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Abstract 

In today’s volatile business environments, enterprises need to be able to flexibly adapt their information 

systems and add new functionality quickly. Component-based enterprise architectures promise to help 

solving these challenges by structuring information systems landscapes into modular business components. 

However, the derivation of business components from conceptual models still poses research challenges as 

current methods do not adequately involve the architect and his/her situational preferences. In this paper, 

we propose an advanced method that facilitates a systematic, reflected derivation of business components. 

The novel contribution of this paper thereby is to show (i) how the architect can define the derivation of 

business components from conceptual models as a multi-criteria decision-making problem according to 

his/her situational preferences and (ii) how the architect can systematically verify the stability of the deri-

vation results. We demonstrate the feasibility of the proposed method by demonstrating its implementation 

as part of the SeaCoAST tool and applying it to the after-sales processes of a world-wide leading automo-

bile manufacturer. 

Keywords: Enterprise architecture, component-based structuring, IS landscape design, business 

component identification, design science. 

 



 

 

1 Introduction 

Today, enterprise architecture (EA) strategies have to fulfill a variety of challenges. Volatile economic 

conditions require enterprises to quickly adapt their information systems (IS) and deliver new functionality 

fast (McDonald et al., 2009). Additionally, they need to improve the cost-efficiency of IS landscapes by 

consolidating the implemented IS operations (McDonald et al., 2009). In this context, component-based 

structuring approaches promise to bring many advantages (Herzum and Sims, 2000, Vitharana, 2003). 

They partition IS landscapes into loosely coupled parts of business functionality such that IS can be more 

easily adapted to changes and augmented with new functionality (Sharp and Ryan, 2005). As the elementa-

ry landscape elements – the business components – can be reused in different application scenarios, such a 

structuring also helps consolidating the implemented IS operations (Sharp and Ryan, 2005). As a result, 

component-based structuring approaches attracted great attention in research and industry. 

With the increasing significance, methodologies to support the component-based development paradigm 

have been introduced (Herzum and Sims, 2000, Brown, 2000). They provide methods for the design, im-

plementation, and assembly of business components (Szyperski et al., 2002). Nevertheless, the component-

based paradigm continues to pose research challenges. Especially the question of how to systematically 

structure the functional scope of IS landscapes into business components yet has to be answered (Birkmei-

er and Overhage, 2009). On the one hand, fine-grained business components which each implement a spe-

cific functionality are easier to reuse than coarse-grained business components with a complex functional 

scope (Szyperski et al., 2002). The structuring of IS landscapes into fine-grained business components thus 

helps consolidating the provided IS operations and avoiding redundancies. On the other hand, a fine-grai-

ned structuring complicates the assembly of new IS and the adaption of existing IS to changing require-

ments since the number of interfaces between components increases. The IS landscape hence becomes 

more complex to maintain (Szyperski et al., 2002). Architects will have to strive for an optimal functional 

scope of business components that balances reusability with the number of interfaces to other components. 

Although methods have been proposed to support the architect during the structuring of IS landscapes, 

determining an optimal functional scope of business components remains a cumbersome process. One 

reason is that these methods are usually based on implicit assumptions about the design preferences that 

determine an optimal functional scope of business components. Differences in the Weltanschauungs of the 

method’s creator and user hence result in a way of using the method that differs from the creator’s inten-

tions (Omland, 2009). Moreover, many of the proposed methods build upon fully automated procedures to 

determine an optimized functional scope of business components. However, architects usually benefit 

more from methods “that help to identify and process the emerging conflicts” than from methods that 

merely calculate some technically perfect solution (Smolander and Rossi, 2008). In this paper, we present 

an advanced method that supports a systematic, reflected derivation of business components. It is based 

upon a rational procedure that assists architects in determining an optimized functional scope of business 

components according to their individual design preferences. The method takes conceptual models as input 

to identify distinct business functionalities and assign them to business components. The novel contribu-

tion of our approach thereby is to show (i) how the architect can define the derivation of business compo-

nents from conceptual models as a multi-criteria decision-making problem according to his/her situational 

preferences and (ii) how the architect can systematically verify the stability of the derivation results. 

Next, we discuss related work to highlight the research gap, followed by the research method (section 3). 

We then present our approach to systematically support the architect during the derivation of business 

components (section 4). In section 5, we describe an implementation of our method as part of the Sea-

CoAST tool and show its application in an industry case. Finally, we describe limitations and implications. 

2 State of the Art and Related Work 

In parallel with the formation of component-based development methodologies, approaches to support the 

derivation of software components in general and business components in particular have been proposed in 

literature. To generate an optimized structuring of the design space, these approaches usually follow the 

established design principle of minimizing coupling and maximizing cohesion (Parnas, 1972, Szyperski et 

al., 2002). Coupling for a component can be defined as “the extent to which elements within a component 

relate to the other elements, which are not in that component” (Vitharana et al., 2004). Cohesion of a com-



 

 

ponent, furthermore, is “the extent to which its elements are interrelated” (Vitharana et al., 2004). At a first 

glance, the principle reflects technical considerations in the design. Yet, Chidamber et al. (1998) and Vi-

tharana et al. (2004) have compiled how the technical features coupling and cohesion map to the general 

managerial goals in systems structuring: cost effectiveness, customizability, reusability and maintainability. 

Therefore, a “good” IS structuring (i.e. with cost effective, customizable, reusable components and low 

maintenance costs) aims to balance the two (conflicting) structuring goals: to minimize coupling between 

components, elements should be grouped into a component whenever they are processed together at some 

point. To maximize cohesion, a component should only contain elements which are all processed together. 

Existing approaches especially differ in their support for a systematic procedure (Birkmeier and Overhage, 

2009). They range from general recommendations that are considered during the derivation (Levi and 

Arsanjani, 2002, Sugumaran et al., 1999, Cui and Chae, 2011) to structured methods (Meng et al., 2005, 

Albani et al., 2008). In line with the literature, we define a method as “a coherent and systematic approach, 

based on a particular philosophy of systems development, which will guide developers on what steps to 

take, how these steps should be performed and why these steps are important in the development” 

(Fitzgerald et al., 2002). Extending a survey from Birkmeier and Overhage (2009), we therefore examine 

the approaches with respect to their underlying Weltanschauung and their support for a reflective process.  

The approaches, first of all, differ in their understanding of components, which is a key influence factor on 

the results of an approach however (Birkmeier and Overhage, 2009). So-called business components, 

which are in the focus of this paper, implement a specific business functionality and can be broadly under-

stood as a “software implementation of an autonomous business concept or business process” (Herzum and 

Sims, 2000). While such an understanding is focused on the conceptual functions that are provided, others 

emphasize technical aspects. Approaches that build upon a technical view of components oftentimes pro-

pose to analyze code and database schemas instead of conceptual, domain-oriented models to derive soft-

ware components as higher-order design elements (Jang et al., 2003, Rodrigues and Barbosa, 2006). Many 

of the proposed business-oriented approaches utilize matrix analyses to derive components from domain or 

IT models (Lee et al., 1999, Ganesan and Sengupta, 2001, Kim and Chang, 2004). Most of them build 

upon the Business Systems Planning approach (IBM Corporation, 1984), which denotes individual busi-

ness functions and processed business data as two dimensions of a matrix. In the matrix, relationships bet-

ween business functions and data (such as create and use relationships) are charted. They serve as the basis 

to identify clusters according to the above design principle. Methods that build upon matrix analyses are 

limited regarding the information used to derive business components, though. Focusing solely on rela-

tionships between functions and data can compromise the IS landscape design as other aspects like depen-

dencies between functions or between data elements are ignored (Birkmeier and Overhage, 2009). To take 

additional kinds of relationships into account, clustering analyses and graph-based methods have been 

proposed (Jain et al., 2001, Lee et al., 2001, Cai et al., 2011, Albani et al., 2008). While such techniques 

are basically able to work with arbitrary kinds of relationships, the proposed methods are usually restricted 

to pre-defined sets of relationships (Birkmeier and Overhage, 2009). Architects, hence, are not able to 

customize the methods according to the requirements of their projects and to the available information. 

Furthermore, proposed approaches either specify the derivation of components as guidelines with several 

work steps which have to be performed manually (Ganesan and Sengupta, 2001, IBM Corporation, 1984, 

Lee et al., 1999) or introduce completely automated derivation procedures which cannot be influenced by 

the architect at all (Kim and Chang, 2004, Blois et al., 2005). Especially in industry-sized EA projects, 

manually deriving components based on matrix or clustering analyses burdens the architects with 

significant cognitive load, though. On the other hand, completely automated methods do not allow for a 

sufficient level of influence during the derivation process. Because the structuring of IS landscapes is a 

significantly creative process, “it is important that the individual developers engage their competencies” 

during component derivation, however (Omland, 2009, Fitzgerald et al., 2002). Therefore, semi-automated 

approaches integrate the architect in the derivation procedure (Albani et al., 2008, Cai et al., 2011), but 

without appropriate support and guidance (Table 1). Thus, it still strongly “depends on the knowledge of 

the designer if […] useful results can be achieved” (Birkmeier and Overhage, 2009). 

Summing up, manual approaches strongly rely on the architect during the derivation of components. 

Among the analyzed approaches, only the automated ones are able to generate adequate optimized solu-

tions with respect to the minimize coupling – maximize cohesion principle even for large projects, though. 



 

 

Fully automated approaches reduce the possibility for human failures and the dependency on the individual 

architect’s competence. However, such methods also hamper the chance to achieve outstanding solutions 

in IS structuring, as the architect’s expertise and creativity are suppressed. Semi-automated approaches 

therefore integrate possibilities for customization into the preparation and the analysis phase. However, 

these approaches fail to support the architect with adequate guidelines (Table 1). 

 
Table 1  Architect integration in related approaches 

To address these shortcomings and contribute to the closure of this research gap, we propose a method that 

guides and supports the architect throughout the important derivation steps. Building upon the semi-auto-

mated method described in Albani et al. (2008) the derivation phase itself is automated to a considerable 

part to ensure a good structuring with respect to technical features and managerial goals. There will, never-

theless, be several guided possibilities during the preparation to influence the method to fit situational 

project preferences. We will furthermore describe a structured analysis to evaluate and reflect the results. 

3 Research Method 

The development of the reflective method to derive business components from conceptual models follows 

the design science paradigm (Hevner et al., 2004). This paradigm aims at a rigorous construction of 

innovative IT artifacts which can be constructs, models, methods, and instantiations (March and Smith, 

1995). On the one hand, it is the rigor of constructing IT artifacts that distinguishes design science research 

from the practice of building IT artifacts (Iivari, 2007). The construction of the artifact hence has to follow 

a rigorous, scientific process. For the development of the presented method, we followed the design cycle 

introduced by Takeda et al. (1990), which defines the problem statement, solution concept, solution 

instantiation, and evaluation as milestones. To make the construction process that we followed transparent, 

we provide details about each stage of the design cycle in the paper. While we have already motivated the 

research gap and presented the problem statement in the last sections, we will describe the solution 

concept, its instantiation, and the conducted evaluation in the remainder of this paper. On the other hand, 

the constructed IT artifact has to represent an innovative solution to the existing knowledge base (Hevner 

et al., 2004). Hence, it has to be scientifically evaluated in order to prove that the research goals driving the 

artifact construction have been fulfilled (Iivari, 2007). Thus, we evaluated the presented method in two 

ways: to demonstrate the feasibility, we implemented the method in a tool and applied it to solve practical 

design tasks. We will provide details on the implementation and an application example later on. 

4 Business Component Derivation 

A large variety of information can be used as starting point for business component derivation methods, 

whereat this work is focused on conceptual models. Such a model “describes the users' world separately 

from any notation of the target software” (D'Souza and Wills, 1999). Thus, input can be provided from 

business process models (e.g. Business Process Modeling Notation diagrams), data models (e.g. Entity 

Relationship Diagrams) and function models (e.g. Function Decomposition Diagrams). For business 

component derivation, a set of elements from conceptual models is considered together with the set of 

relationships between the elements. Depending on the specific input models, the extracted elements in the 

set might typically be business process steps, information objects, and actors. Consequently, characteristic 

relationships are e.g. control flows between process steps or entity relationships between information 

objects. However, it depends on the project and is furthermore up to the architect to decide which concrete 

models, elements and relationships are available and considered in the derivation process. Additionally, 

relationships between elements could be of different types and importance. To reflect the latter, an 

architect ought to be able to assign a weight ���,�� to a relationship between two elements � and �. 
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To derive business components, the set of elements needs to be decomposed into a partitioning 	 


��, ��, … , ��� of pairwise disjoint subsets ��, such that the union of all components � ��
�
��  matches the 

whole set. In this context, coupling and cohesion can be formalized into concrete measures. 

Definition (Vitharana et al., 2004): Measures of coupling (1) and cohesion (2) are defined as: 

���      Cou�P� 
 �

�
∑ ∑ ∑ ���,����� �!� 

�
��  ;                �#�      Coh�P� 
 �

�
∑ ∑ ∑ ���,���!� ,�%��!� 

�
��   

Therefore, the minimizing coupling – maximizing cohesion principle depends on weights of relationships 

running between and within business components. An optimized solution, thus, has to respect the indivi-

dual weights. Higher weights imply a more important relationship between two elements and, therefore, 

separating those elements into different business components constitutes a stronger impact on the overall 

structuring. Following the objective of minimizing coupling in a component structure, the target function 

of the optimization process, hence, can be stated as: Minimize the sum of weights of all relationships 

between elements in different business components (3). This target is, furthermore, mathematically 

equivalent to the counterpart task of maximizing the sum of weights of all relationships between elements 

in the same business component (4). This second goal resembles the maximizing cohesion principle. 

�&�           min*
�

�
∑ ∑ ∑ ���,����� �!� 

�
��        +        max*

�

�
∑ ∑ ∑ ���,���!� ,�%��!� 

�
��            �.�  

Proof: The equivalency follows from the fact that the sum of weights of all existing relationships (5) 

remains constant: 

�/�           ∑ ���,��0�,� 
 �

�
∑ ∑ ∑ ���,����� �!� 

�
�� 1 �

�
∑ ∑ ∑ ���,���!� ,�%��!� 

�
�� 2 ∞          

The argument of the minimization problem (3) is also referred to as the cost ��	� of partitioning 	. With 

the different options of using existing conceptual models, the architect has an expansive possibility of 

control. By choosing relevant aspects, the whole method can be influenced according to individual 

preferences. On this basis, automated methods can be used to derive a set of business components that 

fulfills the target principles as good as possible. In contrast to manual methods, which strongly depend on 

the architect’s competence, automated methods strive to detect the best possible solution. In the introduced 

approach, the architect still has a second possibility to actively affect the derivation, though. Through the 

introduction of weights, (s)he can influence an optimization method, which is operating on the sets of 

elements and relationships. Primarily, weights could be assigned to certain types of relationships (e.g. 

creating an information object in a business process step could be weighted higher than reading it). 

On the one hand, as the weights have a strong impact on the optimization results, the architect has a pow-

erful possibility to influence the automated structuring. On the other hand, a lot of experience is still neces-

sary to derive consistent weights that reflect the project goals. Therefore, decision support techniques are 

utilized to assist the architect in denoting preferences. Though, whenever such methods are used to evalua-

te different possibilities as basis for an optimized structuring of IS landscapes, they carry the risk that 

slight changes in preferences will result in significantly different solutions (Zhu et al., 2005). Therefore, it 

has to be examined to what extent a change in preferences will produce stable results. The introduced 

method envisions a simulated variation of weights and a confrontation of the respective optimization 

results, such that the influence of weights on the robustness of the component structure can be projected. 

 
Figure 1.  Architect influence in derivation method 

These considerations lead to a derivation method, which is organized in three parts (Figure 1). The 

architect’s influence varies from phase to phase. In the beginning (s)he chooses the elements of conceptual 

models which are to be mapped onto a graph and, thus, has a high influence on the later outcome. During 

the determination of relationship weights in the Denoting Preferences phase, the architect is guided 

through decision support methods. Afterwards, a partitioning is derived with optimization algorithms 

providing no possibility for interaction. This guarantees a high quality solution even for large projects with 

respect to the minimizing coupling – maximizing cohesion principle. The results, however, ought to be 

validated by the architect in controlled analyses, which might lead to some manual changes. 



 

 

4.1 Graph-Mapping and Denoting Preferences 

Business processes are frequently mapped onto graphs for various analyses. We have adopted the graph 

definition of Ouyang et al. (2009). For illustration purposes, we will discuss the procedure for the most 

common attributes of business processes and data models using UML Activity Diagrams and Class 

Diagrams as examples (OMG, 2005). Each business process model contains several business process steps 

(BPS) which together describe a set of activities. Additionally, inputs and outputs of the process steps – i.e. 

information objects (IO) – are commonly contained in a process model. Finally, process steps are usually 

assigned to one or more actors (e.g. roles, departments, computer systems, etc.). Out of the set of elements, 

business process steps as well as information objects are mapped onto the nodes of a graph, with a 

corresponding node type BPS or IO. Furthermore, a node can be marked as external, if it is part of an 

existing or planned component which cannot or should not be altered by the architect (e.g. legacy 

structures or different projects). In contrast to process steps (functionality) and objects (resources), which 

have a direct equivalent in components (Szyperski et al., 2002), actors are not mapped onto nodes. Instead, 

all nodes of business process steps performed by a certain actor are connected through edges. 

In a business process model, the order of the single process steps is determined through the control flow. 

These dependencies are mapped onto edges between the corresponding BPS nodes (edge type BPS-BPS). 

Additionally, a process model describes the data flow between process steps, such that each step can have 

input and output information objects. These relationships are mapped onto edges between BPS and IO 

nodes (BPS-IO). Finally, entity relationships between information objects in a data model are mapped onto 

corresponding edges as well (IO-IO). The coarse-grained classification of edges with general types is fur-

ther refined to resemble different intentions of relationships. Therefore, each edge can be assigned a certain 

subtype. Typical subtypes are e.g. function calls and the previously discussed actors for BPS-BPS relation-

ships; create, read, update and delete for BPS-IO relationships; as well as related-to and state-of for IO-IO 

relationships. As mentioned before, additional edge and node (sub-) types could be used as well, if neces-

sary. Thus, a graph-based approach is highly flexible with respect to the architect’s and project’s demands. 

To assist the architect and support a rational decision upon the utilized weights, decision support methods 

are required (Zhu et al., 2005). Using pairwise comparisons of different edge (sub-) types (Figure 2), 

weights can be systematically derived in an Analytic Hierarchy Process (AHP, Saaty, 1980). Hence, the 

AHP supports a reflective determination of weights through reducing the decision space. 

Compared to (A) creating information objects in business 
process steps, how important is (B) reading information objects 
in business process steps? Mark the relative importance on the 
AHP-scale: 

 
Figure 2.  Pairwise comparison in an AHP 

Pairwise comparisons have to be evaluated by the architect for all types of edges. Furthermore, for each 

general edge type the AHP has to be repeated on a second level for all corresponding subtypes. The 

comparison results are summarized in a matrix. Afterwards, impact factors for each type and subtype can 

be derived through eigenvalue calculations (Saaty, 1980). Based on the impact factors of types and 

subtypes, the exact weights of all edges are derived as product of both. Additionally, it has to be verified 

that no contradictory choices have been made by the architect. The consistency ratio �4 of the matrix is 

commonly calculated and used as a first indicator for such problems. We adopt the common benchmark 

that if the �4 is less than the critical value of 0.1 the results of the AHP are considered as fully usable 

(Saaty, 1980). Otherwise, the architect would have to reevaluate the choices made. 

4.2 Optimized Partitioning 

The derivation of an optimally structured IS landscape is not an easy task as a large amount of possible 

solutions exists. Likewise, identifying the partitioning of a graph, which best suffices the defined require-

ments, is known to belong to the class of NP-complete problems (Garey et al., 1974). Hence, any direct 

calculation of this partitioning through comparing all combinations is unreasonable for non-trivial prob-

lems. Nevertheless, a combination of opening and improving heuristics can be used to identify the best 

possible solution with suitable effort. While the earlier one identifies a possible starting solution, the latter 

uses this partitioning as the basis for further improvements. Since the starting solution is usually found to 



 

 

be a local optimum, the second heuristic has to provide some capability to pass local optima and enable 

solutions relatively close to the global optimum. For the partitioning we rely on the approach of Albani et 

al. (2008). Among the ones discussed in section 2 it turned out to be one of the most mature approaches 

(Albani et al., 2008, Birkmeier and Overhage, 2009). It uses the Start Partition Greedy (SPG) heuristic to 

generate the initial solution and the KL-algorithm from Kernighan and Lin (1970) for the subsequent 

improvement. The SPG heuristic aims to assemble closely related nodes in the same business component 

by examining relationships in the order of their individual strength. Its course of action favors the 

combination of tightly interconnected nodes and, thus, provides an implicit support to maximize the 

cohesion of business components. A specific strength of the method is that the architect does not have to 

decide on the number of components in the beginning, as it is determined by the heuristic.  

Kernighan and Lin (1970) were the first to define an efficient improving heuristic for an existing 

partitioning of a graph. To date, the original algorithm has been repeatedly adopted to different areas of 

application. The basic principle is an exchange of an equal number of nodes between two components to 

improve their respective partitioning costs. This two-components-optimization heuristic can be applied to 

the whole graph, by repeatedly examining pairs of components ���, �5��%5, until no further improvements 

can be achieved. In so doing, trivial solutions to the optimization problem in favor for one conflicting 

structuring goal (i.e. a single large or many small one-step business components) can be avoided. For each 

solution, the algorithm calculates the coupling and cohesion ratios of the component structure. 

Definition: The coupling ratio �6��	�7777777777 of a partitioning 	 is defined as the amount of coupling between 

the components in relation to the overall amount of coupling between nodes in the graph. The cohesion 

ratio �68�	�7777777777 of a Partitioning 	 is defined respectively for cohesion within components. 

�9�      �6��	�7777777777 

�:��*�

∑ ;�<.>�0<,>
 ! ?0,1B;                    �C�     �68�	�7777777777 


�:D�*�

∑ ;�<.>�0<,>
 ! ?0,1B  

Ratio (6) can be used to measure the target achievement of the minimizing coupling principle. Lower 

values are generally favorable here, as this indicates a lower amount of relationships between the business 

components. The second ratio (7) evaluates the maximizing cohesion target, accordingly. 

4.3 Validation and Manual Improvement 

As discussed earlier, the results of the automated derivation of business components should not be used 

without reflection. Especially, the influence of slightly different decisions during the AHP in the first 

phase and, thus, minimal changes in weights, needs to be examined (Zhu et al., 2005). A common way to 

test “the robustness of an optimal solution” and identify “critical values, thresholds or break-even values 

where the optimal strategy changes” are sensitivity analyses (Pannell, 1997). In such an analysis, the initial 

preferences are systematically varied and optimized solutions are calculated for every set of weights. In 

previous applications of our approach a variation of ±50% of each impact factor in steps of ten percentage 

points has shown to be sufficient. The comparison of different component structures against each other can 

generally be done in several ways. First of all, specific metrics can be used to evaluate certain aspects of 

the clustering (Chidamber et al., 1998). Here, especially the distribution of nodes into different business 

components ought to be examined, however. The fact whether groups of nodes stick together in various 

solutions or if they are redistributed allows conclusions on the robustness of the component architecture. 

In our approach we support the architect in examining node distributions over different optimization 

results through visualization in parallel coordinate plots. In such a plot, the axes are drawn parallel and all 

have the same positive orientation as the y-axis. Each axis resembles one possible solution. For each 

record in a dataset the data-points are interconnected over all axes via horizontal lines (Inselberg, 1985). 

This method is frequently used in statistical data analysis for “examining clustering in high dimensions” 

(Cook and Swayne, 2007). Figure 3 shows how parallel coordinate plots are used during a sensitivity 

analysis in our approach. Here, each axis depicts a component structure derived from different weights. 

The marked axis in the middle of the plot resembles the original structure. The left side illustrates 

optimization results after a decrease and the right side after an increase of the controlled impact factor of 

up to ±50%. Furthermore, each horizontal line resembles one node (i.e. a business process step or an 

information object from the input models) and shows to which component it is assigned to in the different 

optimization results. A separate plot is needed for every structured variation of one or more impact factors. 



 

 

 
Figure 3.  Parallel coordinate plot in sensitivity analysis 

An examination for grouped lines reveals whether nodes keep together independently from the utilized 

weights. In the left part of Figure 3 most groups of nodes stick together up to -30%, which shows that the 

results are rather robust towards a reduction of the impact factor(s). Note that different coordinates of 

groups of nodes in each variation are attributed to the internal numbering of components and have no 

significance towards the component structure (c.f. bottom lines at original-axis and -10%-axis). On the 

right side of Figure 3 the results are stable until +20% but show a sudden change at +30%. Hence, -40% 

and +30% mark the breaking points which lead to unstable results and significant changes in the derived 

component architecture. As the robustness of a component-based EA is an important prerequisite for its 

long-term applicability, any signs of unstable results ought to be carefully reflected during the design 

process. By enabling the architect to perform sensitivity analyses for relevant variations of each weight and 

to process conflicts that might emerge, the proposed derivation method systematically supports this task. 

The architect also might use the structuring as a profound starting point for further refinement through 

manual manipulations to give consideration to information that were not mapped onto the graph (e.g. 

financial aspects). However, since results from the optimization could be overruled and changes might 

cause the building of business components with lower quality regarding coupling and cohesion, we 

recommend this step to highly experienced architects only. Finally, the architect has to examine the 

business functionality which each component performs and initiate the business component specification. 

5 Tool Support and Application 

For large problems, the described method cannot be applied by hand but has to be supported through soft-

ware. To furthermore validate the general applicability of our approach, we have developed the Services 

and Components Architecture Support Tool (SeaCoAST). It implements the described method and sup-

ports the important design phase in the development process. Both – method and tool – have been success-

fully evaluated in several real-world use cases, ranging from small single applications up to large IS land-

scape projects. The following describes its application to the after-sales processes of a DAX-30 automobile 

manufacturer. All data has been derived in a project with our industry partner (Eberhardt, 2005). The 

business processes contain 150 steps that are carried out from 21 actors, affecting 702 information objects. 

 
Figure 4.  SeaCoAST with a visualization of the initial graph and optimization dialogs 

The initial structure of the graph – as it is visualized in SeaCoAST – is shown in Figure 4 together with the 

optimization and relationships info dialogs. The top circle of nodes contains the business process steps and 



 

 

the bottom circle describes the information objects. Due to the size of the use case, details are only visible 

on the screen. The edges of the model in this particular scenario are of the following subtypes. Within a 

process one step follows another and each one is assigned to an actor. All process steps can create 

information objects, or use them during their execution. Information objects can be part of larger objects, 

represent a certain state of another object, or simply be related towards each other. 

 
Figure 5.  Weights w and impact factors derived through AHP 

After mapping the information from the project’s conceptual models (EPC and ER Diagrams) onto the 

graph, the optimization preferences had to be examined. Weights were derived through three experts based 

on an application of the AHP method. Among the experts involved in the discussion and voting, two were 

familiar with the project and the conceptual models. The third expert was acquired to provide an external 

view without knowledge of the specific project details. The resulting weights after eight pairwise 

comparisons are depicted in Figure 5. They reflect that among all edges, a special focus is placed onto 

those running between process steps. In the project, functional relationships are considered the most 

important to achieve reasonable business components, as large network traffic might present a problem. In 

detail, follow relationships (w=.432) are regarded more crucial than the influence of actors (w=.108). 

Furthermore, information objects are to be placed preferably in the same component as the process step 

which creates (w=.247) them. The usage (w=.050) of data in process steps, however, is considered less 

complex and low weights are assigned to those relationships. The structure of information objects is 

evaluated as less important than functional relationships. Entity relationships are further ordered according 

to the individual subtypes: part-of (w=.104) is a stronger relation than state-of (w=.042) and is considered 

more important than related-to connections (w=.017). The consistency ratio �4 of the results varies 

between .000 and .033 with an overall value of .010. All of these are far below the critical value of 0.1 and 

therefore confirm that the derived weights contain negligible inconsistencies. 

 
Figure 6.  Visualization of the result after Start Partition Greedy and Kernighan-Lin heuristics 

After running the SPG and KL heuristics, the graph is partitioned into nine components (Figure 6). The 

respective costs are reduced to ��	� 
 5’722 with �6��	�7777777777 I 0.100 and �68�	�7777777777 I 0.900. All identified 

components were carefully analyzed and interpreted by the architects from a business perspective and 

described according to their main tasks (Table 2). 
 

 
Functional description 

BPS-

nodes 

IO-

nodes 
  Functional description 

BPS-

nodes 

IO-

nodes 

1 Pricing 7 46  6 Warranty and accommodating behavior check 28 167 

2 Customer management 58 185  7 Warranty and accommodating behavior processing 26 100 

3 Transaction processing 11 47  8 Portfolio definition 9 48 

4 Reporting 2 51  9 Market analysis 6 16 

5 Invoicing 3 42      

Table 2. Summary of identified components 

The architects performed an extensive sensitivity analysis with structured variations of the impact factors. 

Figure 7 visualizes the effect of changes in the range of ±50% to the original values for IO-IO, BPS-IO and 



 

 

BPS-BPS relationships (Figure 5). Detailed examinations on the effect of changes to relationship subtypes 

have been performed as well, but are omitted here in the interest of brevity. As can be seen in the parallel 

coordinate plots all components are fairly stable towards variations of the edge weights. This is especially 

true for variations to the impact of IO-IO relationships. Mainly, changes only affect a few rare BPS nodes 

that might be assigned to different components, due to low numbers of weak connections. However, it can 

also be seen that strong deviations of the impact factors of BPS-IO and BPS-BPS relationships influence 

the solutions when breaking points are passed. For BPS-IO relationships a change of +20% or higher 

causes a sudden change in the component structure, which can be explained with the fact that those 

relationships are not completely dominated by the weights of BPS-BPS relationships any more. Similarly, 

for a variation of weights in BPS-BPS relationships of more than -30%, the structure changes, as those 

relationship types now have less relative importance than BPS-IO relationships. 

 
Figure 7.  Results and visualization of sensitivity analysis 

Overall, the identified component structure is rather robust towards variations of up to 20% and more from 

the initial preferences. The results of the AHP-supported decisions are therefore invariant to slight changes 

and can be used without limitations. From the project’s perspective, the sensitivity analysis confirmed that 

the derived components are specific to the project’s preferences and only a substantial change in goals 

results in a different IS design. In that context, the method itself and the results from the application of the 

introduced method have been corroborated by our industry partners. 

6 Conclusions 

In this paper, we have presented a method to systematically derive business components from conceptual 

models. In particular, we described the structuring strategy of minimizing coupling and maximizing 

cohesion as a multi-criteria decision-making problem. The presented method thereby allows the architect 

to decide which elements of conceptual models and which relationships between them should be 

considered during the structuring. Furthermore, it assists in identifying design preferences using a rational 

procedure. Finally, the presented method supports evaluating the stability of the resulting structuring 

against changing preferences. This evaluation allows the architect to identify and process emerging 

conflicts that may lead to a different structuring. To demonstrate how the method is used in practice, we 

introduced the SeaCoAST tool and discussed its application in a complex industry case. Project partners 

attested the method to provide an “interesting opportunity to balance technically optimal IS design with 

individual project requirements” while “supporting the architect but not suppressing him”. 

The results of our research have implications for both practice and academia. For practice, they show how 

the structuring of IS landscapes can be achieved using a rational procedure that can be customized accord-

ing to situational requirements. In contrast to other methods, architects can adjust the structuring procedure 

to resemble their assumptions about the criteria that should drive the structuring. Possible clashes between 

the Weltanschauungs of the method creator and the method user, which lead to undesirable results when 

using methods (Omland, 2009), can so be minimized. The sensitivity analysis of the obtained results 

furthermore helps verifying the existing design preferences. Depending on the robustness of the created 

structuring, architects ought to rethink their preferences as the structuring process often “is driven by 

certain more or less clear objectives” (Mathiassen, 1998). With the presented tool, it is furthermore 

possible to efficiently apply the method in larger EA projects, where a considerable amount of components 

is anticipated. In such projects, the application of the presented method will likely lead to a structuring that 

is better optimized for the autonomy of its constituent components than manual approaches. 

For academia, our results show how the derivation of business components from conceptual models can be 

achieved in a way that ensures active participation and influence of the architect while the structuring is 

still optimized systematically. The presented method provides a compromise in the current spectrum of 
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IO – IO [-50%, +50%] --- ∅ 

BPS – IO [-50%, +10%] +20% [+20%, +50%] 
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fully automated methods, which do not allow for any influence or control, and manual approaches, which 

do not guarantee for a sufficiently optimized structuring. Furthermore, we suggest several types of 

conceptual model elements and relationships which can be taken into account during the derivation of 

components. With the presented method, we address the persisting research gap of how to structure a 

design space into business components. In contrast to existing approaches, the presented method provides 

support for a reflected, customized structuring. It hence serves as a contribution to what Mathiassen (1998) 

called “reflective systems development”. During the application of the method, especially this aspect 

turned out to positively impact acceptance. However, an extensive examination of the actual acceptance 

and possible efficiency gains yet has to be performed. Furthermore, there are also limitations towards the 

applicability of our approach. The proposed method is especially dependent on the level of detail that is 

provided with the conceptual models which serve as input. The method requires that the business functions 

and information objects to be implemented are listed as individual elements of the input models. Due to 

this constraint, the design of the system becomes even more dependent on the quality of the conceptual 

models that have to be created initially. We will therefore have to more rigorously evaluate the claimed 

advantages of our “reflective” method in future research. Besides further evaluating the presented method 

in field studies with industry partners, future research will also focus on determining exemplary weightings 

that were successfully applied in projects. So-called best practices can serve as benchmark for architects to 

analyze their own design preferences against. Finally, we will extend our method to the closely related 

service-oriented computing discipline. In that context, we currently work on systematically deriving 

business services from conceptual models to specifically support service-oriented enterprise architectures. 
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