
Association for Information Systems
AIS Electronic Library (AISeL)

ECIS 2012 Proceedings European Conference on Information Systems
(ECIS)

5-15-2012

AUTONOMIC MANAGEMENT OF
SOFTWARE AS A SERVICE SYSTEMS WITH
MULTIPLE QUALITY OF SERVICE CLASSES
Tobias Brandt
University of Freiburg

Ye Tian
University of Freiburg

Markus Hedwig
University of Freiburg

Dirk Neumann
University of Freiburg

Follow this and additional works at: http://aisel.aisnet.org/ecis2012

This material is brought to you by the European Conference on Information Systems (ECIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ECIS 2012 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Brandt, Tobias; Tian, Ye; Hedwig, Markus; and Neumann, Dirk, "AUTONOMIC MANAGEMENT OF SOFTWARE AS A
SERVICE SYSTEMS WITH MULTIPLE QUALITY OF SERVICE CLASSES" (2012). ECIS 2012 Proceedings. 158.
http://aisel.aisnet.org/ecis2012/158

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301355559?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fecis2012%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2012?utm_source=aisel.aisnet.org%2Fecis2012%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2012%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2012%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2012?utm_source=aisel.aisnet.org%2Fecis2012%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2012/158?utm_source=aisel.aisnet.org%2Fecis2012%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E


AUTONOMIC MANAGEMENT OF SOFTWARE AS A 

SERVICE SYSTEMS WITH MULTIPLE QUALITY OF 

SERVICE CLASSES 

Brandt, Tobias, University of Freiburg, Chair of Information Systems Research, Platz der 
Alten Synagoge, 79085 Freiburg, Germany, tobias.brandt@is.uni-freiburg.de 

Tian, Ye, University of Freiburg, Chair of Information Systems Research, Platz der Alten 
Synagoge, 79085 Freiburg, Germany, ye.tian@is.uni-freiburg.de 

Hedwig, Markus, University of Freiburg, Chair of Information Systems Research, Platz der 
Alten Synagoge, 79085 Freiburg, Germany, markus.hedwig@is.uni-freiburg.de 

Neumann, Dirk, University of Freiburg, Chair of Information Systems Research, Platz der 
Alten Synagoge, 79085 Freiburg, Germany, dirk.neumann@is.uni-freiburg.de 

Abstract  

In recent years the emergence of Software as a Service (SaaS) provision and cloud computing in 

general had a tremendous impact on corporate information technology. While the implementation and 

successful operation of powerful information systems continues to be a cornerstone of success in 

modern enterprises, the ability to acquire IT infrastructure, software, or platforms on a pay-as-you-go 

basis has opened a new avenue for optimizing operational costs and processes. In this context we 

target elastic SaaS systems with on-demand cloud resource provisioning and implement an autonomic 

management artifact. Our framework forecasts future user behavior based on historic data, analyzes 

the impact of different workload levels on system performance based on a non-linear performance 

model, analyzes the economic impact of different provisioning strategies, derives an optimal operation 

strategy, and automatically assigns requests from users belonging to different Quality of Service 

(QoS) classes to the appropriate server instances. More generally, our artifact optimizes IT system 

operation based on a holistic evaluation of key aspects of service operation (e.g., system usage 

patterns, system performance, Service Level Agreements). The evaluation of our prototype, based on a 

real production system workload trace, indicates a cost-of-operation reduction by up to 60 percent 

without compromising QoS requirements.   

Keywords: Service Level Agreements, QoS Classes, Workload Forecast, Autonomic Management. 

 



1 Introduction 

The emergence of Software as a Service (SaaS) provision and cloud computing in general since the 
beginning of this century has had a tremendous impact on corporate information technology. While 
the successful operation of powerful information systems continues to be a cornerstone of success in 
modern enterprises, their sustainable and efficient operation has become an exceptionally hard 
problem. With the emergence of the Service World in generally and the ongoing establishment and 
acceptance of cloud computing and SaaS as the new standards in corporate computing, today 
enterprises have gained the ability to acquire IT infrastructure, software, or platforms on a pay-as-you-
go basis. This new way of corporate computing has turned the former asset IT into an expense (Carr, 
2004) and hence has opened a new avenue for optimizing operational costs and processes by 
eliminating the need for corporate-owned server infrastructure, the maintenance of that infrastructure, 
as well as software licenses. 

The adaptation to the new service technology as well as the sensible utilization of IT will be one of the 
key challenges of enterprise computing in the next decade. Even though various technological 
advances as well as new software design paradigms enable highly efficient operation modes today 
(Bailey, 2009), the feasible implementation bears further problems in the real operation. For instance, 
this includes the relation between the Quality of Service (QoS) and the economic parameters of a 
service contract (e.g. price and penalty). In this context, we propose our new SaaS management 
artifact which enables highly efficient and QoS aware operation and contributes to the sensible and 
economic utilization of IT. More concretely, we designed and implemented a new approach for the 
operation of large enterprise information systems. In contrast to existing concepts in the field of green 
technology, our model does not solely aim at reducing the resource consumption. Instead, our work 
extends the current state of the art by incorporating both technical and economical parameters of 
Service Level Agreements (SLAs) into the system operation strategy. By correlating the economic 
value of the system (i.e. profit and penalties), cost of operation, user behavior, and performance 
characteristics, our new management approach derives profit optimal operation strategies. 
Furthermore, our new model enables the automatic assignment of user to QoS classes and hence 
enables to ensure a high QoS for a preferred user group while at the same time offering decent QoS to 
the remaining users. Accordingly, our model facilitates highly efficient operation strategies for 
information systems while at the same time guarantees a continuously high QoS. 

In this paper we focus on large web-facing enterprise information systems that provide their services 
to a large number of concurrent users. In contrast to most other work in this domain, we additionally 
allow multiple user classes with different QoS requirements. Usually, the workload of these systems is 
typically characterized by continuously varying size (i.e., workload) and composition (i.e., workload 
mix) of simultaneous requests, where each single request only generates a relatively small system 
load. Common representatives of this group are SaaS Systems such as CRMs or ecommerce portals. 
Inherently, these end-user driven systems often face a highly volatile workload as usage patterns are 
typically characterized by a strong seasonality component (e.g., time of day or day of week).  
Additionally, our model incorporates a novel concept to manage multiple user classes with different 
SLAs. It enables the SaaS provider to allocate more resources to a certain user group without 
compromising the QoS of the remaining users. 

In summary, these enterprise information systems often suffer from an inefficiently low average 
utilization of computing resources. Furthermore, these systems are typically operated on commodity 
hardware or on entry level servers in order to reduce the cost of operation (Short et al., 2011). While 
virtualization and consolidation may help significantly to mitigate some of these problems for 
relatively small instances of applications, virtualization and consolidation as such do not directly affect 
the efficient operation of large information systems, which require the computing power of several 
nodes. One feasible solution for large systems is the use of resource adaptive operation modes, which 
adapt continuously the system size to the user demand. 



However, the implementation of such systems is non-trivial. In fact, if the operated service is provided 
on the basis of an SLA, the problem becomes particularly hard because efficient operation modes 
inherently increase the risk of violating performance constraints (i.e., QoS requirements). Even worse, 
if we consider different QoS classes within a single service, the problem becomes increasingly 
complex. For instance, preferred users should be managed more conservatively. In Addition, our work 
extends the traditional static view on Service Level Objectives (SLOs) towards a fully dynamic notion 
of SLA compliance. By continuously evaluating the SLA compliance at run time and adapting the 
SLOs in real-time, the system can react to changes in its environment instantaneously. This dynamic 
view on SLAs significantly reduces the risk of violating SLAs at runtime based on wrong or outdated 
operational decisions. 

To account for the heterogeneity of IT systems, our management artifact model utilizes a complex 
system performance model and a workload forecast model. Based on these components, our 
information system operation model can determine the impact of different operation strategies and 
find a profit optimal configuration at runtime. 

The high complexity of enterprise system environments entails that any attempt trying to prove the 
validity of a novel approach to management that bases on data analysis alone is not reliable due to the 
non-linearities in system operation. Instead, the only way to validate the goodness of a novel 
management approach is by relying on experiments on a real-life testbed. Accordingly, we developed 
a test environment to provide a reliable evaluation. Our test system consists of a cloud infrastructure, a 
benchmark application, extensive monitoring and control software, and the new management artifact 
itself. In order to provide a real-world evaluation scenario, we used a real production system workload 
process to generate our test workload. Our evaluations indicate that the application of our new 
resource management system allows reducing resource consumption of the IT systems under test 
conditions by up to 60 percent. 

The main contribution of this work is threefold. 

• We provide a new perspective on the management of enterprise information systems and introduce 
a novel management artifact that enables the efficient and QoS aware operation of SaaS. Our 
novel model allows highly efficient operation modes and leverages the full potential of elastic 
applications in cloud computing environments. 

• Our management artifact allows the operation of multiple QoS classes in a single system. More 
concretely, our model automatically assigns users to a certain class and allocates the workload on 
the system accordingly. By this means, the system is able to offer preferred users a better user 
experience while at the same time offering a decent service quality to the remaining user. 

• The evaluation of our model is based on production driven workload traces and real system 
performance data recorded in our test environment. Based on this data, we are able to analyze the 
impact of our model and can estimate its potential impact on the cost of operation in production. 

The remainder of this paper is structured as follows. The next section discusses related work in the 
field of elastic application management and system performance modeling. Section three introduced 
the formal background of our management artifact and introduces the all required input models. 
Section four presents a case study of our management artifact. Afterwards the paper concludes with a 
summary and an outlook on our future work. 

2 Related Work 

The presented autonomic management artifact combines various different research threads into one 
interdisciplinary model. In the related work section, we will discuss the different aspects of 
performance modeling, workload forecasting, and online SLA management and present the current 
state of the art in research. 



Performance analysis of large, distributed systems is a very active research field and a variety of 
models have been developed. Famous representatives are for instance Urgaonkar et al. (2008), who 
used queuing models for automated resource allocation in information systems or Cohen et al. (2004) 
who employed machine learning to model the performance characteristics. The modular structure of 
our artifact allows the application of various performance analysis tools. However, the main benefit of 
our empirical model is its applicability in environments with limited monitoring functionality such as 
clouds. Most of the newer contributions in this field extend the performance models to dynamic 
research management systems. For instance, the authors in Gmach et al. (2009) developed a reactive 
migration controller for virtualized environments. However, compared to our concept, their approach 
is only designed for basic single-layered systems. The paper by Chandra et al. (2003) introduces a 
resource allocation model for shared datacenters based on a queuing network performance model and 
a time series workload forecast mechanism. However, they do not consider SLAs in the provisioning 
process. Another concept (Padala et al., 2009) is an automated control model for virtual resources. The 
model manages the varying resource demands by dynamically allocating resources to or migrating 
virtual machines. Nevertheless, in modern cloud environments this migration approach is usually not 
supported. In Ardagna et al. (2007) a model has been developed to manage the resource demand of 
multiple concurrent systems. In contrast to our model, it optimizes the system only for a single point in 
time, rather than incorporating the state of the SLAs. The authors in Lim et al. (2010) developed an 
autonomic control model to scale elastic storage systems based on the utilization of the system. 

Service Level Agreements and their different aspects have been addressed computer science 
researchers. Buyya et al. (2009) provide a good overview of SLAs in the field of clouds. Yeo and 
Buyya (2007) developed an integrated risk analysis scheme to analyze the effectiveness of resource 
management policies. Based on SLAs, they determine whether a system is capable of meeting the 
required objectives and whether the acceptance of a single job is economically feasible. Aib and 
Boutaba (2007) present an approach to business and policy driven refinement in application hosting 
environments. Their featured model focuses on QoS objectives and includes a mechanism for runtime 
adaptation. In contrast to our work, both focus on batch processing and thus do not require coping with 
dynamic workloads, performance and SLA components. Hasselmeyer et al. (2006) introduce a model 
for the automatic negotiation of the Service Level Agreements prior to the contract start. Buco et al. 
(2004) develop a business-objective-based SLA management system over the whole lifecycle of the 
agreements. Similarly, Koller and Schubert (2007) present architecture for autonomous QoS 
management based on SLA specifications. The paper by Sahai et al. (2001) sketches a general scheme 
for Service Level Agreements which allows the autonomic management in services systems. In the 
same direction, the paper by Raimondi et al. (2008) presents the implementation of an automated SLA 
monitoring for services. Although our model does not cover all technical and negotiation aspects of 
the SLA, a productive version would require such an SLA management concept. In summary, most 
aspects of SLA management and application have been solved individually. However, we haven’t 
found any work combining all aspects into a single integrated model for information systems. In this 
sense, our work extends the current research in the field of SLA management, towards integrated and 
dynamic runtime management concepts for online transaction processing systems. 

In this paper we merge the findings on performance modeling and on SLA management towards an 
integrated scaling mechanism for cloud resources. This mechanism derives a cost-optimal system 
configuration that satisfies QoS requirements under a given performance model. 

3 Model Design 

The premise of this model is the fact that SaaS providers may face heterogeneous customers with 
respect to their SLA requirements. Take for example two companies that contract a third party service 
provider to operate the same software service. However, both may have a different valuation of 
reliability or speed of this service. Consequently, they would negotiate different SLO parameters in 
their respective SLAs. 



The SaaS provider now faces several options. First, s/he can simply ignore the difference between the 
SLAs and just treat all the customers equally according to the strictest QoS requirement in any SLA. 
This does, however, imply a decline of the revenue margin or even a net loss, as customers with the 
less demanding SLA (“low priority customers”) are not willing to pay for the higher operation cost. 
The second option is only feasible if the server technology allows prioritizing certain requests, 
enabling the service provider to privilege high priority customer. It is unrealistic to assume that such a 
solution can always be implemented, since the system performance model would need to be able to 
account for any possible combination of high and low priority requests. 

Finally, we propose a third option that requires the SaaS provider to maintain a separate set of servers 
for each user class. However, any spare capacities for high priority requests can be used to respond to 
low priority requests (according to the high priority SLO), such that the workload on the servers for 
the low priority user class decreases. The SaaS provider anticipates this and orders the server 
configuration for that time slot accordingly. 

In the following subsections we describe the elements of this model and our autonomic management 
artifact, displayed in Figure 1. 

 

Figure 1.  Autonomic Management Artifact for SaaS System Operation 

3.1 Service Level Agreements 

Service Level Agreements specify all aspects of business relations between the contract partners, such 
as the rights and duties of each party, contract duration as well as guarantees and warranties. The QoS 
requirements are distinguished into Service Level Objectives (SLOs), monitoring intervals and SLA 
assertion. SLOs consist of specific measurable characteristics of the system (e.g. availability, 
throughput, response time) together with a threshold value for this characteristic. Furthermore, an SLA 
includes monitoring intervals, which define when compliance with the SLO is checked. The SLA 
assertion can combine several SLOs and specifies under what conditions the SLA is violated. In 
addition, it defines the lifetime of the SLA as a contract and also controls the penalty payments in case 
of SLA violation. Different SLAs may lead to very different operation strategies. 

In this paper we investigate a scenario with two different user classes and, consequently, two different 
SLAs. However, the approach we choose theoretically allows any number of different SLAs to be 
included. The SLAs provide on the one hand the objective values according to which the decision 
model finds the optimal server configurations over the SLA lifetime (Fig. 1: 1), and on other hand 
define the user classes for the segmentation process (Fig. 1: 2). 

3.2 System Performance Model 

A thorough understanding of the system characteristics is necessary to provide the optimal hardware 
configuration for any given workload. Usually elastic applications do not scale linearly with the 
amount of hardware resources. In our recent work (Malkowski et al., 2011), we developed an 



observation based, empirical approach for the performance modeling of large systems. In contrast to 
other models, our approach solely relies on the observed system behavior during operation. More 
specifically, our system characteristics model monitors the workload process, system metrics, as well 
as the SLO relevant metrics (e.g. response time) and saves the data in an operational data store. Based 
on this recorded data, our performance model can predict the expected degree of SLO compliance of a 
certain configuration and workload level. This influences the optimal configuration strategy in the 
decision model (Fig. 1: 3). Figure 2 presents a dataset of our empirical performance model based on 
data from our test system. The figure plots the degree of SLO compliance of different configurations 
for different workload levels. Evidently, the system scales with the number of resources in the system. 
Depending on the QoS requirements, different systems qualify for different workload levels. For 
instance, if the system faces 400 concurrent users and the operator targets a degree of SLO compliance 
of 99% the system must be operated with six nodes. In this work we advanced our performance model 
to determine the optimal infrastructure size for one QoS class and derive the residual capacity of the 
system. By allocating workload from a less strict QoS class, we can achieve a higher system utilization 
while at the same time reducing the overall cost of operation. 

  
Figure 2.  System Performance Model 

 

Figure 3.   Workload prediction versus   

  actual workload 

3.3 Workload Forecast Model 

While modern elastic applications allow resource adaptive operation without compromising system 
stability, significant reconfiguration lead times demand to reconfigure the system in advance. In our 
recent research (Hedwig et al., 2010), we developed a Fourier Transformation based workload forecast 
model, which decomposes the workload process with the help of the Discrete Fourier Transformation 
into its single spectra components. In an end-user generated workload scenario this includes in 
particular predominantly seasonal factors of influence (e.g. time of day). By identifying and isolating 
these components, we can predict the near futures of the workload process with high accuracy. Due to 
space constraints we omit the detailed presentation of the forecast algorithm and refer to our previous 
publications. The forecast model supplies the decision model with the necessary information on future 
workload (Fig. 1: 4). 

Figure 3 depicts a sample prediction result of our forecast model, which comprises two forecast 
methodologies. The first is a near-future workload predictor, which predicts the near future workload 
with very high accuracy. This forecast mechanism is used to initiate configuration adaptation decisions 
as it does not only predict the expected workload level but also estimates the prediction accuracy. The 
second, long-term forecast mechanism approximates the behavior of the workload process for up to 
several days. Though this mechanism provides a good estimate of the behavior of the process it entails 
a large prediction error and is thus not applicable for the operation of the system. However the 
combination of both allows on the one hand the real-time management of the system and on the other 
hand to evaluate the long-term impact of different operation strategies. 



3.4 The Integrated Scaling Mechanism 

This mechanism is an artifact, which determines operation strategies according to SLA specifications 
that support multiple user classes, system performance, and the prediction of the workload during the 
SLA lifetime. It also allocates user requests according to the respective user classes and the 
operational strategy. The paramount goal of the decision model is to maximize profits of the SaaS 
provider by minimizing the cost of operation. Recall that the SaaS provider acquires server instances 
from an Infrastructure-as-a-Service (IaaS) provider on a pay-as-you-go basis, such that fewer required 
instances directly translate into a reduction of operational costs. Therefore, the decision mechanism 
essentially minimizes the number of hardware instances over the SLA lifetime conditional on all QoS 
requirements being fulfilled. The resulting operational strategy determines the configuration within 
each time period beforehand (Fig. 1: 6), such that the hardware necessary to comply with SLA goals is 
provided when the workload arrives. The decision model also supplies the integrated load balancer 
with information on which requests to forward to which server (Fig. 1: 5). 

3.5 Derivation of the Operational Strategy 

The optimization problem reduces to minimizing the total number of instances over all user classes 
and the entire SLA lifetime, since server capacity is purchased on a pay-as-you-go basis. min����…	
 � � ��� ��

�
� ���  with � � �1 � Δ … � � Δ� (1) 

We define �� as the hardware configuration operated in period � with � � �1 … ��, i.e. the SLA 

lifetime, for type �. We construct a set of possible types Ψ ! �", $� – a low priority type with a less 
demanding SLA and a high priority type with stricter SLOs. Furthermore, we assume that 
reconfiguring the hardware requires a predefined lead time Δ, such that decisions need to be made in 
advance. Hence, the configuration decision for � ! 1 needs to be made in� ! 1 � Δ. In this work we 
assume that the lead is one period. This problem is subject to several constraints. 
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The constraints represent the SLOs that need to be met during the SLA lifetime. For each type we set a 

maximum response time for incoming requests J� with JK 3  JL and a compliance goal *� with *K )  *L. Thus, if JK ! 300 OP and *K ! 95%, then 95% of all incoming high priority requests  
over the SLA lifetime need to have a response time of 300ms or less for the SLA to be fulfilled (For 
reasons of readability we will drop the type index where possible). We further define % as the 
compliance level in period �. The SLA compliance goal must then be less than or equal to the sum of 
the weighted compliances in each period of the SLA lifetime. Contrary to recent work where each 
period was weighted equally, they are now weighted by the workload of that period ( as a fraction of 
the total workload of the entire SLA lifespan, +. The compliance for all future periods starting with � T Δ necessary to fulfill * is then given by /��� (c1). 



The workload for � is given either by the actual workload  (U, if known, or else by the workload 
predicted by the forecasting model, 4B(C (c2). The compliance level in period �, %, is derived from 
the system performance matrix = (c3). = yields for every combination of server configuration � and 
workload interval @ the associated compliance Λ according to the exogenously provided system 
performance model (c4, and Fig. 1: 3). 

These components yield  /���, the minimum compliance for the remaining periods starting with � T Δ. 
The operation strategy is derived by an iterative algorithm that first sets all strategic variables (i.e. ���� … ��) to their maximum value and then successively scales the configurations down by 1 such 

that the reduction has a minimal impact on the expected future compliance ∑ %� &��' (�����, . This 

process is repeated until no configuration can be reduced without violating (c1). 

3.6 Modifications 

Assuming this predictive strategy, the simplest implementation would maintain separate sets of servers 
for each SLA class. In this case, the optimization problem in equation (1) would be equal to the sum of 
the minimization problems of each user class. However, this approach does not exploit possible 
capacity reserves on H-type servers that can be used for L-type requests. Consider the case where the 

decision mechanism derives some configuration for the H-type ����KW , … , ��KW (2). 
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This may result in a compliance level higher than necessary, but scaling down any of the 

configurations would cause an expected SLA violation by dropping below /���K . However, it may be 

possible to increase the workload in � T Δ by a certain amount X and still comply with the compliance 

requirement (3). /���KY  reflects the change that this additional workload has on this compliance 
requirement. ΛZ[�\��KW , (���K T X][(���K T X] T � %KB�KWC(K�

���,�. ) /���KY  (3) 
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X could then be moved from low to high priority, thereby possibly reducing the necessary hardware 

requirements for the low type (5), the change in the compliance goal again reflected in /���LY  (6). If 
perfect information about the workload in all periods would be available beforehand, this operation 
strategy would guarantee a total hardware demand equal to or less than the result provided by the 
strategy without this modification. However, due to the uncertainty of future workloads this does not 
necessary need to be the case. 

4 Case Study 

To further investigate the effects of the autonomic scaling mechanism illustrated in the previous 
section and evaluate the potential cost and resource savings for SaaS providers we implemented the 
management artifact in a test environment based on production driven workload traces and real system 
performance data. In the evaluation we systematically analyzed the effect of introducing the predictive 



operation strategy compared to a benchmark static operation strategy. Additionally, we empirically 
examined the effect of shifting workload from low to high priority by utilizing free capacities. 

The scenario is based on the workload process of Wikipedia Germany over 40 days. The workload 
trace was scaled appropriately to be applicable to our system performance matrix. This matrix models 
the expected compliance level for two different values of the response time J (representing the 
different SLAs) for any combination of 1 to 6 servers and 100 different workload levels. The target 
compliance for both user classes was set to 95%. 

  

Figure 4.  Sample Workload Traces 

The workload process of the high priority type was derived as 30% of the low type process plus a 
normal distributed noise component. Fig. 4(a) illustrates the traces for two days taken from the sample. 

The effect of shifting some workload intentionally from low to high priority to fully utilize high 
priority servers can be observed in Fig. 4(b) by comparing these traces to those in the previous 
illustration. It becomes obvious that the algorithm frequently shifts workload from low to high, 
resulting in much more irregular curves. It should be mentioned, however, that these irregularities do 
not affect the forecasting algorithm, since it considers the true type of every request. 

4.1 Strategies 

The benchmark case (BC) for the evaluation of our case study is a static operation strategy. This 
strategy attempts to satisfy the static compliance goal * in every period of the SLA lifetime. The peak 
values of the workload traces in our 40 day require 6 server instances for the low priority user class, 
and 5 for the high type. This results in 264 instance hours during the entire SLA lifetime of 24 hours. 

The predictive strategy (PS) uses 14 days of historic workload data to predict the workload until the 
end of the SLA lifetime based on the previously described workload forecast model. Server capacities 
are scaled accordingly to achieve the compliance goal * over the entire SLA lifetime, thereby allowing 
for violations of this goal in single periods. However, operation strategies for each type are 
independent and separately determined. 

The modified predictive strategy (MPS) extends PS by introducing the load shifting mechanism 
described in section 3.6. This allows for low priority requests to be processed on high priority servers 
if this shift is not predicted to violate the compliance goal. Especially during off-peak times it may 
occur that both, low and high priority requests, can be processed on a single high priority server, 
saving the additional instance that would be necessary if both user classes would be run separately. 
Operation strategies are interdependent and sequentially determined – first, the high priority strategy 
to estimate free capacities, after that the low priority strategy that incorporates these free capacities. 



4.2 Evaluation 

The results of our case study are summarized in Table 1. The benchmark has been chosen in such a 
way that both SLAs are always fulfilled; therefore, we have not calculated exact values for rows (1) to 
(4). The first important result is that SLA compliance is not violated by using the predictive strategies 
as the compliance level over the entire SLA lifetime never drops below 95%. This, however, is 
opposed by substantial reductions in the demand for instance hours, which is below 40% of the 
benchmark case for both predictive strategies. The effect of the modifications in the MPS becomes 
apparent, as well, as the required instance hours for the high priority type increase slightly. This effect 
is then more than offset by the demand reduction for the low type. 

 

 BC PS MPS (1) Average compliance H 
(2) Average compliance L 
(3) Minimum compliance H 
(4) Minimum compliance L 
(5) Average instance hours over 24h (in percent of 

BC) H 
(6) Average instance hours over 24h (in percent of 

BC) L 
(7) Average instance hours over 24h (in percent of 

BC) Total 
(8) Average total instance hours (in percent of PS) 
(9) Maximum total instance hours (in percent of 

PS) 
(10) Minimum total instance hours (in percent of PS) 

 

(1) ≥ 95% 95.71% 95.04% 

(2) ≥ 95% 95.45% 95.77% 

(3) ≥ 95% 95.10% 95.00% 

(4) ≥ 95% 95.03% 95.01% 

(5) 100% 29.48% 32.28% 

(6) 100% 46.02% 41.84% 

(7) 100% 38.50% 37.50% 

 PS MPS 

(8) 100% 97.40% 

(9) 100% 101.38% 

(10) 100% 92.04% 

Table 1. Summary of case study results 

 

Figure 5.  Server configurations with and without workload shift 

That this does not always have to result in a net decrease of resource demand can be seen in rows (8) 
to (10). In some cases MPS produces results that are slightly above those provided by PS. This effect 
is caused by forecast errors when workload is shifted from low to high priority. If the workload 
prediction for the high type underestimates the actual workload, compliance levels for the high type 
may drop tremendously and need to be balanced during later periods by providing a higher compliance 
level. This is associated with higher resource requirements, resulting in a net increase of instance 
hours demanded. This is further illustrated in figure 5, which depicts the server configurations 
corresponding to the 48 hours of workload traces in figure 4. The left diagram shows that the 
configurations for the high priority user class are sometimes larger with shift than without. Contrary to 
that the low priority user class often requires smaller configurations if MPS is applied. 



Table 1 shows that over all 40 SLAs MPS dominates PS by 2.60% on average and in some cases by up 
to 8%. Remember, that these reductions directly translate to an overall cost reduction for the SaaS 
provider. If we take the results yielded by our case study as representative and assume a cost of $2 per 
instance hour, the static operation strategy would incur annual costs of $2 a 264 a 365 ! $192,720. 
The assumption of $2 per instance hour is estimated on the base of the Amazon EC2 resource prices 
(aws.amazon.com) for an extra large instance plus additional charges for traffic and storage. These 
annual costs would be reduced to $74,197 if PS was implemented and by an additional $1927 if the 
modified predictive strategy was implemented. 

5 Conclusion 

In this paper we presented a novel SaaS management artifact for the sustainable and efficient 
operation of elastic information systems in cloud environments. Based on a system performance model 
and a workload forecast model our new management concept enables highly efficient operation 
modes. Our model extends the current state of the art by not only managing the system based on the 
QoS specifications of the SLA, but also according to economic parameters, such as the revenue, 
penalties, and the cost of cloud resources. The dynamic character of our model allows the flexible 
adaptation of performance goals at runtime, therefore mitigating the risk of performance violations. In 
summary our model bridges the gap between cloud technology and the economic value of a service. It 
provides a methodology to automatically manage service offers according to their value and is, 
therefore, particularly useful for services offered in different QoS classes with different price models. 

Conceptually, our model is an effort with the aim of integrating all aspects of a Service Level 
Agreements (e.g., monitoring metrics and economic parameters) with runtime monitoring data. To 
accommodate the heterogeneity of enterprise information systems, our model is designed modularly, 
enabling different configurations according to the properties of the system. Consequently, the overall 
performance and reliability depends in particular on the integrated components. During operation, our 
model systematically processes and analyzes all factors of influence such as the performance and 
workload data as well as the current SLA state. While basic controllers are conceptually able to 
provide any cost-effective operation mode, our model is able to adapt the operation strategy 
automatically based on the SLA specifications. Additionally, it is designed to simultaneously deal with 
different QoS classes. Thus, depending on the economic situation, it mitigates the risk of performance 
violations compared to rigorous cost-driven adaptive operation modes, while at the same time 
leveraging the potential of workload collocation. We showed that our model allows flexible system 
operation with a more than 60 percent lower cost of operation compared to static operation modes. 

In our future work, we plan to extend our work by supporting dynamic resource prices. More 
concretely, this enables service providers to operate the system in times with lower resource cost more 
risk-aware and take higher operational risks during peak time. Furthermore, we intend to extend our 
model to manage the resource requirements of multiple competitive systems. Based on the current 
SLA state of different services and their economic parameters, this extension should optimally allocate 
resources to the different services. For instance, if we have two services, each requiring 4 nodes, and 9 
nodes in total, the management model should automatically assign the residual node to the service 
with the higher economic risk. Furthermore, the revenue and penalty parameters have only been 
arbitrarily mentioned. In our future work, we intend to use the dynamic management concept to 
estimate the expected cost of operation and the risk of an SLA violation and thus determine the 
optimal and risk adjusted price and penalty combination for a service. 
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