:

Hypothesis H30: Optimal software IT project granularity cannot be estimated empirically.

3 Methodology

In the following section the VaR concept is applied to software development projects by using version

change data from software control systems. The software project structures as well as the historical

variance and covariance of source code lengths are measured. Through three different methods

alternative granularity structures are simulated and the level of minimal change expenditure risk is

determined by VaR valuation. Finally, this minimal level is regressed against the given project

characteristics to measure the influences of the project parameters on the optimal level of granularity.

3.1 Assumptions

In accordance with the Portfolio Selection theory (Markowitz, 1952) it is assumed that each portfolio

can be diversified by a requirement-optimal or risk-minimal allocation, if a value can be determined.

Modern software engineering approaches separate classes, services and other entities into single files

(Erl, 2005). Therefore, we assume that each change of a file is an implicit change of a portfolio

component. Agile software development practitioners (like in open source projects) claim that each

change of a software project implements a single functional requirement or bug fix, which is

documented in our case by the version control system. For simplification, it is assumed that the change

expenditure of a file is highly correlated with the number of changed and unchanged lines of code

(LOC). It is further assumed that the kind of development and refactoring is anchored in the project

characteristics and that it stays similar in the history of a project. That is why historical change data is

a good estimate of future change risks. The current size of a source code file is taken as present value.

Using historical recorded project development costs, the LOC calculation can easily be transformed

into a utility measure by applying COCOMO methodology (Katzmarzik, 2011, p. 23).

3.2 Data aggregation and measuring method

The data of software version control systems is used to measure direct development structures and

characteristics of software projects. Thereby, the historical sizes of each file as well as realized

software changes are measured. So the extent of each requirement implementation or bug fix can be

precisely determined. Each requirement implementation can affect multiple file changes. Like Grigore

and Rosenkranz (2011), Turek et al. (2010) and Wierzbicki et al. (2010) we measure the residual value

of reusable source code: This is the number of document lines which are created by one author and

remain in the document after the document revision (adds/removes). This residual value of reusable

code is identified for each file of every requirement implementation (patch). This value is saved with

the residual values of the corresponding files of each change (see Figure 2 ‘Data aggregation’).

The VaR concept is applied (Wiedemann, 2002) to identify at which structural level the residual value

of reusable source code remains the highest possible. This determines the loss that is not exceeded in

the covered period of time with a given probability. Thus the calculation also takes historical

fluctuations and correlative dependencies between the components of a portfolio into account. Here,

the fluctuations of the residual value of reusable code (determined in the data aggregation) are used.

For all pairwise changed files, a covariance value is calculated and aggregated in a covariance matrix

(Wiedemann, 2002). The risk value is calculated by matrix multiplications of the file lengths at the

current point in time and the variance-covariance matrix of relative residual values of reusable source

code. Finally, the risk quantile for the given probability is determined (Wilkens, 2001; Wolke, 2008)

(see Figure 2 ’Measuring method’).

Figure 2. Data aggregation, measuring method and simulation of the analysis

3.3 Simulation

The granularity of every historic grown project is given implicitly by the project structure. Therefore,

a diversified VaR can be calculated directly. It quantifies risk of reimplementation for the given

granularity structure. To evaluate the risk of alternative granularity levels, variants with comparable

structures must be derived. A sufficient effective method (hereinafter ‘tar method’) starts with the

lowest folder level and aggregates all files per folder into a single file. Afterwards this file is moved to

the superior folder (Lee et al., 2007). This way, granularity variants can be generated which keep the

same basic structure. In a simplification of Lee’s approach, the common tar algorithm is recursively

applied (FSF, 2006). With source code packages and functional structuring of folders the dependency

structures and conditional changes remain unaltered even for extensive aggregations. The most coarse

and presumable worst granularity generated by this method, is to copy all source code into a single

file. For each aggregation level, the size of files and changes as well as the covariance are remeasured

and a risk value is calculated using the VaR approach.

The results of tar methodology are validated by methodological triangulation using two additional

control methods. The first validation method (‘corr method’) selects an initial file from the project for

each simulation run (Blobel and Lohrmann, 1998). Starting with this file, dependently changed files

are recursively added. This is repeated until the number of files fits the amount of files of the

corresponding granularity level of the tar method. The second method (‘rand method’) selects random

files, but does not consider correlation structures. Thus, the first control method simulates subprojects

of the entire project with a strong correlation. The second method simulates the omission of these

correlations. Huschens and Stahl (2004) show that changes in the correlation structures influence the

relative evaluation of granularities only slightly. The structure of the entire project is approximated by

averaging the partial results (Blobel and Lohrmann, 1998).

The validation methods yield good comparative values. But it should be kept in mind that these

methods are too aggressive and too coagulative in their simulation/estimation, due to their random

selection and partial simulation. As a result, badly diversified and extreme project structures can be

generated. This is why these two validation methods are used for triangulation reasons only and not

for measuring the absolute risk levels of the relative residual value of the reusable source code. To

facilitate comparison — also with the ‘Rule of Ten’ (Pfeifer, 2001) — we start at the granularity with

the highest VaR for each method. Subsequent all VaRs are normalized to this initial value of 1. The

normalized value of 1 is usually the case, if just one file contains all source code (Katzmarzik, 2011,

p.29) (see Figure 2 ‘Simulation’).

3.4 Regression setup

To investigate our research hypotheses and the influences of given project characteristics on the

optimal project structure, we regress typical project key figures on the optimal project granularity of

each release version (see Equation 1). As the time and the amount of version releases is not

synchronized between the 27 projects, we build a cross-sectional dataset containing the interversion

differences in optimal granularity (OptGranu) and the risk costs at optimal granularity (RiskCosts).

Additionally typical project characteristics like size units (Katzmarzik, 2011, p.8) and time measures

(Pfeifer, 2001) are added. These are number of patches (Patches), average file changes per patch

(AvgPFiles), number of files (Files), total lines of code (LOC) and duration of the version release

(Time) are added. To harmonize sizes of increasing and decreasing changes, all differences are

logarithmized. Moreover, we added control variables (Controls) for each project to identify project

specific influences.

(1)

The sample is tested for a typical structural bias. Considering the assumably close dependency of the

exogenous variables, no multicollinearity is observed. Since heteroscedasticity of the residuals

occurred in the original model, robust standard errors are applied.

4 Results

4.1 Descriptive results

Due to easy accessibility and publishability our data sample consists of top ranked Github open source

projects. However, this setup can also be easily applied for commercial projects like SOA, SaaS or

proprietary software. Github ranks the interest in projects by counting the number of observers

following the project and the number of projects that are build upon this project. We selected 27

projects and ensured that the sample consists of equally distributed programming paradigm styles

(scripting, imperative/functional and object-oriented), execution styles (native, byte code, interpreted)

and software category (webserver/ -framework, database/ libraries, system/ languages). The

occurrences of each language, the type and paradigms of projects within this sample can be seen in

Table 1:

Exec native bytecode interpet Lang c c++ java objc erlang python ruby js

27 9 9 9 27 6 3 3 3 3 2 2 5

Categ web db/lib sys/lan Type sys lang db lib webserver webframe

27 9 9 9 27 6 3 7 2 2 7

Style oo script im/fun Parad oo script imp func

27 9 9 9 27 9 9 6 3

Table 1. Descriptive statistics of the selected sample of projects

Overall, we extracted 1625 observations (version tags). Some projects like ‘postgres’ have a long

version history, others like ‘nu’ displayed a history of continuous integration into a single master

version. As we want to observe the influence of project characteristics on the optimal project

granularity, we accept also these extreme project settings. Project-specific influences are tested with

the aid of control variables in the final regression. Descriptive figures are listed in Table 2 and 3.

Name

C
a

s-

sa
n

d
ra

C
lo

-

ju
re

C
o

u
ch

D
B

D
ja

n
g

o

E
ja

b
-

b
er

d

G
it

G
it

x

H
tt

p
d

jQ
u

er
y

M
em

-

ca
ch

ed

M
o

n
g

o

D
B

N
o

d
e

J
S

N
u

O
T

P

Language java java erl python erl c objc c js c c++ c++ c erl

Type db lang db webfr sys sys sys webse webfr db db sys lang lib

Paradigm oo oo func script func imp oo imp script imp oo oo imp func

Versions 54 3 5 23 28 296 11 174 63 30 104 105 1 6

Fold. Avg. 204 39 70 3152 36 178 87 187 32 23 83 359 103 2109

Files Avg. 870 250 512 4087 336 2242 330 2905 155 135 1703 4968 379 9754

Table 2. Overview of project characteristics (part1)

Due to page limitations and a better understanding of the calculation results, we highlight the findings

for the popular web framework (Ruby on) Rails as an example. It shows average figures in its project

statistics and the calculation yields similar patterns and results for the rest of 26 projects. In the final

regression all 1625 observations are taken as single events. However, for clarity we aggregate all the

change data of the 116 versions in Rails and calculated the all-time VaR for each granularity level.

Name P
h

o
n

e-

g
a
p

P
o
st

-

g
re

s

P
ro

to
-

ty
p

e

R
a
il

s

R
ed

is

R
u

b
y

S
cr

ip
ta

-

cu
lo

u
s

S
o
lr

S
p

a
r-

k
le

T
h

re
e

2
0

T
o
rn

a
-

d
o

V
8

Y
U

I3

Language js c js ruby c ruby js java objc objc python c++ js

Type webfr db webfr webfr db lang webfr db sys lib webse sys webfr

Paradigm script imp script script imp script script oo oo oo script oo script

Versions 5 260 11 116 61 73 3 6 4 6 9 157 22

Folders Avg. 76 380 47 777 45 459 25 1392 49 205 57 56 1587

Files Avg. 113 3826 130 2055 275 3460 111 4647 297 1159 185 1646 4358

Table 3. Overview of project characteristics (part2)

Figure 3 illustrates that starting with a normalized VaR of 1, the VaR of all three methods declines

with an increase in granularity levels. As expected, the control methods (rand and corr) calculate

structures with higher VaRs. The tar method shows a similar slope to the ‘Rule of Ten’, but at the

granularity level of 5 the VaRs stabilize at a stationary level. All three methods indicate the optimal

VaR at a granularity level of 7. Even though the ‘Rule of Ten’ does not depend on the project

characteristics of Rails, it approximates the tar graph to the granularity of 5 in the stationary region.

Consequently, the control methods cannot predict correct risk cost but they estimate the same optimal

granularity level as the tar method. The ‘Rule of Ten’ cannot predict the level of granularity correctly,

yet it indicates a good benchmark for the risk costs predicted by the VaR.

4.2 Rule of Ten as cost measure for incorrect granularity

In general, the slope of the graphs shows that the theoretical ‘Rule of Ten’ underestimates the risk

costs, with increasing levels of granularity. Additionally, it can be easily observed that the ‘Rule of

Ten’ approximates the risk cost value of the tar method best towards the optimum. Simultaneously, the

project shows that this rule of thumb noticeably underestimates the risk costs between the levels of the

worst and optimal granularity. This is especially the case when multiple levels of granularity have

measurable similar risk costs. Moreover, it can be argued that the validation methods simulate more

aggressively, coarsely and result in worse diversified portfolios than the ‘Rule of Ten’ and the tar

method. It is in line with the results of other empirical studies that even the randomized validation

methods confirm the minimum risk costs found by the tar method (Huschens and Stahl, 2004).

Comparing with the ‘Rule of Ten’, it can be argued that the tar method estimated the risk costs best,

but also the validation methods determine the same level of granularity as optimal, when the absolute

risk cost values are negligible.

Figure 3. Analysis of Rails project results

4.3 Marginal utility of granularity

The data gives insights into the risk cost decline with an increase in granularity and subsequent

stabilization at a stationary level. It can be intuitively understood that projects are structured with best

practice methodologies and iterative approaches (Erl, 2005) until a manageable software foundation is

formed. Coevally, it can be seen at the stationary levels of the project that more or less adequate level

of granularity can already be discovered at lower levels of granularity. The marginal utility of

additional granularity towards the optimum is declining due to complexity of coordination between the

components. This can be explained by the effect of overspecification which is mentioned in literature

(Millard et al., 2009). If software structures are initially designed for good reusability, but then never

reused, then they might result in an inefficient overspecification and overhead. The measurement of all

projects shows, that a slight over- and underspecification can be tolerable. On the one hand the risk

cost increase slightly around the area of optimal granularity, while this increase is much smaller then

at lower or even monolithical granularity.

4.4 Influence of project characteristics on optimal granularity

Figure 3 illustrates that the implicit ‘Rule of Ten’ assumption of a log-log dependency of risk costs

and granularity is too unprecise. That is why we regress all 1625 version observations of the 27

projects as a cross-sectional dataset of first differences of log and investigate influences of additional

project characteristics. Results of the regression analysis explain changes of risk costs at optimal

granularity. The number of patches, files per patch and total number of files have a highly significant

influence on the change of optimal granularity. Even the influence of LOC changes is significant at

least at a 5% level and time at a 10% level of significance. While risk costs, patches, files and LOC

changes have a positive impact on the changes in level of optimal granularity, changes of files per

patch and time have a negative influence. As all project-specific control variables do not show any

significance, they are removed from the regression equation and the final results (see Table 4).

All measured project characteristics are significant and allow us to reject null hypothesis H20 that there

are no influences by the project characteristics. As the impact of chances in risk costs shows the

highest t-value null hypothesis H10 is rejected as well. The whole regression model has an adjusted R-

squared value of 54.05% for the analyzed cross-sectional dataset. Appling an F-test for the significant

influence of all coefficients of the model yields an F-Value of 273.62, which is highly significant for

1625 observations and enables us to reject also null hypothesis H30. From a project management point

of view, this gives evidence that increases in project parameters like project risk costs, number of

patches, files and total lines of code cause a need of more granular structuring. Risk cost influence has

the highest significance of the measured project characteristics. If the number of files per patch

increases in a current version, it indicates too granular project structures and results in a need for a less

granular structuring. A shortage of release cycles and version snapshots shows similar results: if the

time between two releases decreases, the need for more granular and more diversified project

structures increases.

 Const Risk Costs Patches Files/Patch Files LOC Time

Coefficient -0.0118 0.0229 0.0885 -0.3272 1.0451 0.1976 -6.5603

Std. Error 0.0135 0.0011 0.0083 0.0397 0.3231 0.0775 3.9047

t-Value -0.8728 20.8817 10.6532 -8.2349 3.2348 2.5486 -1.6801

P-Value 0.3829 <0.00001 <0.00001 <0.00001 0.0012 0.0109 0.0931

 *** *** *** *** ** *

*/**/*** indicate significance at the 10%/5%/1% level. n = 1625; adjusted R
2
= 0.5405;

F(6, 1618) = 273.6164; P-Value(F) < 0.00001

Table 4. Regression results of optimal granularity level and the project specifically influences

5 Conclusion

Four research questions regarding the structuring of software projects have been defined. They deal

with: the structure of software projects, the measurability and comparability of granularity levels, the

optimal granularity, so that good reusability and low change risks can be expected, and finally the

influences of project characteristics. In this paper, the Portfolio Selection theory and the VaR concept

were applied to software project portfolios and extended with the aid of project risk costs to measure

directly the granularity level of software repositories. Thereby, the risk of reimplementation is

measured by evaluating the relative residual value of reusable source code. The selection of the correct

software project structure with efficient granularity becomes measurable by valuing the risk costs.

The sizes of software components and historical software changes have been measured with the aid of

software version control systems for empirical quantifiability. A sample of the 27 most active Github

open source projects was simulated in various granularities generated with three different methodical

approaches and accordingly rated concerning the risk of reimplementation. The hypotheses derived

from theory and related work were tested to explain which project determinants influence the level of

granularity. Furthermore, a model was developed to determine how to adjust granularity for given

changes in project characteristics.

The analysis shows that despite differences in the simulation methods, all of them value the same level

of granularity as optimal, although the control methods are not equally reliable about the absolute level

of risk cost. Coevally, the ’Rule of Ten’ can be confirmed empirically, even when the logarithmic

structure of this rule reflects the specific characteristics only partially correct. Furthermore, it can be

shown that there is a marginal utility of granularisation and that the utility around the optimal level of

granularity only declines very slightly. Empirical evidence has been provided that risk costs have the

highest influence on the granularity decision. It was further shown how additional project

characteristics influence a systematical estimation of optimal software granularity. Researchers get a

well-established theory, flexible methodology and applicable framework to finding of correct

granularity for good component reuse and lower project risks as claimed in Erradi et al. (2006). This

enables design science support as well as positivistic evidence for research streams like service

granularity and project risk management. In practice project managers receive a toolset to predict the

consequence of changes in project parameters and find advise how granularity adjustments can decline

possible risk cost of this changes. Software architects and developer get decision support for selecting

the best choice from multiple implementation opportunities or might apply this methodology in search

filters of registries to find service and software that let expect less risk cost with future changes.

The presented method is an approach to quantify the quality of software project structures. This

approach is limited to project risks and neglects possible returns that are more difficult to quantify

from project source code data. The deducted model has an explanatory power of 54%, which means

46% of the observed influences are caused by influence that cannot identified with the facts from data

set. The data set contains only open source projects. The measurement methods are just able to

simulate the granularity between 1 and the given project granularity. Even with the deducted model an

initial project version snapshot is needed to determine a good level of granularisation. In further

research, we will address these limitations and deepen our analysis of the relation between risk costs

and optimal granularity as these have the highest significance in our regression model. Depending on

data accessibility and publishability we plan to shift our data scope from open source to SOA, SaaS

and proprietary software projects to support structuring decisions in commercial software projects. We

also want to investigate the dynamics of granularity over time to understand how previous versions

influence the current optimal granularity.

Finally, concerning the research questions, it is has been shown that the optimal granularity structure

of software projects, can be measured at present. A method has been presented that enables us to

measure and compare the quality of software project granularities and the influence on the optimal

level of granularity. Consequently, it becomes possible to estimate quantitatively how granular

software projects should be structured and how this granularity must be adjusted when specific project

parameters change. We thankfully acknowledge the support of Martin Haferkorn and the E-Finance

Lab, Frankfurt for this work.

Literature

Albrecht, P. and Maurer, R. (2005). Investment- und Risikomanagement: Modelle, Methoden,

Anwendungen. Schäffer-Poeschel, 2. Edition.

Amihud, Y. and Lev, B. (1981). Risk reduction as managerial motive for conglomerate mergers. Bell

Journal of Economics (12), pp. 605-617.

Benaroch, M.(2002). Managing information technology investment risk: A real options perspective.

Journal of management information systems, (19:2), pp. 43–84.

Benaroch, M., Lichtenstein, Y. and Robinson, K. (2006). Real options in information technology risk

management: an empirical validation of risk-option relationships. MISQ, (30:4), pp. 827 – 864.

Blobel, V. and Lohrmann, E. (1998). Statistische und num. Methoden der Datenanalyse; Teubner.

Bradley, M., Desai, A. and Kim, E.H. (1983). The rationale behind interfirm tender offers: information

or synergy. Journal of Financial Economics (11), pp. 182-206.

Braunwarth, K. and Friedl, B. (2010). Towards a financially optimal design of IT services. ICIS 2010

Proceedings, Saint Louis.

Campbell, R., Huisman, R. and Koedijik, K. (2001). Optimal portfolio selection in a Value-at-Risk

framework. Journal of Banking& Finance 25.

Christensen, H.A. and Montgomery, C.A. (1981). Corporate economic performance: Diversification

strategy versus market structure. Strategic Management Journal (2:4), pp. 327-343.

Cho, W. and Shaw, M. J. (2009). Does IT Synergy Matter in IT Portfolio Selection? ICIS 2009

Proceedings. Paper 160.

Eckbo, B. E. (1983). Horizontal mergers, collusion, and stockholder wealth. Journal of Financial

Economics (11), pp. 241-274.

Erl,T. (2005). Service-Oriented Architecture: Concepts, Technology & Design, Prentice Hall.

Erradi, A., Anand, S. and Kulkarni, N. (2006). SOAF: An Architectural Framework for Service

Definition and Realization.

Farjoun, M. (1998). The independent and joint effects of the skill and physical bases of relatedness.

Strategic Management Journal (19:7), pp. 611-630.

FSF (2006). Free Software Foundation - TAR. Accessed August 6
th
 2011,

http://www.gnu.org/software/tar/tar.html.

Friedl, B. (2011). Zur optimalen Granularität von IT-Services - Eine Analyse relevanter ökonomischer

Einflussfaktoren, 10. Int. Tagung Wirtschaftsinformatik, Zürich.

Github (2011). Github Social Coding. Accessed November 9
th
 2011, https://github.com/repositories.

Grigore, M. and Rosenkranz, C. (2011). Increasing the Willingness to Collaborate Online: Analysis of

Sentiment-Driven Interactions in Peer Content Production. ICIS 2011 Proceedings.

Hill, C.W.L. and Hoskisson, R.E. (1987). Strategy and structure in the multiproduct firm. Academy of

Management Review, (12:2), pp. 331-341.

Huschens, S. and Stahl, G. (2004). Granularität dominiert Korrelation, Risknews 06/04.

Katzmarzik (2011). Product differentiation for SaaS-Providers, BISE, 01/2011, pp. 19-31.

Klose, K., Knackstedt, R. and Beverungen, D. (2007). Identification of Services - A Stakeholder-based

approach to SOA development and its application in the area of production planning, ECIS.

Krafzig, D., Banke, K. and Slama, D. (2004). Enterprise SOA: Service Oriented Architecture Best

Practices, Prentice Hall International.

Lee, J., Seo, Y. and Lee, J. (2007). Method and appartus for merging data objects, European Patent

EP181840A2.

Lichter, H. and Mandl-Striegnitz, P. (1999). Defizite im Software- Projektmanagement - Erfahrungen

aus einer industriellen Studie, Informatique 5.

Lütkebohmert, E. and Gordy, M. (2007). Granularity adjustment for Basel II. No 2007,01, Discussion

Paper Series 2: Banking and Financial Studies, Deutsche Bundesbank, Research Centre.

Markowitz, H. (1952). Portfolio Selection: Journal of Finance, p. 77-91.

Millard, D. E., Howard, Y., Abbas, N., Davis, H. C., Gilbert, L., Wills, G. B. and Walters, R. J.

(2009). Pragmatic web service design: An agile approach with the service responsibility and

interaction design method. Computer Science.

Milgrom P. and Roberts, J. (1995). Complementarities and fit Strategy, structure, and organizational

change in manufacturing. Journal of Accounting and Economics (19), pp. 179 -208.

Myers, S.C. (1984). Finance theory and financial strategy. Interfaces (4), pp. 26-37.

Pfeifer, T. (2001). Qualitätsmanagement: Strategien, Methoden, Techniken, Hanser Fachb., 3. Aufl.

Rockafellar, R. and Uryasev, S. (1999). Conditional value-at-risk for general loss distributions. Journal

of Banking & Finance, Volume 26, Issue 7, Pages 1443-1471

Schirmer, I. and Zimmermann, K. (2008). Visualisierung von Projektportfolios zur Unterstützung des

Architekturmanagements, Universität Hamburg.

Standish (2011). The Standish Group CHAOS Manifesto 2011. Accessed June 9, 2011,

http://standishgroup.com/newsroom/chaos_manifesto_2011.php.

Panzar, J. C. and Willig, R. D. (1981). Economies of scope. American Eco. Rev., (71:2), pp. 268-272.

Tanriverdi, H. and Ruefli, T. W. (2004). The Role of Information Technology in Risk/Return

Relations of Firms. Journal of the Association for IS, Vol. 5, No. 11-12, pp. 421-447.

Tanriverdi, H. (2005). Information Technology Relatedness Knowledge Management Capability, and

Performance of Multibusiness Firms. MIS Quarterly (29:2), pp. 311-334.

Tanriverdi, H. (2006) Performance Effects of Information Technology Synergies in Multibusiness

Firms. MIS Quarterly (30:1), pp. 57-77.

Teece, D.J. (1980). Economies of scope & the scope of the enterprise. Journal of Economic Behavior

and Organization (1:3), pp. 223-247.

Teece, D. J. (1982). Towards an economic theory of the multiproduct firm. Journal of Economic

Behavior and Organization (3), pp. 39-63.

Turek, P., Wierzbicki, A. and Nielek, R. (2010). WikiTeams: Evaluating Teamwork in Wikipedia. In:

Proceedings of the WebSci10.

Weill, P. and Vitale, M. (2002). What IT infrastructure capabilities are needed to implement e-

business models? MIS Quarterly, (1:1), pp.17-34.

Wiedemann, A. (2002). Messung von Zinsrisiken mit dem Value-at-Risk-Konzept, WISU 12, pp.

1548-1553.

Wilkens, M. (2001). Basel II- Berücksichtigung von Diversifikationseffekten im Kreditportfolio durch

das Granularity Adjustment, Zeitschrift für das gesamte Kreditwesen, 12; pp. 670-676.

Willig, R. (1978). Technology and market structure. American Economic Review (69), pp. 346-351.

Wolke, T. (2008). Risikomanagement; Oldenbourg Wissenschaftsverlag.

Wierzbicki, A., Turek, P. and Nielek, R. (2010). Learning about team collaboration from Wikipedia

edit history. International Symposium on Wikis and Open Collaboration.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	5-15-2012

	MEASURING THE INFLUNENCE OF PROJECT CHARACTERISTICS ON OPTIMAL SOFTWARE PROJECT GRANULARITY
	Moritz C. Weber
	Carola Wondrak
	Recommended Citation

	Microsoft Word - 299499-text.native.1339001287.doc

