
Association for Information Systems
AIS Electronic Library (AISeL)

ECIS 2012 Proceedings European Conference on Information Systems
(ECIS)

5-15-2012

SUPPORTING ENTERPRISE
TRANSFORMATION USING A UNIVERSAL
MODEL ANALYSIS APPROACH
Matthias Steinhorst
University of Münster

Dominic Breuker
University of Münster

Patrick Delfmann
University of Münster

Hanns-Alexander Dietrich
University of Münster

Follow this and additional works at: http://aisel.aisnet.org/ecis2012

This material is brought to you by the European Conference on Information Systems (ECIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ECIS 2012 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Steinhorst, Matthias; Breuker, Dominic; Delfmann, Patrick; and Dietrich, Hanns-Alexander, "SUPPORTING ENTERPRISE
TRANSFORMATION USING A UNIVERSAL MODEL ANALYSIS APPROACH" (2012). ECIS 2012 Proceedings. 147.
http://aisel.aisnet.org/ecis2012/147

CORE Metadata, citation and similar papers at core.ac.uk

Provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301355677?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fecis2012%2F147&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2012?utm_source=aisel.aisnet.org%2Fecis2012%2F147&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2012%2F147&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2012%2F147&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2012?utm_source=aisel.aisnet.org%2Fecis2012%2F147&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2012/147?utm_source=aisel.aisnet.org%2Fecis2012%2F147&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

SUPPORTING ENTERPRISE TRANSFORMATION USING A

UNIVERSAL MODEL ANALYSIS APPROACH

Steinhorst, Matthias, University of Münster - ERCIS, Leonardo Campus 3, 48149 Münster,

Germany, matthias.steinhorst@ercis.uni-muenster.de

Breuker, Dominic, University of Münster - ERCIS, Leonardo Campus 3, 48149 Münster,

Germany, dominic.breuker@ercis.uni-muenster.de

Delfmann, Patrick, University of Münster - ERCIS, Leonardo Campus 3, 48149 Münster,

Germany, patrick.delfmann@ercis.uni-muenster.de

Dietrich, Hanns-Alexander, University of Münster - ERCIS, Leonardo Campus 3, 48149

Münster, Germany, hanns-alexander.dietrich@ercis.uni-muenster.de

Abstract

Enterprise Architecture Management has been proposed to help organizations in their efforts to

flexibly adapt to rapidly changing market environments. Enterprise architectures are described by

means of conceptual models depicting, e.g., an enterprise’s business processes, its organisational

structure, or the data the enterprise needs to manage. Such models are stored in large repositories.

Using these repositories to support enterprise transformation processes often requires detecting

structural patterns containing particular labels within the model graphs. As an example, consider the

case of mergers and acquisitions. Respective patterns could represent specific model fragments that

occur frequently within the process models of the merging companies. This paper introduces an

approach to analyse conceptual models at a structural and semantic level. In terms of structure, the

approach is able to detect patterns within the model graphs. In terms of semantics, the approach is

able to detect previously standardized model labels. Its core contribution to enterprise architecture

management and transformation is two-fold. First, it is able to analyse conceptual models created in

arbitrary modelling languages. Second, it supports a wide variety of pattern-based analysis tasks

related to managing change in organisations. The approach is applied in a merger and acquisition

scenario to demonstrate its applicability.

Keywords: Enterprise Architecture, Conceptual Model Analysis, Pattern Matching, Semantic

Standardization.

1 Introduction

Contemporary enterprises are exposed to continuous change. To stay competitive in global markets,

they constantly adopt new technologies (Karahanna, Straub, and Chervany, 1999), outsource parts of

their business to other organizations (Ackermann et al., 2011), merge with or acquire former

competitors (Napier, 1989), align their business processes with the IT systems supporting them

(Lankhorst, Proper, and Jonkers, 2010), or integrate heterogeneous portfolios of application systems

(Miklitz and Buxmann, 2007). Against the backdrop of constant transformations, the use of enterprise

architectures has been put forth to guide “the development of the enterprise as a whole and the

development of their IT portfolio in particular” (Op’t Land and Proper, 2007, p. 1956). Enterprise

architectures can be interpreted as “a coherent whole of principles, methods, and models that are used

in the design and realisation of an enterprise’s organisational structure, business processes,

information systems, and infrastructure” (Lankhorst, 2005, p. 3). It provides an as-is description of an

enterprise and can be used to analyse and subsequently change its structure to represent a desired to-be

state (Winter and Aier, 2011; Buckl et al., 2011). Enterprise architectures are described by repositories

of graph-based conceptual models depicting an enterprise’s business processes, its portfolio of

application systems, or the data the company needs to manage (Op’t Land et al., 2009, p. 37).

To support enterprise transformation processes, these model repositories need to be analysed with

respect to both model structure and model semantics. Structurally analysing conceptual models means

identifying patterns within the models. In case of mergers and acquisitions for instance, such patterns

may represent sets of activities that frequently occur in the process models of the merging companies

(Yan, Dijkman, and Grefen, 2010). Identifying these activity patterns helps to develop a unified

process model. Other applications of pattern detection in the context of enterprise transformation

include identifying process weaknesses (Smirnov et al., 2009), managing process compliance

(Weidlich et al., 2010), or complexity (Weber et al., 2011). Semantically analysing conceptual models

means detecting particular labels used to further describe the model elements. As different analysts

might interpret particular terms differently, standardizing labels is a prerequisite for such an analysis.

Such labels must contain only terms and phrase structures that are understood in the same way by all

model users.

This paper addresses the problem of analysing conceptual models both on a structural and semantic

level. It introduces an analysis approach that incorporates mechanisms to detect structural patterns and

previously standardized labels in conceptual models. The approach’s core contribution to enterprise

architecture management and transformation is the fact that it is universal in two manners. First, it

supports a wide variety of pattern-based analysis tasks related to the management of change in

organisations (see examples above). Secondly, as enterprise architectures may contain models created

with different modelling languages, the approach is applicable to any graph-based conceptual models.

We follow the argument of Iacob et al. (2005, p. 200) in postulating that analysis methods have to be

applicable across multiple domains. The paper, however, focuses on applying our approach in the

context of mergers and acquisitions using EPCs and ERMs.

The remainder of the paper is organized as follows. In Section 2, we discuss related work on

conceptual model analysis. In Section 3, we introduce our universal model analysis approach. Section

4 exemplarily applies the approach in the context of mergers and acquisitions. We conclude the paper

in Section 5 by summarizing our main contributions, elaborating on limitations of our approach and

providing an outlook to future research.

2 Related Work

This paper introduces an approach to analyse conceptual models both on a structural as well as on a

semantic level. In terms of structural analysis, much work has been presented in the domain of

Business Process Management (BPM). Here, structurally analysing process models refers to

examining the control flow of various business activities. This, for instance, serves to identify typical

weaknesses or best practices that are represented as activity patterns within the models. Approaches to

detect such patterns have been proposed by Smirnov et al. (2009) or van Dongen, Mendling, and van

der Aalst (2006). In the context of enterprise transformation, detecting weakness/best practice patterns

helps to improve an enterprise’s business processes. It may also lead to a company outsourcing those

parts of its business that it cannot manage efficiently. Other work addresses the growing complexity of

process models by presenting approaches to identify frequently occurring activity patterns (Weber et

al., 2011; Reijers, Mendling, and Dijkman, 2011). Such patterns can be represented by aggregated

activities describing the process on a higher level of abstraction. This is particularly helpful to

understand a company’s core business activities that need to be represented in an enterprise

architecture. Further work is concerned with identifying similar process models. To that end, Yan,

Dijkman, and Grefen (2010) introduce an approach based on the idea that similar processes contain a

large number of equal activity patterns. Possible application scenarios of this work include mergers

and acquisitions. Here, business processes of two formerly separate companies need to be compared to

one another to define consolidated processes of the integrated enterprise.

A structural analysis only takes into account model elements and the arrows connecting them. To

allow for a meaningful analysis, the content of model elements has to be considered as well. In the

domain of BPM, the usage of ontologies has been suggested to capture the corporate vocabulary and

define semantic relationships between particular terms (Thomas and Fellmann, 2009). Such ontologies

define an unambiguous, formal conceptualization of the domain knowledge which is applied to

describe a given business process (Hua, Zhao, and Storey, 2010). Other approaches are concerned with

identifying and subsequently standardizing particular labelling styles of process activities (Leopold,

Smirnov, and Mendling, 2010). In the domain of database engineering, the use of ontologies has been

put forth to match semantically similar parts of various database schemas to one another (Cruz,

Antonelli, and Stroe, 2009 or Tavages et al., 2009).

In this paper, we present a model analysis approach that considers both the structure as well as the

semantics of conceptual models. We introduce an approach that incorporates a mechanism to detect

arbitrary structural patterns in any kind of conceptual model. Thus it is applicable for a wide variety of

pattern-based analysis problems (see examples above). In terms of model semantics, our analysis

approach is able to standardize model labels that can be searched for in a subsequent analysis.

3 A Universal Model Analysis Approach

Section 3 introduces our model analysis approach. It incorporates mechanisms to detect semantically

standardized model element labels (Section 3.1) and structural patterns (Section 3.2). After presenting

these underlying concepts a conceptual specification of the combined analysis approach (Section 3.3)

as well as details on its implementation (Section 3.4) is given.

3.1 Semantic Model Analysis

To run meaningful analyses on conceptual models, it is imperative to standardize their labelling.

Studies show that conceptual models differ significantly in terms of utilized phrase structures and

vocabulary (Hadar and Soffer, 2006). This causes difficulties in determining the semantics of

particular model elements. For instance, an activity label “Check invoice” of a given process model

may or may not be semantically identical to an activity label “Bill verification”. For this reason, our

model analysis approach includes a mechanism to semantically standardize labels of model elements.

Prior to running an analysis, this mechanism is executed on the entire model repository to be analysed.

The mechanism rests on two pillars: a corporate vocabulary and phrase structure conventions. The

corporate vocabulary defines all terms that are allowed to be used for labelling. It represents a subset

of the natural language employed in its model repository. The corporate vocabulary can be developed

from scratch by domain experts or by reusing existing glossaries or thesauri. It contains only nouns,

verbs, adjectives, and adverbs, as all other word classes are independent from a particular enterprise.

Other than an enumeration of valid terms, the vocabulary defines relationships between them. It

specifies what words are synonyms or homonyms of what other words. For each synonym or

homonym relationship the vocabulary also defines a dominant term that is to be used instead of its

synonyms/homonyms. Phrase structure conventions define the grammatical structure of element

labels. For each element type of each modelling language at least one phrase structure convention has

to be defined. An activity in a BPMN model can, for instance, be labelled according to the phrase

structure (<verb, imperative>, <noun singular>). Such a structure allows for labels like “Check

invoice” or “Execute goods receipt”. Phrase structures conventions consequently provide a template

for element labels and can be arranged in any grammatically sensible order and inflexion.

Figure 1: Process of Label Standardization using the example of EPC-Events (adapted from Delfmann

et al., 2011)

Having defined the corporate vocabulary as well as phrase structure conventions, element labels can

be semantically standardized. Figure 1 illustrates the respective standardization procedure using the

example of an event-driven process chain (EPC). An event can be labelled according to two phrase

structure conventions (as depicted in the upper right corner of the figure). Given a particular label, the

algorithm first calls a linguistic parser that determines the uninflected forms of all the terms contained

in that label (1). In a second step, the uninflected terms are validated against the corporate vocabulary

(2). In the example depicted in Figure 1, the verb “to control” is indeed contained in the corporate

vocabulary but is dominated by its synonym “to check” (dominant synonym is highlighted in bold).

The noun “bill” on the other hand is not contained in the corporate vocabulary. If that is so, the

algorithm consults a general lexicon of the English language (3). In this case, it identifies the term

“invoice”, which is contained in the vocabulary, as a synonym of “bill”. Having determined

appropriate terms, the algorithm now constructs phrase structures according to the predefined

conventions (4). As two conventions are allowed for events, two phrase structures are constructed:

“Invoice is to be checked” and “Invoice checked”. As the algorithm cannot decide which structure is

appropriate in the given context, a manual input of an analyst is required, who chooses among the

returned suggestions. Manual input is furthermore required if the standardization algorithm fails at any

step during its execution. This can happen, if (a) a synonym for a particular term cannot be

determined, because the term is unknown to the general lexicon, (b) no synonyms can be identified for

an invalid term, or (c) synonyms not contained in the corporate vocabulary are found. In all of these

cases, the analyst has to decide whether the respective term is added to the vocabulary.

This mechanism to standardize model labels is based on the assumption that both the corporate

vocabulary and phrase structure conventions are a priori artefacts. Constructing an enterprise-wide

vocabulary poses a significant challenge. Different people may understand particular terms differently.

In order for the presented standardization mechanism to work, a group of domain experts has to define

all business objects, activities, IT systems, organizational units, etc. that are to be represented within

the model repository of an enterprise. Based on these definitions, appropriate terms best describing

these artefacts can be determined. In doing so, it is assured that a process activity labelled “Produce

X” actually produces the business object X. A more detailed discussion on the challenges of defining

and maintaining a corporate vocabulary can be found in Moriarty (2001). In terms of phrase structure

conventions, the mechanism assumes that conventions are defined for each element type of each

modelling language used to create conceptual models. If business processes are modelled as EPCs,

appropriate phrase structure conventions have to be defined for functions, events, and all other element

types contained in the EPC meta-model. If the model repository also contains data models created as

ERMs, additional phrase structures have to be defined for entity types, relationship types, etc.

3.2 Structural Model Analysis

The structural analysis of conceptual models requires the identification of patterns within model

graphs. This serves a variety of different purposes ranging from model similarity search to identifying

improvement potential (Cf. Section 2). Our model analysis approach incorporates a pattern matching

mechanism that allows finding arbitrary structural patterns within models of any modelling language.

Being based on set-theory, the approach represents any conceptual model in terms of two basic sets.

These are the set O of its objects and the set R of its relationships. The set E of elements is defined as

the union of O and R. Set-altering functions and operators are defined that perform particular

operations on these basic sets. To be able to determine arbitrary patterns, we define four classes of

functions. First, we have to be able to recognize elements belonging to a particular element type of the

modelling language:

• ElementsOfType(X,a) returns all elements of the input set X that belong to a particular type a. The

respective elements are put into one output set.

Furthermore, we need to identify all elements that have (a particular number of) ingoing or outgoing

relations (of a particular type):

• ElementsWith{In|Out}Relations(X,Z) return all elements of X and their {ingoing | outgoing}

relationships defined in Z. These functions each return a set of sets. Each inner set contains an

element of X and all its relationships of Z.

• ElementsWith{In|Out}RelationsOfType(X,Z,c) return all elements of X and their {ingoing |

outgoing} relationships of Z that are of type c. Again, these functions return a set of sets with each

inner set containing one element of X as well as its {ingoing | outgoing} relationships of Z that

belong to type c.

• ElementsWithNumberOf{In|Out}Relations(X,Z,n) return all elements of X that have a predefined

number n of relationships of Z. All occurrences of that pattern are represented in one inner set of

the returned set of sets.

• ElementsWithNumberOf{In|Out}RelationsOfType(X,Z,n,c) are a combination of the two latter

groups of functions. They return elements having a predefined number n of relationships of Z that

are of type c. These functions return a set of sets.

In addition, we want to be able to find particular elements, their immediate neighbours, and the

relationship between them:

• ElementsDirectlyRelatedInclRelations(X1,X2) and DirectSuccessorsInclRelations(X1,X2) return all

elements of X1, their neighbouring elements of X2, as well as the relationships between the

respective elements. ElementsDirectlyRelatedInclRelations(X1,X2) only works on undirected

graphs whereas DirectSuccessorsInclRelations(X1,X2) only works on directed graphs.

Lastly, to be able to find structures representing element paths of arbitrary length, we included the

following functions in the pattern matching mechanism:

• {Directed}Paths(X1,Xn) return all {directed} paths between all elements of X1 and all elements of

Xn. One inner set of the resulting set of sets contains one path from one element of X1 to one

element of Xn.

• {Directed}Paths{Not}ContainingElements(X1,Xn,Xc) return all paths from all elements of X1 to all

elements of Xn that either contain at least one or no element of Xc.

For all paths-functions the pattern matching approach includes versions that determine only the

shortest or longest paths as well as loops. As its theoretical basis is set theory, the approach

furthermore incorporates the set operators Union, Intersect, and Complement that perform the standard

set operations on two sets of elements. A Join-operator unifies two input sets if they have at least one

element in common. Analogously to the Intersect- and Complement-Operators, the approach offers

versions working on sets of sets (InnerIntersect and InnerComplement). The SelfUnion operator turns

a set of sets into a single set, whereas the SelfIntersect operator performs an intersection on all inner

sets resulting in one single set that holds all elements contained in every inner set. These set-altering

functions and operators allow for building up arbitrary pattern definitions recursively. Result sets of

one particular function/operator call serve as input for another function/operator. Such pattern

definitions can be run on a repository of conceptual models to identify all pattern occurrences within

the models of the repository. A detailed formal specification of all functions and operators can be

found in Delfmann et al. (2010).

3.3 Conceptual Specification of the Combined Analysis Approach

In the following, the two approaches to semantically standardize element labels as well as to detect

structural patterns are combined into an integrated model analysis approach. Its overall procedure is

subdivided into two main steps, which are depicted in Figure 2 (black-shaded elements are derived

from the pattern matching approach, grey-shaded elements are derived from the semantic

standardization approach, and non-shaded elements are new). Provided that, first, the model base to be

analysed is semantically standardized as described in Section 3.1 and, second, structural patterns are

defined as explained in Section 3.2, an analysis can be specified (Cf. Analysis Definition in Figure 2).

That analysis is then applied to a set of models in order to generate a report as a result (Cf. Report

Generation in Figure 2).

An analysis is composed of one or more sub-analyses. The scope of a (sub-) analysis defines whether

it is run on one set (simple analysis) or two sets of models (comparative analysis). The model set

contains all models that are to be analysed. The set can hold an entire model repository or just parts of

it (e.g. all process models). In case of a comparative analysis, the results obtained from both model

sets are compared to one another. In case they are equivalent in terms of the comparison type, they are

returned as a result pair marked as “equivalent”. Consider the example of two data structures

contained in one pattern equivalence class. If one of these structures is found in a model of the first

set, while the other pattern is found in a model of the second set, both pattern occurrences are returned

and marked as equivalent.

Each sub-analysis is assigned a search criterion describing properties of the expected analysis results

(e.g., “find all receipt structures containing the term invoice”). A search criterion can be atomic or

composed. An atomic search criterion can either be a single structural pattern that is to be searched in

the entire model set, a set of such patterns that are considered equivalent (pattern equivalence class),

or an element type of a particular modelling language. In these cases, all occurrences of the respective

structures within the model set(s) are returned as analysis results. The pattern equivalence class allows

for finding two or more structural patterns in one analysis run. As far as semantic search criteria are

concerned, occurrences of predefined phrase structures, word classes, or words within particular

model elements can be searched for.

A composed search criterion consists of a combination of search criteria connected by logical

operators. The search criteria to be combined are specified by the criterion structure. Two different

search criteria can be combined using the operators AND, OR, XOR, and NOT. In doing so,

arbitrarily complex search criteria can be constructed, as a sub-criterion can itself be further

composed. For instance, we are able to define an analysis that identifies all occurrences of a particular

pattern in combination with all occurrences of a given phrase structure while excluding all occurrences

of a specific word. A criterion restriction is used to refine a search criterion. Here, a search criterion –

either an atomic or a complex one – serves as a constraint for an atomic search criterion restricting the

resulting set of model fragments. Therefore, the restricting search criterion is directly assigned to the

atomic search criterion to be restricted. This allows for specifying an analysis that, for instance, returns

all pattern occurrences containing a particular phrase structure. In this example, the search criterion

containing the pattern definition is further constrained, so that only those pattern occurrences are

returned that also contain the predefined phrase structure.

The attribute output type defines the granularity of the analysis results to be displayed. Consider the

example of an analysis to search for structural pattern occurrences. By defining patterns as output

type, the complete pattern occurrences are included in the report. By setting the value to “element”,

the report is straightened to visualize occurrences of single model elements contained in the returned

pattern occurrences. By defining “phrase syntax” as output type only phrase syntax occurrences

contained in the returned pattern occurrences are visualized, and so on. To avoid empty reports, the

output type has to be defined with respect to the specified search criteria.

Figure 2: Conceptual Specification of the Combined Analysis Approach (adapted from: Herwig et al.,

2011)

The results of an analysis are visualized in a report. Depending on the scope of an analysis, a report is

targeted at either one model set for a simple analysis or two model sets for a comparative analysis.

Each model set consists of one or more models to be analysed. A report is composed of one or more

report elements, each of them resulting from one sub-analysis. A report element represents a single

row in a report and shows the particular facts returned as search results from the corresponding sub-

analysis. A fact defines a particular match of the sub-analysis’ search criterion, which is depicted in

the report. With respect to the possible output types of a sub-analysis, a fact can be a structural pattern

occurrence, an element occurrence, a phrase syntax occurrence, or a word occurrence.

3.4 Implementation of the Combined Analysis Approach

In Figure 3, implementation details of the combined analysis approach are given in pseudo-code. The

method RunAnalysis in the upper part of the figure takes two model sets and an analysis specification

as input, while returning a report as output. For each sub-analysis contained in the analysis, the scope

is determined (lines 4 and 8). In case it is set to simple, a search run is executed for each model

contained in the first model set returning a list of facts (line 6) that is added to the report (line 7). For a

simple analysis the input parameter representing the second model set is set to null. In case the scope

is set to comparative, search runs are executed for all models contained in both model sets (lines 9 to

14). Lastly, the identified facts are added to the final report (line 15) returned to the analyst (line 16).

Figure 3: Implementation of the Combined Analysis Approach

To determine all facts contained in a particular model, the Execute method is called (lines 6, 11, and

14). This method is explained in more detail in the lower part of Figure 3. It is called with a particular

search criterion, a model that is to be searched, as well as a list of intermediate facts. First, the method

determines if the given search criterion is atomic (line 3) or composed (line 7). In case of the former

the method ExecuteAtomic is called which determines all facts in the given model corresponding to an

atomic search criterion (line 4). As explained in Section 3.3, this can for instance be an occurrence of a

structural pattern or of a predefined phrase structure contained in a model element. In a next step, the

Execute method determines if the search criterion is restricted (line 5). If that is so, the output list is

overwritten with a recursive call to Execute (line 6). This call takes the previously determined output

as fact parameter, whereas the model parameter is set to null. In doing so, the following call to the

ExecuteAtomic method is also given this input. ExecuteAtomic is built in such a way that if its second

parameter is set to null and its third parameter contains a list of preliminary facts, a search is run on

this list instead of the model. This allows for refining the list of facts to include only those fact

occurrences that correspond to the restriction criterion.

If the search criterion is composed (line 7), two lists of facts are calculated each representing the set of

facts identified in the model according to the two sub-criteria. This is again achieved by recursively

calling the Execute method with the respective input parameters (lines 8 and 9). In each case, the first

parameter represents the respective sub-criterion. The resulting output is determined by merging the

two fact lists according to the operator type specified in the composed search criterion (line 10). In

case the operator type is set to AND, the MergeResults method, for instance, determines the unified set

of all fact occurrences found in the model.

4 Application

To demonstrate the applicability of our model analysis approach in the context of enterprise

transformation, we prototypically implemented it as a plugin for a meta-modelling tool which was

available from a previous research project (Delfmann and Knackstedt, 2007). This plugin contains

environments to specify structural patterns, manage the corporate vocabulary as well as phrase

structures, and define analyses. We decided to provide application examples in the area of mergers and

acquisitions. A major challenge in merging two or more companies is integrating the respective IT

landscapes (Miklitz and Buxmann, 2007). For the purpose of this application example, assume that we

have two companies. For each of these companies, we modelled the three business processes

“campaign execution”, “order processing”, and “request processing” as EPCs. Furthermore, we

created two Entity Relationship Models representing the data models of a CRM application supporting

these three business processes. In total, we therefore ran our analysis on two model repositories that

each consists of three EPC models and one ERM. A first step toward IT integration in merger

scenarios is identifying the different application systems that support a particular business activity in

all involved companies (Keller, 2004).

Figure 4. Report for a Simple Analysis generated from first model repository (adapted from Herwig et

al., 2011)

To identify such structures, we define a simple analysis with the output type pattern. The report will

show us all model structures that match the predefined search criteria. For the example of application

systems supporting specific business activities we therefore defined a structural pattern that identifies

all functions directly related to an application system. According to the matching mechanism outlined

in Section 3.2, such a pattern can be defined as follows:

ElementsDirectlyRelatedInclRelations(ElementsOfType(O,Function),

ElementsOfType(O,ApplicationSystem))

The calls to ElementsOfType determine all objects that are functions and application systems

respectively. The two resulting sets serve as input for the call to ElementsDirectlyRelatedInclRelations

returning all functions that are directly connected to an application system. As far as the linguistic

features are concerned, we define the words “customer” and “CRM” to be part of the vocabulary for

this domain. Consequently, we try to identify activities that involve customers and that are supported

by CRM systems. Given this pattern and these terms, we can construct the search criterion that allows

for searching occurrences of the pattern. The search is further restricted to include only those pattern

occurrences containing either the word “customer” or “CRM” at least once.

Running this analysis on one of the model repositories introduced above delivers the report depicted in

Figure 4. The left part of the figure contains the report interface displaying the results of the analysis.

Here, the business process “campaign execution” contains two occurrences of the search criterion. The

processes “order processing” and “request processing” each contain three occurrences. By clicking on

a particular model, the model editor of the meta-modelling tool opens and all fact occurrences

contained in the model are highlighted (right part of Figure 4). In the example, all functions directly

connected to an application system containing the terms “customer” or “CRM” are displayed.

This analysis consequently allows for identifying particular application systems supporting business

processes of the two companies. It helps business analysts to identify which processes are supported

by which application systems. Such an analysis consequently represents a first step toward

consolidating and subsequently integrating different IT portfolios. This requires not only integrating

business processes but also the underlying databases (Batini, Grega, and Maurion, 2010). One

possibility to achieve this is to merge the respective data schemas. Such an integration scenario can

also be supported by our analysis approach, as it allows for comparing models in order to reveal

similarities. Identifying similarities between data models can be seen as a first step toward integrating

them. In the case of our two companies, a comparative analysis could be used to find equivalent

structures in the conceptual schemas of the CRM systems identified before.

Figure 5. Report for Comparative Analysis generated from both model repositories

We consequently define a pattern equivalence class containing two patterns both describing similar

aspects. The first one describes a receipt structure consisting of three entity types, one relational entity

type and one relationship type. This structure implies that an invoice consists of a header containing

general information about the invoice (order date, name of customer, etc.) and position data describing

what products were ordered in what quantities. Such a receipt structure is, e.g., implemented in the

SAP ERP system (Hefner and Dittmar, 2001, p. 107). The second pattern describes a similar structure,

consisting of three entity types connected by a ternary relationship type. This pattern equivalence class

is used as the analysis criterion. Furthermore, we restrict the analysis results to those pattern

occurrences that contain the term “invoice”. This time, the analysis was run on both model

repositories. As a result, the report contains all structures matching one of the patterns and containing

the term “invoice” (Cf. Figure 5). The report separately lists all facts found in both model repositories.

In particular, one model represents an invoice structure as a ternary relationship type; the other one

utilizes the SAP construct.

5 Contributions, Limitations, and Outlook

In this paper, we presented an approach to analyse conceptual models both on a structural and a

semantic level. In terms of structure, the approach incorporates a mechanism to detect patterns in

conceptual models created with arbitrary modelling languages. In terms of semantics, the approach

contains a mechanism to detect previously standardized element labels. The core contribution of this

paper to the management of enterprise architectures and transformation processes is two-fold. First,

the presented analysis approach is universal in the sense that it supports a wide range of analysis tasks

involving pattern matching in the context of enterprise transformation (Cf. Section 2 for more details).

Second, the presented analysis approach is universal in the sense that it can be applied to conceptual

models developed in arbitrary modelling languages.

The analysis approach is based on the assumption that three artefacts are a priori known. In terms of

model semantics, the approach assumes that a corporate vocabulary and phrase structure conventions

are defined prior to running an analysis. A group of domain experts has to clearly define all the terms

that are part of that enterprise-wide vocabulary. Furthermore, for each element type of each modelling

language in use at least one phrase structure convention has to be defined. If process models are

created using the EPC notation, phrase structure conventions for functions, events, and all additional

element types have to be specified. In terms of model structure, the approach is based on a predefined

set of patterns that can be searched for in the model repository. Before an analysis can be specified

and run, considerable time and effort consequently has to be put into creating these artefacts.

Future research will focus on applying it in other areas related to the management of enterprise

transformation to discover further application potential. Long term research will focus on determining

acceptance factors of our model analysis approach. Moreover, we intend to combine the corporate

vocabulary with semantic technologies like ontologies to allow for the specification of more detailed

linguistic relationships.

References

Ackermann, T., Miede, A., Buxmann, P., and Steinmetz, R. (2011). Taxonomy of Technological IT

Outsourcing Risks. Support for Risk Identification and Quantification. In Proceedings of the 19th

European Conference on Information Systems (ECIS 2011), Helsinki.

Batini, C., Grega, S., and Maurino, A. (2010). Optimal Enterprise Data Architecture using Publish and

Subscribe. In Proceedings of the 19th ACM International Symposium on High Performance

Distributed Computing, p. 541, Chicago.

Buckl, S., Buschle, M., Johnson, P., Matthes, F., and Schweda, C.M. (2011). A Meta-Language for

Enterprise Architecture Analysis. In 16th International Conference on Exploring Modeling

Methods for Systems Analysis and Design, London.

Cruz, I. F., Antonelli, F. P., and Stroe, C. (2009). AgreementMaker: Efficient Matching for Large

Real-World Schemas and Ontologies. Very Large Data Bases Endowment 2 (2), 1586-1589.

Delfmann, P., Herwig, S., Lis, L., and Becker, J. (2011). Supporting Conceptual Model Analysis

Using Semantic Standardization and Structural Pattern Matching. In Semantic Technologies for

Business and Information Systems Engineering: Concepts and Applications (Smolnik, S.,

Teuteberg, F., Thomas, O. Eds.), p. 125. Hershey, Pennsylvania.

Delfmann, P., Herwig, S., Lis, L., Stein, A., Tent, K., and Becker, J. (2010). Pattern Specification and

Matching in Conceptual Models. A Generic Approach Based on Set Operations. Enterprise

Modelling and Information Systems Architectures, 5 (3), 24-43.

Delfmann, P. and Knackstedt, R. (2007). Towards Tool Support for Information Model Variant

Management. A Design Science Research Approach. In Proceedings of the 15
th
 European

Conference on Information Systems (ECIS 2007), p. 2098, St. Gallen, Switerland.

Hadar, I. and Soffer, P. (2006). Variations in Conceptual Modeling: Classification and Ontological

Analysis. Journal of the Association for Information Systems 7 (8), 568-592.

Hefner, S. and Dittmar, M. (2001). SAP R/3 Finanzwesen. Addison-Wesley, Munich.

Herwig, L., Lis, L., Steinhorst, M., Becker, J., and Delfmann, P. (2011). A Generic Multi-purpose

Conceptual Model Analysis Approach. Conceptual Specification and Application. In Proceedings

of the 4th International Workshop on Enterprise Modelling and Information Systems Architectures,

p. 201, Hamburg, Germany.

Hua Z., Zhao J. L., and Storey, V. C. (2010). Exploring a Domain Ontology Based Approach to

Business Process Design. In Proceedings of the 31st International Conference on Information

Systems (ICIS 2010), Saint Louis.

Iacob, M.-E., Jonkers, H., van der Torre, L., and de Boer, F.S., Bonsangue, M., Stam, A.W. (2005).

Architecture Analysis. In Enterprise Architecture at Work. Modelling, Communication, and

Analysis (Lankhorst, M. Ed.), p. 191. Springer, Berlin.

Karahanna, E., Straub, D.W., and Chervany, N.L. (1999). Information technology adoption across

time: a cross-sectional comparison of pre-adoption and post-adoption beliefs. MIS Quarterly 23 (2),

183-213.

Keller, W. (2004). Managing Application Portfolios in Merger Situations. In Beiträge der 34.

Jahrestagung der Gesellschaft für Informatik e. V. (GI).

Lankhorst, M.M. , Proper, H.A. and Jonkers, H. (2010). The Anatomy of the ArchiMate Language.

International Journal of Information System Modeling and Design, 1(1), 1-32.

Lankhorst, M. (2005). Introduction to Enterprise Architecture. In Enterprise Architecture as Work.

Modelling, Communication, and Analysis (Lankhorst, M. Ed.), p. 1. Springer, Berlin.

Leopold, H., Smirnov, S., and Mendling, J. (2010). Refactoring of Activity Labels in Business Process

Models. In Proceedings of the 15th International Conference on Applications of Natural Language

to Information Systems, p. 268, Cardiff.

Miklitz, T. and Buxmann, P. (2007). IT Standardization and Integration in Mergers and Acqusitions:

A Decision Model for the Selection of Application Systems. In Proceedings of the 15th European

Conference on Information Systems (ECIS 2007), p. 1041, St. Gallen, Switzerland.

Moriarty, T (2001). The Importance of Names. The Data Administrator Newsletter 15.

Napier, N. K. (1983). Mergers and Acquisitions, Human Resource Issues and Outcomes. A review and

suggested Typology. In Journal of Management Studies 26 (3), 271-289.

Op’t Land, M., Proper, E., Waage, M., Cloo, J., and Steghuis, C. (2009). Enterprise Architecture.

Creating Value by Informed Governance. Springer, Berlin.

Op’t Land, M and Proper, E. (2007). Impact of Principles on Enterprise Engineering. In Proceedings

of the 15th European Conference on Information Systems (ECIS 2007), p. 1965, St. Gallen.

Reijers, H. A., Mendling, J., and Dijkman, R. (2011): Human and automatic modularizations of

process models to enhance their comprehension. Information Systems Journal 36 (5), 881-897.

Smirnov, S., Weidlich, M., Mendling, J., and Weske, M. (2009). Action Patterns in Business Process

Models. In Service-Oriented Computing (Baresi, L., Chi, C. H., Suzuki, J. Eds.), p. 115. Springer,

Berlin.

Tavages, D. B., de Paiva, O. A., Braga, J. L., and Filho, J. L. (2009). Analysis Procedure for

Validation of Domain Class Diagrams Based on Ontological Analysis. Proceedings of the 28th

International Conference on Conceptual Modeling (ER 2009), p. 159, Gramado.

Thomas, O. and Fellmann, M. (2009). Semantic Process Modeling – Design and Implementation of an

Ontology-based Representation of Business Processes. Business and Information Systems

Engineering 1 (6), 438-451.

van Dongen, B. F., Mendling, J., and van der Aalst, W. M. P. (2006). Structural Patterns for

Soundness of Business Process Models. In Proceedings of the 10th IEEE International Enterprise

Distributed Object Computing Conference , p.116, Hong Kong.

Weber, B., Reichert, M., Mendling, J., and Reijers, H. A. (2011). Refactoring large process model

repositories. Computers in Industry 62 (5), 467-486.

Weidlich, M., Polyvyanyy, A., Desai, N., and Mendling, J. (2010). Process Compliance Measurement

based on Behavioural Profiles. In Proceedings of the 22nd International Conference on Advanced

Information Systems Engineering (CAiSE 2010), p. 499, Hammamet.

Winter, R. and Aier, S. (2011). How are Enterprise Architecture Design Principles Used? In

Proceedings of the 15th IEEE International EDOC Conference Workshops, p. 314, Helsinki.

Yan, Z., Dijkman, R., and Grefen, P. (2010). Fast business process similarity search with feature-

based similarity estimation. In Proceedings of the 10th Conference On the Move to Meaningful

Internet Systems, p. 60, Crete.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	5-15-2012

	SUPPORTING ENTERPRISE TRANSFORMATION USING A UNIVERSAL MODEL ANALYSIS APPROACH
	Matthias Steinhorst
	Dominic Breuker
	Patrick Delfmann
	Hanns-Alexander Dietrich
	Recommended Citation

	Microsoft Word - 299578-text.native.1339001287.doc

