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Abstract 

Planning Processes play an important role in almost any business scenario. In particular, induced by 

the financial crisis, financial planning as a foundation for liquidity management is paid extraordinary 

attention to. Its quality and reliability is usually ensured by the use of information systems. Besides 

process efficiency, a key factor in liquidity management is the quality of the delivered planning data. 

More recently, business intelligence measures to increase data quality, for instance, realized through 

decision support services, find their way into the planning process. In this paper, we lay the 

foundation to include digital analyses of reported financial planning numbers into automated decision 

support services. In this vein, our contribution is twofold: First, based on a large and representative 

data set from a renowned, multinational enterprise, we empirically prove that financial planning 

numbers exhibit a certain, characteristic digit distribution, namely, Benford’s Law. Second, we 

investigate whether decision support services that incorporate intelligence based on Benford’s Law 

are appropriate to increase perceived financial planning data quality. This question is tackled via 

analyses that relate detailed properties of the delivered data to Benford’s Law as a prerequisite for the 

integration of automated decision support services into business intelligence systems. 

Keywords: Decision Support Services, Financial Planning, Benford’s Law, Digital Analysis, Data 

Quality. 

 



1 Introduction 

Planning processes play a weighty role in almost any kind of company, not least because it is a highly 

knowledge-intensive task. Our research is dedicated to the category of planning processes which has 

gained notoriety in the recent years: The almost ubiquitous financial crisis and, as one of its 

consequences, the decreasing confidence in the creditworthiness of most enterprises, banks, as well as 

industrial corporations, has made it painfully obvious that financial planning requires particular 

attention. Of course, it has been recognized long before the crisis that a precise forecast of business 

figures like sales, production, and investments is essential to accomplish a solid liquidity and exposure 

planning (Kim et al., 1998; Graham and Harvey, 2001), and thus, enable companies to cope with 

uncertainties as exemplified above. For globally spread companies, it is even more challenging to 

compose such a well-founded planning: In the case of central currency-specific liquidity planning, 

decentralized planning processes have to be coordinated within the local partitions and internal 

transactions between them have to be monitored to ensure a proper and consistent overall financial 

planning. Usually, crucial planning tasks, as for instance liquidity planning, are conducted in or at 

least supported by information systems. In globally-spread companies, corporate financial portals have 

turned out to be an efficient measure to enhance the process of centralized liquidity risk management 

(Vo et al., 2007). Today, such information systems are oftentimes included into service-oriented 

architectures. In this vein, IT-based business intelligence services can be offered to support planning 

activities, such as market-based prediction services, services to detect complex events as a sequence of 

defined activities, or decision support services. The latter, especially if large amounts of underlying 

data shall be processed for the planning task, are usually based on data mining methods. However, 

detecting patterns in huge data sets can be tedious, for instance since it requires a variety of upstream 

and downstream efforts and may be different for each data set considered (Witten and Frank, 2005). 

What if we found properties valid for a variety of data sets, independent of the respective industry, 

task, or company? Benford’s Law, as shown by Benford (1938), provides highly interesting insights 

into the structure of empirical data: Naively thought it seems obvious that the digits of numbers in the 

decimal system are equally distributed. Yet, Benford (1938) showed for several kinds of empirically 

gathered numbers that the leading digits as well as the digits in second position occur with distinct 

probabilities which clearly differ from an equal distribution. 

Going back to the application domain of financial planning data, this property can be exploited for a 

new kind of automated decision support service: A service that allows for continuous auditing which 

can be integrated into information systems. If we are able to show that the digit distribution in 

financial planning data in fact follows Benford’s Law, we can combine this result with additional 

statistical evaluations and expert knowledge to eventually support financial planning managers in their 

decision which data samples to further investigate. For example, certain rounding behaviors or the 

creation of duplicate numbers via copy-and-pasting should distort the digit distribution. Hence, the 

contribution of this work is twofold: We (i) introduce Benford’s Law to a field of application that has 

not studied so far by answering the following research question: Does financial planning data follow 

Benford’s Law? Based upon this insight, we (ii) evaluate relevant patterns in the planning behavior of 

different planning entities and, based upon that, investigate whether Benford’s Law can be applied as a 

foundation for automated decision support services. This investigation along with expert knowledge 

about the perceived data quality gained from our industrial partner allows us to address the second 

research question in this paper: Are decision support services that incorporate Benford’s Law 

appropriate to increase perceived planning data quality? The quality assessment beyond data 

accuracy, i.e. the difference between plan and actual values, is crucial to overcome the lack of missing 

actual data at the moment of planning data generation and strengthens the important data consumer 

perspective on planning data quality (Wang and Strong, 1996). 

This paper is structured as follows: In Chapter 2, Benford’s Law is introduced along with related fields 

of applications and domains. Based on the finding that financial planning data is generally suitable to 

comply with Benford’s Law, Chapter 3 includes the data sample, the applied methodology (inferential 



analyses) and the hypotheses to be investigated. Chapter 4 includes the evaluation results and shows 

the practical relevance of our insights. This paper closes with a conclusion and our future work.   

2 Scope and Related Work 

This chapter summarizes the general idea of Benford’s Law (Section 2.1) as the foundation of its 

application to different domains and problem statements, particularly its suitability for continuous 

auditing tasks (Section 2.2).   

2.1 Benford’s Law and its General Applicability to Financial Planning Data 

The digital phenomenon today known as Benford’s Law or the significant digit law was initially 

discovered and described by Newcomb (1881). Benford (1938) found the first empirical evidence for 

it. The heterogeneous data underlying his studies ranged from numbers on newspaper covers to 

physical constants. Contrary to intuition, Benford spotted that the digits of these numbers are not 

uniformly distributed, but rather follow a logarithmic distribution. The probability Pi for each digit j in 

position i of a number can be calculated as follows (for i={1,2}): 

����� � log 
1 � �

�  ,                                 � � �1, 2, … ,9�                             (1) 

����� � ∑ log 
1 � �
�
��

���  ,                    � � �0, 1, … ,9�                             (2)      

Besides the striking distribution for i={1,2}, Table 1 also depicts the probabilities of the third and forth 

position to illustrate the approximation towards a uniform distribution for higher digit positions 

(Nigrini, 1997). For an intuitive explanation of the above-described phenomenon, please refer to 

Drake and Nigrini (2000) and Durtschi et al. (2004). As shown by, for instance, Carslaw (1988) and 

Nigrini (1997), Benford-style analyses can also be made for the combination of two digits. Yet, due to 

space restrictions, we limit our results to the single digit assessment which is left to be dealt with in 

future work (cp. Chapter 5). 

 
Digit j ����� ����� ����� ����� 

0 n/a 11.968 % 10.178 % 10.018 % 

1 30.103 % 11.389 % 10.138 % 10.014 % 

2 17.609 % 10.882 % 10.097 % 10.010 % 

3 12.494 % 10.433 % 10.057 % 10.006 % 

4 9.691 % 10.031 % 10.018 % 10.002 % 

5 7.918 % 9.668 % 9.979 % 9.998 % 

6 6.695 % 9.337 % 9.940 % 9.994 % 

7 5.799 % 9.035 % 9.902 % 9.990 % 

8 5.115 % 8.757 % 9.864 % 8.986 % 

9 4.576 % 8.500 % 9.827 % 9.982 % 

Table 1. Digit distribution in first to forth position in “naturally occurring” numbers 

according to Benford’s Law (Benford, 1938; Nigrini, 1997). 

Hill (1995) proved that Benford’s Law follows a systematical statistical behavior: Since data 

distributions in nature are usually random samples taken from random distributions and joined 

afterwards, they converge to the logarithmic distribution as shown in Equations 1 and 2. Based on that, 

Nigrini (2000) derived three criteria to decide whether a data sample is likely to comply with 

Benford’s Law: 

(1) The numbers should describe the relative sizes of similar phenomena, 

(2) The numbers should have no fixed upper and lower boundaries, and 

(3) The numbers should not be systematically created and assigned, as, for instance, ID-numbers. 



For high quality financial planning data, these criteria are generally fulfilled. For financial planning 

data to be of great value, its generation must at any point in time include all information available at 

that time. This information is highly heterogeneous and occurs randomly. Based thereupon, companies 

can calculate expected invoices and cash flows. Hence, the resulting financial planning numbers are 

random themselves as they are based on different data sources with different random distributions 

(Hill, 1995). Summing up, all numbers included in a set of high quality financial planning data are (1) 

cash-related (same phenomenon), have (2) no pre-fixed boundaries and (3) are not created 

systematically. Furthermore, Pinkham (1961) showed the scale invariance of Benford’s Law, that is, 

heterogeneous currencies as present in financial planning tasks, should not influence the data’s 

conformity to the expected distribution. Importantly, above-mentioned criteria are necessary, but not 

sufficient. Therefore, statistical analyses of relevant and representative data are still indispensable to 

ultimately test whether financial planning numbers satisfy Benford’s Law or not. 

2.2 Benford’s Law in Related Domains and Fields of Application 

Benford (1938) initiated an entirely new field of analyses which can be roughly categorized into two 

groups. Besides papers that provide additional mathematical insights and theoretical evidence for 

Benford’s Law, (cp. Section 2.1), researchers have dealt with its application to different kinds of data 

sets. Moreover, academia has brought forth a respectable body of empirical work that presents 

applications of Benford’s Law, mostly to detect anomalies and fraud in data. Nigrini and Mittermaier 

(1997) define such a digital analysis as “the analysis of digit and number patterns with the objective of 

detecting abnormal recurrences of digits, digit combinations and specific numbers”. 

The conformity of data to Benford’s Law has been shown for a couple of domains: For instance, 

Diekmann (2007) examines the digit distribution in statistical regression coefficients published in 

scientific literature. However, most work has been done in the field of accounting data. For example, 

Carslaw (1988) and Thomas (1989) proved that reported earning satisfy Benford’s Law; Nigrini 

(1996) detected conformity to Benford’s Law in tax payments. Due to the development of digital 

analyses and mathematical investigations, scholar’s conclusions on the practical relevance of 

Benford’s Law are quite different: While earlier work, with Raimi (1976) being named as a 

representative, calls the observations “a curious mathematical phenomenon”, more recent publications 

are aware of the value of Benford’s results: Hill (1998) argues that digital analyses have a big impact 

on daily accounting business. Benford’s Law’s worth for detecting errors and systematic procedures 

started with its application to accounting purposes: Based on deviations from the expected Benford 

distribution, Carslaw (1988) found evidence for systematically rounded up numbers in reported 

earnings of companies in New Zealand.  Thomas (1989) backed up this finding based on data from 

American companies. Interestingly, in addition, he found a systematic rounding down behavior for 

reported losses. Checking available tax data against Benford’s Law, Nigrini (1996) detected 

systematic mistakes in tax payments. Based thereupon, Nigrini and Mittermaier (1997) developed and 

evaluated a standardized set of procedures to analyze huge data sets based upon different kinds of digit 

distributions. Krakar and Zgela (2009) apply digital analyses to foreign payments in banking transfers. 

During the last decade, the continuous development of digital analyses and data mining techniques in 

general has been accompanied by a continuous growth of available data in all business areas. As stated 

by Rezaee et al. (2002), this development requires new auditing structures and systems providing 

continuous auditing procedures. Suggesting continuous auditing based on digital analyses, Nigrini 

(2000) points to the same direction. 

We pick up these arguments by laying the foundation for efficient auditing systems to continuously 

validate financial planning, that is, forecast data. On the one hand, this foundation is reflected in the 

very assessment of financial planning data: As mentioned above, to date, it has not been proven 

whether numbers from this domain satisfy Benford’s Law or not, though the necessary criteria are 

met. We prove, based upon a large set of representative empirical data (cp. Section 3.1) that the digit 

distribution in financial planning data is conform to Benford’s Law. In addition, we conduct more 

detailed analyses of clustered data in order to evidence the suitability of digital analyses for quality 



improvement measures integrated into automated decision support services as a part of business 

intelligence systems. 

3 Methodology and Hypotheses 

Chapter 3 starts with the basic data sample and the preparation of all sub-samples (Section 3.1). Based 

upon that, Section 3.2 describes the conducted interferential analysis combined with the precision 

measure we introduce – the average fulfillment rate. Based on these preparatory explanations and the 

contents presented in Chapter 2, Section 3.4 formulates the hypotheses to be evaluated in this work. 

3.1 Data Sample and Preparation 

The data set to be evaluated is the cashflow-oriented financial planning data we have access to at our 

industry partner, a globally acting large enterprise in the pharmaceutical and chemical industry. It can 

be seen as an archetypical multinational enterprise with subsidiaries spread all over the world which 

implies a decentralized data generation. In more detail, we have available 25 data pools from May 

2005 to June 2011 each of which reflects a data delivery. Each data pool contains the planned values 

of all entities that have handed in planning data in this delivery. The planning data per entity reports 

expected issued and received invoices, cashflows, tax payments and so on for 15 months into the 

future. Initially, the financial planning data was delivered quarterly in the months of February, May, 

August and November. Due to internal re-structuring reasons, the delivery months have changed to 

March, June, September and November since 2008. To increase the robustness of our results, we 

conduct the evaluations for 9 data samples: these are the complete data sample and 8 sub-samples that 

provide different perspectives on the available data. More detailed, we first divide the basic set ([1] 

complete) into data delivered by [2] large and [3] small entities. Thereby, the size of the entity is 

determined by the number of planned values. This distinction results from the expectation that large 

entities with a high number of planned values due to economies of scale (cp. Williamson, 1991) can 

put more effort in their planning data generation and, hence, achieve a higher quality. Since planning 

data has not been examined in literature before, this distinction is based on expert knowledge gained 

from interviews within the enterprise. The second perspective distinguishes data with [4] positive and 

[5] negative prefix. This separation is based on observations made, for instance, by Carslaw (1988) 

and Thomas (1989), who observed different digit distributions for reported positive and negative 

numbers. The remaining four sub-samples are combinations from the distinctions listed above, that is 

[6] positive large, [7] positive small, [8] negative large, and [9] negative small.  

Generally, the number of delivered planned values increased from 27,511 in May 2005 to 72,141 in 

June 2011. Additionally, the creation of the sub-samples as described above brings about highly 

different sample sizes. To tackle this issue and to create a solid and comparable basis for the 

interferential analyses (cp. Section 3.2), we conduct a normalization as follows: We set the minimum 

sample size N to the number of items included in the minimum of all delivery-specific sample sizes. 

Afterwards, we reduce all other sample sizes to N. To do so, we uniformly draw N items from the 

respective sample. If the reduced set is not significantly smaller than the original one, this reduction 

does not change the digit distribution, yet to avoid biases in case of a stronger reduction, the reduction 

is carried out multiple times and the average of the resulting distributions is calculated. To obtain a 

reasonable trade-off between evaluation performance and accuracy of the result, we performed a 

simulation study and find out the required number of reductions that have to be carried out considering 

the distribution of the original sample size and the distribution of the reduced sample size. For 

instance, we found out that in case of reduction higher than 90% (e.g., the complete data sample size in 

June 2011 was 72,141 which had to be reduced to the minimum number 5,225), we have to take the 

average of 50 reductions. To summarize, in order to secure the comparability of our results, the 

normalization of the sample size facilitates the creation of a solid data pool and, thus, robust results. 

The above-described data preparation (sub-samples and normalization) also includes the deletion of all 

planned values with an absolute nominal less than 10 (depends on the currency and includes zero 

values) to avoid procedural problems with Benford’s Law according to Nigrini (1997). 



3.2 Interferential Analyses and Average Fulfillment Rate 

To date, related literature (cp. Section 2.2) consults two kinds of interferential analyses to investigate 

if data is conform to Benford’s Law: interferential analyses for (i) single digits (e.g. z-statistic), and 

(ii) the complete distribution (e.g. chi-square statistic, mean absolute deviation). Yet, all of these 

approaches aim to detect significant deviations from the expected distribution yielded by Benford’s 

Law. None of the approaches offers the possibility to make statements on the degree a distribution 

satisfies Benford’s Law. The mean absolute deviation (MAD) only allows for a descriptive indication; 

the chi-squared test is suitable for a pure true-false view of the distribution without any differentiation 

in between. Moreover, the results of these analyses strongly depend on the size of the data sample. For 

instance, the width of a confidence interval is solely calculated based on the p-value and the number of 

observations.  

As an alternative, Nigrini (2000) states that a desirable approach to investigate conformity to 

Benford’s Law should fulfill the following requirements: 

(1) The test shall measure the conformity to the expected distribution, not only with single digits 

or digit combinations, 

(2) the result shall be independent of the sample size, 

(3) the test shall be implementable and understandable for users in practice, and 

(4) the conclusion of the test shall be objectively determinable. 

Existing approaches fail to fulfill the independence requirement (2). To fulfill (2), the normalization 

approach to eliminate the dependence on the basic sample size was presented in Section 3.1.  

Independent of the application field, the main challenge for all inferential analyses is the interpretation 

of deviations from the expected Benford distribution. Nigrini (1997) and Durtschi et al. (2004) apply 

single digit analyses based upon z-statistics and distribution analyses (chi-squared test). However, 

other scholars, e.g. Busta and Weinberg (1998), use neural networks to evaluate deviations from the 

expected distribution. The latter approach performs better than the above-mentioned digit analyses, 

however, to the disadvantage of type I errors which are an indication for fraud in case of correct data 

(so-called “over auditing”). Since we want to keep the rate of type I errors low and to incorporate a 

more differentiated view of the fulfillment degree (cp. requirement 1), we introduce the average 

fulfillment rate (AFR) as a heuristic to measure the degree of confirmation between two distributions. 

The AFR of a data sample reflects the percentage of digits not deviating significantly from the 

expectation with respect to the digit position i. Accordingly, the calculation of the average fulfillment 

rate per distribution is based on the z-statistic per digit. For each digit, we calculate the 95% 

confidence interval in dependence of the basic p-value .05. Based upon this interval, we can decide if 

the digit probability significantly deviates from the expectation. In case of a deviation, we assign the 

digit with 0 and in case of conformity to 1. The AFR is then the mean of all decisions, for instance, in 

case of one digit deviating significantly in i, the AFRi would be 88.9%. We can calculate AFRi of the 

digit position i in the following way: 

� !�"���#�$ � �
� ∑ 1%&',(')��������


�� ,                              (3) 

� !�"���#�$ � �
�* ∑ 1%&',(')��������


�* ,            (4) 

where Pi(d) � +0,1,- denotes the vector of digit probabilities per position Pi(j) with dimension n, n = 9 

if i = 1 and n = 10 if i = 2. 1%&',(') is the indicator function which is 1 in the denoted interval [lj, uj] and 

0 else. For the confidence interval, the lower bound lj and upper bound uj are calculated separately for 

each digit j. To demonstrate the indication of the AFR, we compared the chi-square value and the AFR 

for the complete data sample. This examination reveals a highly significant dependence with τ = -.76, 

p < .001. Indeed, particularly a chi-square value less than 17.53, i.e., there is no significant deviation 

between the distributions based upon p = .05, is significantly correlated (τ = .52, p < .01) to an AFR1 of 

77.8% (i.e. 7 of 9 digits do not deviate significantly). Hence, the AFR yields the same significance as 

the chi-square test, yet, firstly, it is much easier to understand and to interpret than the chi-square 

value. Secondly, it offers a differentiated indication of the analyzed data sample’s conformity to the 



expected distribution. According to Nigrini (2000), both properties are weighty advantages for the 

implementation into a decision support service (cp. (3) and (4) in the requirements list). 

For the statistical evaluation of the results generated based upon the AFR, we conduct two kinds of 

non-parametric interferential analyses: (i) Kendall’s correlation, and (ii) the Wilcoxon signed-rank 

test. We decided to utilize non-parametric approaches since we found, as a result of a Shapiro-Wilk 

distribution test, a significant deviation from the normal distribution for approximately 72% of the 

tested treatments (for a more detailed explanation of the treatments, please refer to Section 3.3). We 

opt for the Kendall correlation coefficient τ since we have a relatively small sample size (N=25) along 

with many tied ranks (Field, 2009). The Wilcoxon signed-rank test is chosen as it is the most common 

non-parametric test. According to Field (2009), we always add the 1-tailed level of significance p and 

the test statistic T (denoting the smaller value of the two rank sums) to the reported absolute value. In 

order to back up the robustness of our analyses, we also calculated Pearson correlations and t-tests, yet 

the parametric results of both analyses were identical to the non-parametric tests as to the level of 

significance. 

3.3 Hypotheses 

As we have argued in Section 2.1, financial planning data meets the necessary criteria to follow 

Benford’s Law due to its structure. Additionally, a major foundation of our evaluation is expert 

knowledge gained from our industry partner about the quality assurance measures carried out during 

the 6 year time period which spans our data sample. We can demonstrate that, due to process 

optimization and compliance enhancement, the output data of the financial planning process was 

continuously increased. We can also state that none of the improvements were directly and explicitly 

related to pushing the data towards the Benford distribution. Based upon this determining factor, the 

answer to our first research question (Does financial planning data follow Benford’s Law?) is in the 

verification of the conformity between the digit distribution in the underlying financial planning data 

sample and the logarithmic distribution present in Benford’s Law. To do so, we set up the following 

hypothesis: 

H1: The average fulfillment rate increases over the considered time period. 

To extract robust evidence for H1, formally, we investigate 18 sub-hypotheses: For each of the 

investigated 9 data samples [1]-[9] (cp. Section 3.1), the conformity of the first and second digit of the 

underlying numbers to Benford’s Law is tested. This consideration leads to 18 treatments to be tested. 

In more detail, these are: [1.1] complete first digit, [1.2] complete second digit, [2.1] large first digit, 

[2.2] large second digit, and so forth, ending with [9.1] negative small first digit and [9.2] negative 

small second digit.     

In order to find evidence for the second research question (Are decision support services that 

incorporate Benford’s Law appropriate to increase perceived planning data quality?), we have to 

delve deeper into details of the data structure. In this work, we concentrate on (i) differences between 

reported negative numbers and positive numbers (cp. also Carslaw, 1988; Thomas, 1989) and (ii) large 

and small entities (as large companies, due to their size and their planning volume, may be able to put 

a greater effort as well as more expertise into the financial planning). Thus, we investigate the 

following hypotheses H2 and H3: 

H2: The average fulfillment rate in the underlying financial planning data delivered by large entities 

is higher than in the financial planning data delivered by small entities. 

H3: The average fulfillment rate in the underlying financial planning data with a positive prefix is 

higher than in financial planning data with negative prefix. 

To validate these hypotheses, we again conducted analyses for the first and second digits in multiple 

data sub-samples: For H2, these data samples are [1.1] complete first digit, [1.2] complete second 

digit, [4.1] positive first digit, [4.2] positive second digit and [5.1] negative first digit, [5.2] negative 

second digit. For H3, we consult [1.1] complete first digit, [1.2] complete second digit, [2.1] small first 



digit, [2.2] small second digit and [3.1] large entities first digit, [3.2] large entities first digit. H2 and 

H3 potentially provide us with insights that we can include into a decision support service for financial 

planning managers. 

4 Evaluation 

This chapter presents a detailed examination of the hypotheses set up in Section 3.3. To address H1, 

we investigate the dependency between progressing time and the data’s conformity to Benford’s Law 

for the first and second digits in 9 data samples (cp. Section 4.1). In Section 4.2, we generate detailed 

knowledge about the data characteristics in order to address H2 and H3. Finally, Section 4.3 merges 

the insights gained through the statistical analyses and translates them into the practical value of our 

results. 

4.1 Trend Analyses and Robustness 

In order to address H1, we perform the trend analyses for all 9 data samples described in Section 3.1, 

each of them for the first and second digit. Altogether, 18 treatments as noted in Section 3.3, can thus 

be tested. The results of this evaluation for AFR1 and AFR2 are listed in Table 2. We calculated the 

mean and the standard deviation over 25 deliveries along with the correlation τ and the significance 

level p. Although we chose the rather conservative Kendall’s τ (the average absolute value is only 

around 2/3 of a Spearman correlation according to Field 2009), we found a medium or strong 

correlation for 15 of 18 treatments. The only non-significant trends were discovered for positive data, 

yet even for [4.1] (τ = .19), [6.1] (τ = .09) and [7.2] (τ = .19) we found at least a small positive 

correlation. 

 

Data sample 
AFR1 AFR2 

Mean SD τ p Mean SD τ p 

[1] Complete 87.2% 12.2% .59 .000*** 29.6% 15.7% .51 .000*** 

[2] Large 81.4% 18.4% .44 .002** 57.6% 15.4% .36 .010** 

[3] Small 70.7% 23.5% .65 .000*** 10.4% 10.2% .27 .047* 

[4] Positive 79.2% 19.1% .19 .102 48.4% 19.3% .44 .002** 

[5] Negative 79.3% 14.0% .54 .000*** 20.0% 9.6% .50 .001*** 

[6] Positive Large 70.0% 15.5% .09 .289 67.6% 13.3% .32 .020* 

[7] Positive Small 60.6% 19.7% .53 .000*** 26.8% 11.8% .19 .114 

[8] Negative Large 64.9% 24.5% .46 .001*** 47.2% 15.7% .28 .033* 

[9] Negative Small 60.6% 18.3% .45 .001*** 10.8% 10.0% .42 .004** 

Table 2. Results (Mean/standard deviation SD/correlation τ/p-value) of the AFR trend analyses 

for first and second digit position (AFR1 and AFR2) in nine data samples (*p<.05, 

**p<.01, ***p<.001; N=25). 

For AFR1, the effect size ranges from τ = .44, p < .01 in [2.1] and τ = .45, p < .001 in [9.1] to τ = .59, p 

< .001 in [1.1] and even τ = .65, p < .001 in [3.1].  For AFR2, in analogy with the general AFR level, 

the trends are alleviated compared to AFR1. Nevertheless, they are all at least medium strong (τ = .27, 

p < .05 in [3.2] or τ = .28, p < .05 [2.2]) and even range to strong dependencies in [5.2] (τ = .50, p < 

.001) and in [1.2] (τ = .51, p < .001). 

Due to page restriction, we are only able to show graphs for two exemplary data samples: Figure 1 

shows the AFR1 (for all 25 deliveries); for [1.1], i.e. complete on the left hand side, and for [3.1], i.e. 

small on the right hand side. As easily can be seen, for [1.1], the AFR1 clearly increases over time 

from a minimum value of 66.7% to 100% in the last four deliveries. A highly significant correlation 

between time and AFR1 (τ = .59, p < .001) is present. In [3.1], the trend itself is even stronger with τ = 

.65, p < .001, yet, the mean AFR1 over all 25 deliveries is higher in [1.1] (87.2%) than in [3.1] 

(70.7%). These differences provide first indications for the evaluation of H2 in Section 4.2. The 

difference described above can also be observed in the mean AFR2 (29.6% in [1.2] and 10.4% in [3.2] 



data). Yet, as clearly demonstrated in 

planning data is on a lower level in the second digit than in the first digit. Still, we observe a strongly 

positive trend in [1.2] (τ = .51, 
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significant and robust positive trend in AFR1 and AFR2 in 15 of 18 
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are controversial. In case of H2 the investigated data samples are complete, positive and negative, both 

for the first and the second digit. Furthermore, we investigate the complete, small and large data 

sample to validate H3, again for both digit positions. 

 

Data sample 

AFR1 AFR2 

[Sample] Mean 
p 

[Sample] Mean 
p 

Large Small Large Small 

Complete [2.1] 81.4% [3.1] 70.7% .024* [2.2] 57.6% [3.2] 10.4% .000*** 

Positive [6.1] 70.0% [7.1] 60.6% .023* [6.2] 67.6% [7.2] 26.8% .000*** 

Negative [8.1] 64.9% [9.1] 60.6% .251 [8.2] 47.2% [9.2] 10.8% .000*** 

Table 3. Results (Mean/p-value) of the AFR comparison between large and small data for first 

and second digit in the complete, positive, and negative data sample (*p<.05, 

**p<.01, ***p<.001; N=25). 

The results for the investigation of H2 are listed in Table 3. We were able to show significant 

differences between small and large entities for 5 of 6 investigations. The differences in AFR1
 
are 

significant for the complete data with 10.7 percentage points (T = 2.32, p < .05) and positive data with 

9.4 percentage points (T = 2.16, p < .05), yet not in negative data (3.3 percentage points). The largest 

differences can be observed in AFR2. Here, we observe significant differences in all samples: 47.2 

percentage points in complete (T = 12.12, p < .001), 40.8 percentage points in positive (T = 10.54, p < 

.001), and 36.4 percentage points in negative (T = 10.11, p < .001).  

 

Data sample 

AFR1 AFR2 

[Sample] Mean 
p 

[Sample] Mean 
p 

Positive Negative Positive Negative 

Complete [4.1] 79.2% [5.1] 79.3% .895 [4.2] 48.4% [5.2] 20.0% .000*** 

Large [6.1] 70.0% [8.1] 64.9% .313 [6.2] 67.6% [8.2] 47.2% .000*** 

Small [7.1] 60.6% [9.1] 60.6% .867 [7.2] 26.8% [9.2] 10.8% .000*** 

 Table 4. Results (Mean/p-value) of the AFR comparison between positive and negative data for 

first and second digit in the complete, large, and small data sample (*p<.05, **p<.01, 

***p<.001; N=25). 

Table 4 contains the evaluation results for AFR1
 
and AFR2 with respect to H3. Interestingly, in none of 

the data samples complete, large, and small, a significant difference between positive and negative 

numbers can be shown for AFR1. In contrast, in AFR2 we find a highly significant deviation for all 

data samples. The difference varies from 16.0 percentage points to 28.4 percentage points, T = 7.53, T 

= 6.51 and T = 5.06, p < .001 in the complete, positive and negative data sample. 

To summarize, we can confirm H2 for AFR1 and AFR2. The only non-significant difference (negative) 

has the correct direction, too. However, H3 can only be confirmed for AFR2. Nevertheless, the results 

of this section are highly important for the design of a business intelligence service based on digital 

analyses: Whereas for an application of the AFR1 as an error indicator only the company size is crucial 

and the sign can be ignored, AFR2 is sensitive to company size and sign. Furthermore, according to the 

findings of Section 4.1, AFR2 should only be applied to data samples of large entities. 

4.3 Practical Relevance 

The analyses presented in Sections 4.1 and 4.2 are the foundations for the design of our decision 

support service. The basic findings about the increasing conformity of financial planning data to 

Benford’s Law over the time (cp. H1) form the very justification for the application of digital analyses 

in business intelligence systems. In accordance with the discovery of characteristics for the different 

data sub-samples (cp. H2 and H3), the knowledge about the conformity of financial planning data to 

Benford’s Law enables us to provide specified recommendations. Transferring these results into IT-

based, automated decision support services, we can enrich the digit analyses with both additional 



statistical evaluations and expert knowledge. For example, different rounding behaviors or the 

consciously intended creation of duplicate numbers (e.g. through copy-and-pasting) affect the 

expected distribution of the delivered data. Adding expert knowledge about compliance requirements 

of the respective company, acceptable and non-acceptable adaptations can be classified.  

An exemplary, real-world decision support service taken from our industry partner, could be the 

following: Since numbers above 100,000 require further planning details due to compliance rules, 

numbers slightly below 100,000 may be overrepresented to save the knowledge workers time and 

effort. Such knowledge can be transferred and automated into the decision support service along with 

the knowledge about the Benford distribution in financial planning data as shown in this paper. The 

manager, who accesses such a service through a business intelligence system, e.g. a corporate financial 

portal, may then be pointed to a following pattern: Numbers beginning with a “9” (e.g. 99,000) are 

highly overrepresented in the first digit with a probability of 11.5% (instead of the expected 4.9%). 

Based upon the results for H2 and H3, the recommendation can be further enhanced, for instance, by 

an investigation of the second digit for positive data of a large entity. As a result of this “alert”, the 

manager is able to further investigate this issue. 

5 Conclusion and Future Work 

This work transfers digital analyses (that is, analyses based on Benford’s Law) into a new domain: 

financial planning data. Our results are based on a substantial set of empirical data we were provided 

with by a globally acting, renowned large enterprise from the pharmaceutical and chemical industry. 

Via statistical analyses of this data, we were able to generally show that financial planning data in fact 

follows Benford’s Law as a contribution to the state of the science. To this end, we introduced the 

average fulfillment rate (AFR) as a new quality measure to enhance the interpretation of deviations 

from the Benford distribution. In more detail, we could show that the conformity of our data sample to 

Benford’s Law increases over the considered time period: a significant dependency between 

progressing time and increasing AFR was demonstrated for 15 of a total of 18 data treatments. In order 

to transfer these findings into business relevant decision support services and to enhance the 

assessment of financial planning data quality, the data structure was investigated in detail in two group 

analyses. That way, we conducted valuable analyses to validate if decision support services that 

incorporate Benford’s Law are appropriate to increase perceived planning data quality. In more detail, 

we significantly showed that the AFR in the underlying financial planning data depends on the entity 

size and the AFR in data delivered by large entities is higher than in the financial planning data 

delivered by small entities. For the second group analysis that was designed to validate if the AFR in 

the underlying financial planning data with a positive prefix is higher than in financial planning data 

with negative prefix, we found controversial results. Thus, the suggested separation of positive and 

negative numbers related to Benford’s Law (cp., for instance, Carslaw, 1988; Thomas, 1989) does not 

play a significant role in the underlying domain. 

Equipped with these results, we are able to address the integration of digital analyses into information 

systems in our future work as required by recent papers that deal with the application of Benford’s 

Law (cp. e.g. Nigrini, 2000; Rezaee et al., 2002). Yet, so far, digital analyses have mostly been applied 

to static data. With the results achieved in this work, we will be able to realize a concrete 

implementation of digital analyses in of such a service within a business intelligence system. Beyond 

that, our results will enable us to present a service able to cope with dynamically growing data sets in 

the planning domain. For additional evaluation of our findings and to further assess the financial 

planning data quality, we will benchmark digital analyses against the concept of weak planning 

efficiency (Nordhaus, 1987) and planning accuracy, i.e. the difference between plan and actual values. 

Altogether, an automated decision support service will tremendously decrease the complexity of the 

planning data review and, at the same time, improve the quality of the forecast data. 
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