
Association for Information Systems
AIS Electronic Library (AISeL)

BLED 2011 Proceedings BLED Proceedings

2011

Development of an Internet-Based Chronic
Disease Self-Management System
Ali Sunyaev
University of Cologne, Germany, sunyaev@wiso.uni-koeln.de

Dmitry Chornyi
Technische Universität München, Germany, chornyi@cs.tum.edu

Follow this and additional works at: http://aisel.aisnet.org/bled2011

This material is brought to you by the BLED Proceedings at AIS Electronic Library (AISeL). It has been accepted for inclusion in BLED 2011
Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

Recommended Citation
Sunyaev, Ali and Chornyi, Dmitry, "Development of an Internet-Based Chronic Disease Self-Management System" (2011). BLED
2011 Proceedings. 56.
http://aisel.aisnet.org/bled2011/56

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301355447?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fbled2011%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/bled2011?utm_source=aisel.aisnet.org%2Fbled2011%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/bled?utm_source=aisel.aisnet.org%2Fbled2011%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/bled2011?utm_source=aisel.aisnet.org%2Fbled2011%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/bled2011/56?utm_source=aisel.aisnet.org%2Fbled2011%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

185

24th Bled eConference
eFuture:

Creating Solutions for the Individual, Organisations and Society
June 12 - 15, 2011; Bled, Slovenia

Development of an Internet-Based Chronic Disease
Self-Management System

Ali Sunyaev

University of Cologne, Germany

sunyaev@wiso.uni-koeln.de

Dmitry Chornyi

Technische Universität München, Germany

chornyi@cs.tum.edu

Abstract

Patient self-management programs and information systems that support them can

improve the quality of healthcare. Flaws in user experience reduce the willingness of

patients to adopt such systems. To explore how emerging technology such as rich

Internet applications can be used to address the usability issues of personal health

information systems, we developed a health self-management application that is based

on an open-source framework. In this work we present the architecture of the system,

discuss the issues we faced and lessons we learned while developing it. This work can

help researchers and practitioners in evaluating approaches towards developing new

generation of personal health solutions. Furthermore, this work serves as a basis for

implementing a feature-rich system that can improve chronic disease self-management.

Keywords: distributed information systems, medical services, programming, user-

centered design

1 Introduction
Chronic medical conditions take a huge toll on the lives (Undem, 2009) of a growing

number of people (Heisler, 2006) and are a major contributor to the rising costs of

health care (Hoffman, Rice, & Sung, 1996; Kanaan, 2008). As public attitudes towards

roles in healthcare change, the evidence is growing that chronic patients need more

comprehensive treatment than they can receive at their doctor’s office (Holman &

Lorig, 2000). Instead of being passive recipients of care, patients recognize their

responsibility in managing their condition through day-to-day decisions about diet, self-

measurement, medications, and exercise. A new trend is emerging: people with chronic

conditions become their own principal caregivers, with health care professionals acting

as consultants supporting them in this role (Holman & Lorig, 2000). By encouraging

Ali Sunyaev, Dmitry Chornyi

186

patients to participate actively in determining the course of their diseases and ensuring

they have the skills, knowledge, and confidence to manage their health, patient self-

management programs can improve health outcomes (Bodenheimer, Lorig, & Holman,

2002), increase treatment satisfaction (Sawicki, 1999) and safety (Koutkias & Malousi,

2010), as well as reduce healthcare costs (Lahdensuo et al., 1998).

Some patient self-management programs rely on recording patient data over extended

periods of time, analyzing it, and encouraging patients to make daily healthcare

decisions based on this data (Von Korff et al., 1997). Information technology represents

a key tool in supporting such scenarios (Bu et al., 2007). Designers of information

systems for patient self-management face a new set of challenges.

Maintaining motivation to support long-term user commitment was shown to be a

problem that can be solved through increased personalization, interactivity, and social

support through data sharing (Mattila et al., 2010). In this regard, seamless integration

with the existing healthcare IT ecosystem is beneficial, as a system that can collaborate

with existing Personal Health Record (PHR) providers can take advantage of their

infrastructure and data to deliver additional value to the user. Finally, usability is

important, as it was shown that flaws in user experience reduce the willingness of

patients to adopt personal health information systems (Peters et al., 2009).

To explore how these issues can be addressed in practice, in this article we described the

development of a prototype of a distributed health self-management service that can

support patients with diabetes at tracking their blood glucose levels. Our design efforts

were guided by the goals of usability, security, extensibility, and interoperability with

third-party healthcare information systems.

The rest of this article is organized as follows. Section 2 discusses different types of

web clients in the context of their suitability for our project. Section 3 looks at the

system we developed. Section 4 presents the evaluation of the system, while Section 5

discusses the lessons learned in the course of the project. Section 6 summarizes our

work.

2 Web Clients

2.1 Traditional Web Applications

In the past few years, the World Wide Web has become the de-facto deployment

environment for new software systems (Mikkonen & Taivalsaari, 2008). Since the 90’s,

web-based applications have been used to accomplish an increasing range of tasks

including purchasing goods, bidding on auctions, booking tickets, trading stocks, and

since recently, managing personal health records (Sunyaev et al., 2010). Compared to

desktop applications, web applications are characterized by reduced deployment and

maintenance costs, simple architectures, intrinsic multiplatform availability, and broader

user appeal. As network and hardware capabilities expanded, web applications evolved

from simple web sites to robust multitier systems that are aimed at replacing complex

desktop applications. These developments amplified two serious shortcomings of

traditional web applications in the areas of software engineering and usability, as

illustrated in the following paragraphs.

Development of an Internet-Based Chronic Disease Self-Management System

187

The principle technologies that browsers use to display web pages—HTML markup

language, CSS style sheet language and JavaScript scripting language—do not

introduce a coherent foundation for real applications on the web. They rather reflect the

historical evolution of the web, where new features have been added on top of existing

features in a mostly ad hoc fashion (Mikkonen & Taivalsaari, 2008). Moreover, the

methods and tools that are currently used for web application development often

overlook the principles of sound software engineering, such as modularity, consistency,

simplicity, reusability, and portability (Mikkonen & Taivalsaari, 2008). As Mikkonen

and Taivalsaari put it, ―The use of the web as an application platform undermines the

work that has been done in the software engineering area in the past thirty years or so.‖

(Mikkonen & Taivalsaari, 2008)

Web applications have also undone decades in usability advances. The proliferation of

the Internet has created a void in terms of acceptable user experiences for desktop and

Internet applications (Farrell & Nezlek, 2007). For instance, the page-based display

update model of the web browser that requires a complete page refresh for every user

action is outright antiquated and is reminiscent of the I/O model of the IBM 3270 series

terminals from the 1970s (Mikkonen & Taivalsaari, 2008). So far, many users and

developers were willing to give up the user interface improvements brought by desktop

computers in return for immediate access to new data and applications (O'Rourke,

2004). However, as web applications are expanded to the new areas of use, with online

competition and user expectations rising, developers are increasingly pushed to bring

web experience closer to that of a desktop. To do this, several usability problems of web

applications need to be addressed (Preciado et al., 2005):

 Process problems: complex web applications often force a user to navigate

through a series of pages to complete a single task.

 Data Problems: web applications do not support interactive explorations of the

data. Usually, user has to search data through the use of input forms and then to

navigate the hypertext in order to be able to see the desired data.

 Configuration problems: many web applications require the configuration of a

product/system from multi-criteria choices, but are, in general, unable to present

a customized product/system to users in an intuitive way and in a single step.

 Feedback Problems: web applications do not allow a continued and ordered

interaction without page refreshments, so the user interaction with traditional

web pages is limited.

2.2 Rich Internet Applications

Rich Internet Applications (RIAs) can solve both the usability- and software

engineering-related problems of traditional web clients. In particular, RIAs can offer

sophisticated user interfaces with rich interaction possibilities that are close to those of

desktop applications. RIAs also rely on different development methods than traditional

web applications. In this regard, RIAs can be organized into three distinct types (Farrell

& Nezlek, 2007):

 Plugin-based: involve creating the application for a dedicated platform and then

deploying this application as an embedded solution or a standalone application

Ali Sunyaev, Dmitry Chornyi

188

launched from the browser. Examples are Adobe Flash/Adobe Flex/AIR,

Java/JavaFX and Microsoft Silverlight.

 Script-based: employ a combination of technologies to achieve their results,

typically including XHTML/HTML, CSS, DOM, and JavaScript. They are

characterized by revised use of JavaScript to load data asynchronously, modify

static content and interact with page elements. To simplify development, a

variety of frameworks exist, including Prototype, Dojo, Google Web Toolkit,

and Eclipse RAP.

 Browser-based: use browser facilities and a user interface language to define an

application. An example is XUL developed by the Mozilla Project.

We consider script-based RIAs to be particularly promising for shaping the future web

landscape, because unlike the other two categories, RIAs are not confined to any single

plugin or browser, have small footprint, and are fast to download and to launch (Noda &

Helwig, 2005). Furthermore, the functionality gap between script-based and other types

of RIAs can be expected to narrow as the HTML 5 standard is adopted and

implemented. Although script-based RIAs internally still use HTML, CSS, and

JavaScript to control the browser, manually writing markup and scripts is no longer the

main method of developing RIAs. Instead, developers use frameworks that allow

writing RIAs in conventional programming languages, thus bringing the web software

engineering process closer to that of the desktop.

2.3 Eclipse RAP

Eclipse Rich Ajax Platform (RAP)
1
 is a script-based RIA framework that brings the

Eclipse Rich Client Platform (RCP)
2
 to the web. It allows a developer to build a rich

web client almost just as if it were a regular desktop Java application. This includes

access to all Java APIs, UI design using the RWT widget toolkit, and access to the

standard services that Eclipse workbench offers (e.g., JFace viewers and data binding,

job scheduling). In fact, RCP and RAP frameworks are so similar that applications can

be developed from the same code base in the strategy of single-sourcing (Lange, 2008).

Also, Eclipse RAP can make use of OSGi inside the web container, enabling the full

usage of the Eclipse plugin model (Eclipse Foundation, 2006).

3 Design and Implementation

3.1 Architecture

In the course of this project we developed a health self-management system (Health

Management System or HMS) that is oriented towards patients with diabetes and is

based on the Eclipse RAP platform. The goals of the project were to test how RIAs can

be used to improve usability and acceptance of the system and to create a robust

architecture that can serve as a base for more complex and feature-rich systems. We

identified the following key usage scenarios that drove the discovery and the design of

the architecture:

1
 http://www.eclipse.org/rap/

2
 http://www.eclipse.org/home/categories/rcp.php

Development of an Internet-Based Chronic Disease Self-Management System

189

 Measurement management: the system can be used to keep track of blood

glucose test results that record the blood sugar levels. Measurements can be

created, viewed, grouped by various criteria.

 Interoperability: user should be able to import measurements from Microsoft

HealthVault and Google Health—the two major PHR platforms.

 Data visualization: user can view a graph of blood sugar levels over a period of

time or compare several periods.

All of the aforementioned functions are only to be available after the proper

authentication and authorization. Due to sensitivity of the medical data, it should be

stored and accessed on the per-user basis.

The derived design resulted in a multilayer architecture, as presented in the Figure 1.

The decision was made to use Java-based products in the overall architecture, as these

mapped to our existing experience and skills best.

H <<Hardware System>>

Database Server

H <<Hardware System>>

Web-Server

I <<Execution Unit>>

Apache Tomcat

I <<Depl. Unit>>

RAP Servlet Bridge

A <<Depl. Unit>>

RAP Application

H <<Hardware System>>

Client Workstation

I <<Execution Unit>>

Web Browser

I <<Depl. Unit>>

RAP JS Library

H <<Hardware System>>

Application Server

I <<Execution Unit>>

Glassfish 2.1

I <<Container>>

EJB Container

A <<Depl. Unit>>

Business Logic

I <<Depl. Unit>>

Apache log4j

I <<Depl. Unit>>

HealthVault Library

I <<Depl. Unit>>

Oracle Thin 10.2

I <<Depl. Unit>>

Google Health Library

I <<Depl. Unit>>

JAXB XML Binding

JDBC

RPC

HTTP

I <<Execution Unit>>

Oracle 10g

A <<Depl. Unit>>

HMS DB

Figure 1: Execution view of the architecture

On the back-end side the system is implemented using Enterprise JavaBeans 3 and Java

Persistence API ORM framework. These components are deployed to a Sun GlassFish

Application Server v2.1 that provides a number of services through the EJB container.

Particularly, the HMS takes advantage of the EJB 3 declarative security to restrict access

to certain functions only for registered users, as well as declarative transaction

management. User data is stored in the Oracle Database 10g. The database also serves

as an Authentication Provider through the Glassfish JDBCRealm (Chan, 2006). This

ensures end-to-end industry-strength system security, as no security code was required

to be written manually. Additionally, the security of the HMS can be strengthened by

enabling the transparent database encryption that is offered by the selected database

(Nanda, 2005). The system uses JAXB (Sun Microsystems, 2008) to process data

imported from external systems and Apache log4j (Gulcu, 2002) for the technical and

audit logging.

Ali Sunyaev, Dmitry Chornyi

190

The client is implemented as an Eclipse RAP application. It declares a single

perspective with two views (Clayberg & Rubel, 2008): History and Overview (Figure 2).

The History view displays blood glucose measurements, grouped by years and months

as a tree. The tree nodes are loaded lazily; they can be expanded, collapsed, and selected

arbitrarily. The tree is implemented as a JFace TreeViewer and has a context menu

accessible through a right mouse click with menu items depending on the current

selection. Using this menu and the toolbar menu that is defined for the view,

measurements can be created, updated, viewed, and deleted. The Overview view uses

the Annotated Time Line component from the Google Visualization API to draw graphs

of blood sugar levels according to the user selection. It can also be used to compare

these levels over several months or years. The global application menu provides access

to additional functions like account management and data import.

Figure 2: User interface

3.2 PHR Interoperability

Integration with third-party PHR providers is crucial to making a personal health

information system useful to a wide circle of people. It enables users to take advantage

of the existing PHR ecosystem instead of being locked-in to a single provider. To this

end, the HMS supports importing blood glucose measurements directly from a linked

Google Health or Microsoft HealthVault user account.

Both Microsoft and Google offer extensive support for developers, who are willing to

integrate with their PHR platforms. This includes protocol and development

documentation, tutorials, support forums, libraries for several programming languages

and even a full development SDK, a Device Development Kit, and an application

configuration program in the case of Microsoft (Sunyaev, Kaletsch, & Krcmar, 2010).

These resources were used to implement seamless integration with each of the presented

PHR platforms. At current project stage, only a one-way import function was

Development of an Internet-Based Chronic Disease Self-Management System

191

implemented; however, data export can also be added with little incremental effort as

soon as a data reconciliation strategy is established.

Experience proved the integration with both PHR platforms to be fairly similar, both in

development effort and in the inner mechanisms. In both cases, a third-party application

needs first to be registered with the PHR provider. In case of Google, this is done

through registering a domain and getting a manual approval from the Google Health

team. With Microsoft, registration is automated and is done by the means of generating

a certificate in the HealthVault Application Manager and uploading it to the

HealthVault Application Center.

After the application is approved, it can request a custom authentication URL to direct

the user to a special login page where he can authorize this application to access his

data. In case a user grants their permission for data access, the HMS acquires and stores

the authorization token for this user in the database. This token can then be used to sign

SOAP requests to the PHR platform that issued it. Both Microsoft HealthVault and

Google Health respond with a XML string that contains the requested data. The HMS

uses JAXB to construct Java objects from the received XML and present them to the

user. User then selects the measurements they want to be persisted to their account.

Because the HMS uses what HealthVault and Google Health call offline access (MSDN,

2009b) and access for installed applications (Google, 2009b) respectively, user does not

need to reauthorize the system during each session, but rather the token can be reused

for a an arbitrary number of requests until it is deleted.

4 Evaluation
The presented software architecture and the developed prototype are the main

constituents of the effort to explore the feasibility of rich Internet applications for

personal health information systems described in this article. At the present stage of the

project the produced artifacts lend themselves to formative evaluation. According to

(Scriven, 1991), formative evaluation is conducted during the development of a

program by the in-house staff with the intent to improve. The following two subsections

present a brief general architectural evaluation as well as a more detailed usability

evaluation of the prototype.

4.1 Architecture Evaluation

Software architecture evaluation encompasses assessing to which extent the architecture

fulfills the quality criteria that are derived from system requirements. Table 1

summarizes the relevant criteria for the HMS and their embodiment in the architecture

of the system:

Criterion Concretization in the Architecture

Interoperability Support for SOAP communication protocol, data exchange in

the ASTM Continuity of Care Record format.

Extensibility Flexibility through the Eclipse RAP plug-in model, loose

coupling in the multilayer architecture, clear separation of

concerns.

Ali Sunyaev, Dmitry Chornyi

192

Security Industry- strength authentication and authorization through the

EJB security, transport layer security through SSL, database

encryption.

Ubiquity Web application available on all PC platforms. Since

application logic APIs can be exposed as web services, thin

clients can be developed for mobile platforms with little effort.

Scalability Enterprise JavaBeans and the Oracle database are highly

scalable. In Eclipse RAP, clustering with load-balancing can

be used to scale horizontally.

Table 1: Architecture evaluation summary

4.2 Usability Evaluation

Two popular approaches to evaluating the usability of user interfaces are user testing

and usability inspection (Nielsen, 1994). While user testing is the most commonly

applied method, it requires recruiting a sufficient number of users to test all the versions

of an evolving design, which may be problematic given the temporal and budgetary

constraints. Informal methods like inspection on the other hand are more cost-effective

and are also capable to find problems overlooked by user testing. Hence, the two

methods can be complimentary (Nielsen, 1994) and can be used as building blocks for

constructing an evaluation method that is appropriate to a particular situation (see e.g.,

(Sunyaev, Hansen, & Krcmar, 2009)).

Cognitive walkthrough has been suggested as a usability inspection method that can be

used early in the development cycle and can be conducted by developers alone

(Wharton et al., 1994). Its essence is the description and evaluation of a hypothetical

process—a conjecture about the steps user takes when faced with certain problems and

situations, with the focus on the interplay between user's intentions on the one hand, and

cues and feedback provided by the interface on the other (Wharton, et al., 1994).

The cognitive walkthrough was selected as an appropriate evaluation method due to the

early project stage and the volatility of requirements. One of the goals of this scientific

project was to explore the general suitability of Eclipse RAP to data-intensive personal

health information systems, particularly in comparison to competing technology.

When viewed from the user's point of view, our experience with Eclipse RAP was

largely positive. This framework allows creating web applications with much richer and

smoother interactions than those possible with JavaServer Faces
3
. Particularly, Eclipse

RAP offers a basis to solve process problems, data problems, and feedback problems in

user interaction (Preciado, et al., 2005). For instance, the HMS RIA client allows

completing a multi-step processes—editing account details on several screens—without

refreshing the page. The developed solution also enables interactive data explorations,

where user can select a number of measurements in the history view, graph them, and

then pan and zoom to examine details without any interruptions. Finally, as illustrated in

Fig. 4, RAP can provide immediate feedback for data validation, or even more

sophisticated elements like progress bars and background tasks with notifications.

However, Eclipse RAP creates usability problems of its own. As Lange points out, users

associate appearance with certain behavior, and vice versa (Lange, 2008). Here, the

challenges are twofold. On the one hand, Eclipse RAP looks most like a desktop

3
http://java.sun.com/javaee/javaserverfaces/

Development of an Internet-Based Chronic Disease Self-Management System

193

application, so users may expect it to behave exactly like one. For instance they may

press Ctrl+S on their keyboard, expecting the document to be saved, but instead will be

presented with a browser ―Save As… ‖ dialog. On the other hand, while Eclipse RAP

runs in a browser, it does not behave like a web page, in a way users are accustomed to.

For instance, a RAP application cannot be scrolled in a browser, the ―Back‖ button

cannot be used, and text cannot always be selected, or images saved. Also, users do not

usually expect a web application to provide functions through a right-click menu, as it is

normally reserved to the Web browser.

There are several possible solutions to usability problems. Over time, users will

recognize rich Internet applications as a distinct type of web applications and will learn

to attach certain kind of expectations to them. This, along with the further evolution of

RIA technologies will narrow the expectation gap. User acceptance will also depend on

the ability of developers to acknowledge both the strong and weak sides of RIA

frameworks and use them only where they are appropriate.

5 Lessons Learned
Compared to technologies like JavaServer Pages and JavaServer Faces, Eclipse RAP

requires some additional configuration and integration work. In the case of HMS, it took

us some time to integrate the RAP client with the rest of the JavaEE architecture. This

included performing the programmatic login (Sun Microsystems, 2008) with the

application server, as well as manually resolving the remote Enterprise JavaBeans

through the Java Naming and Directory Interface. Also, the development environment,

including a RAP runtime needed to be properly set up prior to development. This,

however, is fairly simple in case the application is deployed into a Jetty Web server

running in Equinox, as it is suggested in (Lange, 2008).

Nevertheless, after the initial learning curve was overcome, our development experience

with RAP was positive and we managed to achieve high productivity. Particularly

beneficial was the possibility to leverage our existing Eclipse RCP skills to build web

clients with RAP. In the course of the project we did not write a single line of HTML,

CSS, or JavaScript—all development was done in Java, which allowed us to focus on a

sound object-oriented design. Some functions, like validations were significantly easier

to implement in Eclipse RAP, than it would have been with JavaServer Faces. The

platform proved to be stable which was quiet unexpected, given the relative youth of the

project and the non-trivial browser interoperability problems Eclipse RAP has to solve.

We tested our RIA client in major browsers and had no issues to report. Sometimes the

side-effects of the aforementioned advantages start to present unique development

challenges. For instance, script-based RIAs, and Eclipse RAP in particular, suffer from

what Lange calls ―No Web in Web‖ (Lange, 2008). In this case, the reliance on the

framework to handle sessions, generate markup code and scripts backfires when custom

behaviors need to be implemented for integration with third-party systems. RIAs often

try to work around this limitation using IFrames, complex JavaScript and custom

widgets. When developing the HMS, we experienced this deficiency as we implemented

integration with external PHR platforms. Both Microsoft HealthVault and Google

Health recommend an ―online‖ approach to data access, where the application is

reauthorized during each session, because it is more secure (Google, 2009a; MSDN,

2009a). This scenario requires redirecting the browser to the authorization page of the

PHR provider and then back to the third-party system—a behavior that cannot be easily

Ali Sunyaev, Dmitry Chornyi

194

implemented with RAP. For this reason, as described previously, the HMS uses other

type of access, where it stores an access token between sessions, but which is also less

secure.

For developers, it is important to recognize that RIAs are not always the best choice for

web clients and not to resolve to ―design-by-buzzword.‖ The main consideration in

choosing between an ordinary web application and a rich Internet application is whether

the system being developed is actually an application (Lange, 2008). Despite their

advantages with regards to user interaction, RIA frameworks are not an optimal choice

for creating regular web sites that primarily display static or dynamic content and need

to adhere to a very specific design (Lange, 2008). Because the HMS is clearly an

application, our choice to implement it as a RIA was justified.

6 Conclusion
This article established that patient self-management programs and the information

systems that support them can provide a number of benefits to the patients. Recognizing

that flaws in user experience can reduce the willingness of patients to adopt such

systems, and that traditional web applications often fall short of user expectations in

usability, rich Internet applications were explored as a possible alternative. It was

further verified that Eclipse RAP can serve as a basis for building a user-friendly health

self-management system that integrates with leading PHR platforms. While employing

Eclipse RAP in a real-world development project, we found out that it is a mature

platform that can be productively used by developers to build a RIA front-end for a Java

EE system. Moreover, applications that are based on Eclipse RAP do not suffer from

some of the architectural and usability drawbacks that traditional web applications have.

This article provided a technology-oriented view on the conducted project. In the next

project phase further input from medical professionals and patients will be gathered

with an aim to expand the functions of the system and subsequently to evaluate its

performance with regards to various stakeholders (e.g., as proposed by (Carson et al.,

1998)). As the next step in our research, we are conducting a real-world evaluation with

ten type 1 diabetes patients. This will result in detailed usage profiles for our disease

self-management application which can lead to refined patient workflow support and

new functions.

References

Bodenheimer, T., Lorig, K., & Holman, H. (2002). Patient Self-management of Chronic

Disease in Primary Care. Journal of the American Medical Association (JAMA),

288(19), 2469-2475.

Bu, D., Pan, E., Walker, J., Adler-Milstein, J., Kendrick, D., Hook, J. M., . . .

Middleton, B. (2007). Benefits of Information Technology–Enabled Diabetes

Management. Diabetes Care, 30(5), 1137-1142.

Carson, E. R., Cramp, D. G., Morgan, A., & Roudsari, A. V. (1998). Clinical Decision

Support, Systems Methodology, and Telemedicine: Their Role in the

Management of Chronic Disease. IEEE Transactions on Information

Technology in Biomedicine, 2(2), 80-88.

Chan, S. W. (2006). JDBCRealm in GlassFish Retrieved 01.11.2009, from

http://blogs.sun.com/swchan/entry/jdbcrealm_in_glassfish

Clayberg, E., & Rubel, D. (2008). Eclipse Plug-ins: Addison-Wesley Professional.

http://blogs.sun.com/swchan/entry/jdbcrealm_in_glassfish

Development of an Internet-Based Chronic Disease Self-Management System

195

Eclipse Foundation. (2006). Proposal for Rich AJAX Platform (RAP) Retrieved

01.11.2009, from http://www.eclipse.org/proposals/rap/

Farrell, J., & Nezlek, G. S. (2007). Rich Internet Applications The Next Stage of

Application Development. Paper presented at the International Conference on

Information Technology Interfaces, Cavtat.

Google. (2009a). Getting Started with Account Authorization, from

http://code.google.com/apis/accounts/docs/GettingStarted.html

Google. (2009b). OAuth for Installed Applications Retrieved 01.12.2009, from

http://code.google.com/apis/accounts/docs/OAuthForInstalledApps.html

Gulcu, C. (2002). The Complete Log4j Manual: The Reliable, Fast and Flexible

Logging Framework for Java (1 ed.): QOS.ch.

Heisler, M. (2006). Building Peer Support Programs to Manage Chronic Disease: Seven

Models for Success. Oakland, CA: California HealthCare Foundation.

Hoffman, C., Rice, D., & Sung, H. Y. (1996). Persons with chronic conditions. Their

prevalence and costs. Journal of the American Medical Association (JAMA),

276(18), 1473-1479.

Holman, H., & Lorig, K. (2000). Patients as partners in managing chronic disease.

Partnership is a prerequisite for effective and efficient health care. BMJ,

320(7234), 526-527.

Kanaan, S. B. (2008). Promoting Effective Self-Management Approaches to Improve

Chronic Disease Care: Lessons Learned. Oakland, CA: California HealthCare

Foundation.

Koutkias, V. G., & Malousi, A. (2010). A Personalized Framework for Medication

Treatment Management in Chronic Care. Information Technology in

Biomedicine, IEEE Transactions on 14(2), 464-472.

Lahdensuo, A., Haahtela, T., Herrala, J., Kava, T., Kiviranta, K., Kuusisto, P., . . .

Liljas, B. (1998). Randomised comparison of cost effectiveness of guided self

management and traditional treatment of asthma in Finland. BMJ, 316, 1138-

1139.

Lange, F. (2008). Eclipse Rich Ajax Platform: Bringing Rich Client to the Web: Apress.

Mattila, E., Korhonen, I., Salminen, J., Ahtinen, A., Koskinen, E., Sarela, A., . . .

Lappalainen, R. (2010). Empowering Citizens for Wellbeing and Chronic

Disease Management with Wellness Diary. Information Technology in

Biomedicine, IEEE Transactions on 14(2), 456-463.

Mikkonen, T., & Taivalsaari, A. (2008). Web Applications - Spaghetti Code for the 21st

Century. Paper presented at the Proceedings of the 2008 Sixth International

Conference on Software Engineering Research, Management and Application.

MSDN. (2009a). Choosing a HealthVault Application Architecture Retrieved

01.11.2009, from http://msdn.microsoft.com/en-us/healthvault/cc296309.aspx

MSDN. (2009b). Offline Access Retrieved 01.11.2009, from

http://msdn.microsoft.com/en-us/healthvault/bb871490.aspx

Nanda, A. (2005). Transparent Data Encryption. Oracle Magazine (September-

October).

Nielsen, J. (1994). Usability Inspection Methods. Paper presented at the Conference on

Human Factors in Computing Systems, Boston, Massachusetts, United States

Noda, T., & Helwig, S. (2005). Rich Internet Applications. Technical Comparison and

Case Studies of AJAX, Flash, and Java based RIA UW E-Business-Consortium

Opinion Papers.

http://www.eclipse.org/proposals/rap/
http://code.google.com/apis/accounts/docs/GettingStarted.html
http://code.google.com/apis/accounts/docs/OAuthForInstalledApps.html
http://msdn.microsoft.com/en-us/healthvault/cc296309.aspx
http://msdn.microsoft.com/en-us/healthvault/bb871490.aspx

Ali Sunyaev, Dmitry Chornyi

196

O'Rourke, C. (2004). A Look at Rich Internet Applications. Oracle

Magazine(July/August).

Peters, K., Niebling, M., Slimmer, C., Green, T., Webb, J. M., & Schumacher, R.

(2009). Usability Guidance for Improving the User Interface and Adoption of

Online Personal Health Records. Oakbrook Terrace, IL: User Centric, Inc.

Preciado, J. C., Linaje, M., Sanchez, F., & Comai, S. (2005). Necessity of

methodologies to model Rich Internet Applications. Paper presented at the

Seventh IEEE International Symposium on Web Site Evolution, 2005. (WSE

2005).

Sawicki, P. T. (1999). A Structured Teaching and Self-management Program for

Patients Receiving Oral Anticoagulation. A Randomized Controlled Trial.

Journal of the American Medical Association (JAMA), 281, 145-150.

Scriven, M. (1991). Evaluation Thesaurus (4 ed.): Sage Publications.

Sun Microsystems. (2008). The Java EE 5 Tutorial. For Sun Java System Application

Server 9.1. Santa Clara, CA SunMicrosystems, Inc.

Sunyaev, A., Chornyi, D., Mauro, C., & Krcmar, H. (2010). Evaluation Framework for

Personal Health Records: Microsoft HealthVault vs. Google Health. Paper

presented at the Proceedings of the Hawaii International Conference on System

Sciences (HICSS 43), Kauai, Hawaii.

Sunyaev, A., Hansen, M., & Krcmar, H. (2009). Method Engineering: A Formal

Description Information Systems Development - Towards a Service Provision

Society (pp. 645-654): Springer US.

Sunyaev, A., Kaletsch, A., & Krcmar, H. (2010). Comparative Evaluation of Google

Health API vs. Microsoft Healthvault API. Paper presented at the Proceedings of

the Third International Conference on Health Informatics, Valencia, Spain.

Undem, T. (2009). Gaps in the System: Californians Struggle with Caring for Their

Chronic Conditions. Washington, D.C: Lake Research Partners.

Von Korff, M., Gruman, J., Schaefer, J., Curry, S. J., & Wagner, E. H. (1997).

Collaborative Management of Chronic Illness. Annals of Internal Medicine,

127(12), 1097-1102.

Wharton, C., Rieman, J., Lewis, C., & Polson, P. (1994). The cognitive walkthrough

method: a practitioner's guide Usability inspection methods (pp. 105-140). New

York, NY, USA: John Wiley & Sons, Inc.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2011

	Development of an Internet-Based Chronic Disease Self-Management System
	Ali Sunyaev
	Dmitry Chornyi
	Recommended Citation

	22nd Bled eConference

