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Abstract 
In today’s social networks like Twitter and Facebook, each day millions of status 

updates provide a huge source of information on current sentiments of their users. 

However, still it is unclear how to structure problems in a way that they can be 

answered based on social networking activities. Facilitating an exploratory prototype, 

we tested the direct retrieval of user opinions during the FIFA World Cup 2010 in 

Twitter. Our findings based on an initial research framework suggest that using social 

networks can serve as an access point to collective intelligence. However, the 

experiment also showed weaknesses of the used approach. Therefore we discuss an 

updated research model based on our results which provides a foundation for future 

works. 

Keywords: social Network, microblogging, twitter, collective intelligence. 

 

1 Introduction 
Microblogging has shown to be a sustainable trend in information systems. While 

microblogging today is a standard usage pattern of the web’s largest social networks 

like Facebook and Twitter it has also seen a strong adoption of enterprise software 

vendors as well as researchers. Faster than previous web 2.0 applications, 

microblogging found its way into organisations with multiple “enterprise 

microblogging” vendors providing their services to companies. 

While the reason for this interest by organisations may be based on expected positive 

influence on factors like company culture and knowledge management (Riemer et al. 

2010) the strong focus of the research community on microblogging can be explained 

by the openness of this media. Few internet information systems have provided the 

possibility to dive into the social behaviour of so many people. Therefore, based on a 

number of broad studies, today we have a sound body of knowledge about these social 
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networks. We especially know that systems like Twitter and Facebook provide an 

access to the collective intelligence of their users. This insight already has been 

confirmed in studies about areas like political events (Shamma et al. 2009), natural 

disasters (Vieweg 2010) and marketing (Wagner & Strohmaier 2010).  

In this paper we are going to address this problem of gaining insights in form of 

thoughts and feelings from large social networks. Previous research has shown the 

possibility to get answers from these communities. However, we do not know how to 

ask the right questions yet. Our considerations combined with a practical experiment 

during FIFA World Cup 2010 aim at providing a framework on how problems can be 

structured in a way that status updates (i.e. microblogging) from social networks can 

answer it.  

The following chapter provides an overview on status updates in social networks 

including a special view on Twitter. Next, we describe the considerations which led to 

the initial assumptions. They provide the foundation for the exploratory experiment 

during FIFA World Cup 2010 which is discussed in chapter 4. Chapter 5 includes a 

critical review of the experiment and its results. Finally, the following chapter discusses 

implications and provides an updated research model before the conclusions end the 

paper.  

2 Collective Intelligence in Microblogging 
Microblogging has become an integral part of our understanding of social networks. 

Twitter and Facebook, which both use status updates as the kit between their users, 

belong to the largest social networks in the internet. Especially Twitter has created a 

standard for our understanding of status updates including its own vocabulary like the 

verb “tweet” for posting such an update. Other important functionalities of Twitter 

include the “retweet” (re-posting somebody else’s tweet), referring another user with the 

@-operator (“@<username>”) and the hashtags which mark certain meta-data inside the 

tweets (“Submitting a paper to the #bled conference.”). It is important to point out that 

most of these unique functionalities have been introduced by Twitter’s users before 

being implemented in the official user interface. This is a first proof for the dynamic and 

crowd intelligence which can be observed on this platform (Jeners & Mambrey 2010). 

Previous research has shown that Twitter usage differs very much from user to user 

(Java et al. 2007). This includes such factors like posting frequency, posting structure 

(usage of hashtags, formal or informal language) and content (e.g. emotions, 

information, links, questions). An important indicator for these variables is the user’s 

social network which drives adoption and usage (Barnes & Böhringer 2009). 

No matter what and how users tweet it mostly is about current topics. Shamma et al. 

(2009) showed that the debates during the US election campaigns had significant 

influence on the conversations on Twitter. Further, in analysing Twitter updates it has 

also been possible to get information on the debate’s topic. Therefore, Cheong & Lee 

(2010) call Twitter a “mirror” of current events of user’s interest. This opens several use 

cases for using this information. Especially marketing could benefit from the early and 

broad feedback of such a huge social network. According to a study by Jansen et al. 

(2009) up to 19 percent of tweets include brand names. Often the information about 

frequently used words is enough to create an accurate overview on currently important 

topics (Cheong & Lee 2009). Combined with location-based information (e.g. GPS 
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coordinates) this created new possibilities for information retrieval e.g. in case of 

emergency events or natural disasters (Vieweg et al. 2010). 

A common problem for the analysing of tweets is its character as short text snippets 

with often informal language and abbreviations (see for example the discussion by Pak 

& Paroubek 2010 as well as Pandey & Iyer 2009). Another critical problem which has 

to be kept in mind for all analyses of social networks is its reliability. Authenticity of 

users is a serious problem which cannot be guaranteed.  

3 Assumptions 
The previous chapter discussed recent research which has shown the general 

applicability of microblogging analyses. Based on this insight, our basic research 

question is: What kind of question can be answered in analysing microblogging 

networks? Most known examples base on word analysis, mostly on simply counting the 

most used words or trending topics in a certain time frame. Our interest is in more 

complex questions like “Who will win the football game tonight?” Our initial approach 

to answer such a question would be finding microblogging postings which address this 

question (e.g. tonight’s game) and interpret them with a problem-specific routine (e.g. 

which is trained for finding score predictions). This leads us to the following working 

assumptions: 

A1: Due to the mass of microblogging postings, there will be a significant number of 

postings which include the answer for even special questions. 

A2: Leveraging a problem-specific routine can find the answer to questions from 

tweets. 

We used an exploratory experiment to test these working assumptions. The experiment 

and its results are described in the next chapters. 

4 Exploratory Experiment 

4.1 Overview 

The expectations on the project “Ballgezwitscher” (German for “ball tweets”) are based 

on the already described insight that large public events like the FIFA World Cup lead 

to a particularly strong Twitter activity. The idea behind the project was to filter tweets 

with game predictions for every single game of the world cup, to analyse and aggregate 

them and present them on the project page. This data and the insights drawn from the 

experiment itself should provide a sound foundation for assessing the assumptions. 

On the corresponding webpage the number of received tweets, the five most frequently 

predicted results and the average score are posted. Additionally, a pie chart indicates the 

chances of victory and draw of the teams. After the game has been finished, the view 

will be complemented next to the result with a qualitative indication of accuracy 

(correct result, correct trend, wrong prediction). Figure 1 illustrates this using the 

example of the game between Argentina and Germany. As an additional service in the 

world cup’s group stage the mathematically rounded average score was used to set up 

the several groups’ current table based on the Twitter prognosis and to compare it with 

the table based on the actual results. 
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Figure 1: Presentation of the scores 

 

The user’s adoption of twitter for discussing the world cup was enormous. The 

increased use of Twitter even led to periodic breakdowns of the service. In retrospect 

published statistics by Twitter confirm this assumption and show that the FIFA World 

Cup is the event with the highest Twitter activity since the start of the service. Here, 

especially the final match is much emphasized. During the final match between two and 

three thousand tweets per second were recorded. People from 172 countries in 27 

different languages tweeted about the match (Graves 2010). 

4.2 Prototype’s Concept 

As technical foundation for retrieving the data the Twitter Search API was used for this 

project. The search queries are triggered by various hashtags and the search results are 

evaluated by game predictions. In addition to #wm2010 and similar spellings the tweets 

are filtered, stored in a database and analysed (for a list of used Tweets see Table 1). 

The presentation of the aggregated data is realized by a web application with PHP and 

Java charts (see Figure 2). Beneath one of these hashtags two team names of the world 

cup participating teams (i.a. Argentina), the official abbreviations (here: ARG) or a 

"team nickname" (here: Gauchos) are needed in the Tweet as well as a result in form of 

two single-digit numbers separated by a special sign (e.g. "1:2"). Once the game kicks 

off, the filtering of other forecasts is locked, so the result is not affected by ongoing live 

events. 
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Figure 2: Page formats 

4.3 Experiment 

Ballgezwitscher was planned as an exploratory experiment, therefore in course of this 

project adaptations based on current insights have been allowed and welcome. 

Accordingly, an iterative process model was applied. After each round of the group 

stage, the obtained results have been evaluated and adjustments were made. This 

particularly affected the selection of the hashtags used for searching and the algorithm 

for finding game tips. 

At the start of the project, a simple algorithm was used, which arranged a matching of 

predefined strings by Regular Expressions (regexps). A Regular Expression is a kind of 

language defining notation which provides a concise and flexible means for matching 

strings of text. It serves the description of sets and subsets of strings with the help of 

certain syntactic rules. Regexps thus represent a filter criteria for texts, where the 

respective regular expression is adapted with the text in form of a pattern (Hopcroft 

1994). In using these regexps, the terms to filter the Twitter messages have been 

defined. 

The used hashtags have been extended in particular to mention Twitter world cup 

tipping games. These tipping games called on to give tips via Twitter by using their 

hashtag and thereby participate in a special contest or lottery. Because of the structured 

form of these Tweets, the evaluation was easy to handle. The supported hashtags of 

these prediction games were #cuptweets (http://www.cuptweets.com/), #twitterwm 

(http://www.twitterwm.de/) and #sporzawktweets (http://www.sporza.be) and in 

addition game predictions in form of a reply @WBetcha (http://wbetcha.com/). 

Furthermore, over the group phase in addition to the team names in German, English, 

French and Spanish team names have been included, which also took account of 
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linguistic features (e.g. the term "1/3" as a common equivalent for "1:3" in the Latin 

American region). 

5 Results 

5.1 Quality of retrieved opinions 

During the worldcup we retrieved 24,512 tweets which our algorithm classified to 

contain tips. The most frequented game had 794 tweets (Netherlands vs. Brasilia), while 

the least detected number of tweets was 168 (Netherlands vs. Slovakia). The mean value 

was 383 tweets per game, which provided a good foundation for the forecast. As 

described by the previous chapter, we only retrieved tweets which were tagged with 

certain worldcup-related tags. The following table provides an overview on the 

frequencies of the used tags (note: as more than one hashtag may be used in a tweet the 

sum is over 100%): 

Table 1: Hashtag frequency 

 

  Number of tweets 

 Hashtag nominal relative 

all 24.513 100% 

containing #wm10 7 0,03% 

containing #wc10 15 0,06% 

containing #bg10 (in reference to the experiment’s 
German title „Ballgezwitscher“) 

114 0,47% 

containing #wm2010 177 0,72% 

containing @WBetcha 220 0,90% 

containing #wc2010 429 1,76% 

containing #sporzawktweets 2.052 8,37% 

containing #twitterwm 7.917 32,30% 

containing #cuptweets 9.373 38,24% 

containing #worldcup 10.641 43,41% 
 

The correctness of our recognition algorithm has been checked manually in two groups. 

The tips of the group stage (18,823) were analysed based on a random sample of 500 

tweets. Tips of the world cup’s knockout stage (5,690) were analysed completely. We 

already mentioned the big share of tipping games in our sample set. Together they were 

responsible for nearly 80% of our tips. This had great influence on the general 

correctness of tip recognition as tipping game tweets were much more structured and 

have been written with computer-based interpretation in mind. Not surprisingly, the 

correctness of the algorithm was 100% for both groups for the tipping game tweets. The 

analysis of the free-form tweets showed a nonetheless good result of 15% (group stage) 

respectively 18% (knockout stage) falsely classified tips. 

Finally, the degree of truth of our prognoses showed that football is a very unpredictable 

sport and Twitter’s users cannot see in the future better than others. At least 48% of our 

tips had the right tendency (win/loose/standoff) which is above normal distribution. The 

correct result including the right number of goals for each team was found in 8% of the 
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tweets. These results are supported by the numbers of the similar project “Wisdom-of-

Fans” (46%, 7%) which have been reported in Wisdom of Fans (2010). 

5.2 Typical problems 

In general there were three types of classification problems in the free-form tweet. (1) 

Mostly, a tip was connected to an incorrect game. (2) A game result has been classified 

to the correct game but the result was not meant to be a prediction. (3) The result was 

not recognized correctly (e.g. shifted goals). 

The main reasons for these problems were: 

 Several facts in one tweet:  
(1) “chutes com ajuda do polvo: #esp 2x0 #ned , #ger 3x1 #uru #worldcup 

(Uruguai, cope o polvo :P); “ (2) „All #worldcup games so far are really low 

scoring 0-0 , 1-0. #Germany will change that soon enough against #Australia.  

Poor Soccerroos :(“ 

 Historical tweets (wrong semantic interpretation): „Denmark winning on 

penalties after a 2-2 draw in the 1992 Semifinals and the Netherlands winning 3-

0 in the 2000 Group Stage. #WorldCup”  

 Review of a current game and preview of the next (wrong semantic 

interpretation): (1) „Full-time #Ned 2-0 #Den. Good start from the Dutch - 

they look like they might be up for this #worldcup. Next up #Jap v #Cam!”; (2) 

„Ghana beats Serbia 1-0 on late penalty shot. Germany-Australia coming up 

http://bit.ly/avIZ0J #pittsburgh #worldcup” 

 Tweet’s structure makes it difficult to parse (here: Holland – Denmark – 

Netherlands): „Holland vs Denmark, My predictions 3-0 in favor of The 

Netherlands #WC2010” 

 Meta-Tweets of aggregators: „Over 2200 predictions in for the #ger v #aus 

game and just less then 2 hours to kick off. Most predicted scoreline 2-0 ger 

#worldcup” 

 Retweets (from bots): (1) „RT @zwyback: achtelfinale - jetzt gehts gleich los 

@ZDFsport  #esp 0:0 #por #worldcup #-wm2010” (durch wmbot); (2) „3:0 RT 

@rk030 RT @websenat Mein Tipp #eng2 #usa0 #twitterwm ~ Mein Tipp: 

#eng3 #usa1” 

5.3 Assessment of the assumptions 

Basically, the experiment supported both assumptions. It was possible to retrieve a clear 

tendency of game results from the Twittersphere.  There have been several hundreds of 

postings containing such a prediction, which supports A1. Our pretty simple problem-

specific algorithm was able to interpret most tweets correctly, which supports A2. 

However, there are some limitations. First, we chose a very popular topic for the 

experiment. The world cup generated a huge amount of tweets. That being said, a few 

hundred postings are a quite modest result. For other problems like stock market 

prediction our research design could lead to a very low number of relevant tweets. 

Therefore support of A1 can be seen to be very weak.  

The same limitation applies to A2 as football results are a very easy algorithmic 

problem. Our experiment does not test the assumptions for more complex problems 

which require a rich textual understanding of the Tweets. As our experiment showed 
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nonetheless problems in classifying Tweets (see 5.2) the applicability of algorithms to 

more complex tasks stills needs testing. 

6 Discussion 

6.1 Experiment’s setting 

While the explanatory experiment gave us the opportunity to learn about collective 

intelligence in Twitter, it has some limitations. First, it did not include all available 

postings from Twitter (see 4.2). Retrieving and analysing the complete public timeline 

of Twitter would have been a huge technical effort. Planning the experiment we 

therefore decided to select only tweets with certain hashtags (see table 1) as (1) 

implementation was very easy using Twitter’s search API and (2) in filtering for world 

cup-related tweets we would have been able to avoid similar tweets containing game 

predictions of other sport events.  

However, this conceptual decision brings a problem as it could have filtered the number 

of tweets too much. Boyd et al. (2010) found that only 5% of tweets contain hashtags. 

Given a normal distribution the experiment therefore excluded 95% of world cup-

related postings. People not using hashtags could write their tweets in different ways 

then users including hashtags. Further, focusing on hashtags leads to a high value of 

structured tweets from bots or in our case tipping games. While this is an integral part of 

the Twittersphere and therefore a valuable input for our analysis, it could have distorted 

the results. 

6.2 Assessing collective intelligence in Twitter 

As we discussed in chapter 5.3 the general assessment of our assumptions is positive. 

However, the encountered problems and especially the low number of usable tweets 

motivated us to rethink the working assumptions and to formulate an updated research 

model. The assumptions were built on the idea of directly asking Twitter “What will 

happen in future?”, e.g. “What will be the result of the next match?” Recently, several 

researchers found that Twitter is especially used to discuss on current events rather than 

future ones. Reinhardt et al. (2009) showed that for conference tweets, Shamma et al. 

(2009) for political debates and Vieweg et al. (2010) for natural hazards. This suggests 

that tweets are reactive in that they occur shortly after or while something happened 

(Shamma et al. 2009). This is supported by a study from Oulasvirta et al. (2009) who 

state that Twitter especially contains postings on „current activities and experiences“. 

The experiences of the Ballgezwitscher experiment support this insight. We found much 

more tweets during the first minutes of a game than before its start. However, due to our 

initial research model they have not been counted. 

These results suggests asking Twitter “What is happening now?” instead of “What will 

happen in future?. To predict future events Twitter’s collective intelligence therefore 

has to be assessed using known causalities. In asking “Who will win the game?” such a 

possible causality would be “The team with the most tweets will win”. In counting such 

tweets before and during the game it would be possible to generate a prediction based 

on much more tweets. 
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Figure 3: Insights of the project 

6.3 Use cases 

Twitter offers access to a large amount of recent statements by its users. The analysis of 

this information is interesting for a number of use cases. 

First, assessing Twitter’s collective intelligence is an important use case for marketing. 

Possible scenarios are the evaluation of product announcements or general customer 

sentiments. Besides finding forecasts especially actual situations of concerns such as 

brand popularity and target group identification are typical use cases. Apart from these 

examples, Twitter is a valuable tool to avoid risks because of its speed. In the last time 

many negative corporate news found their starting point in Twitter, whereupon due to 

many re-tweets traditional media could become aware of a grievance. The permanent 

monitoring and evaluation of the company's own published Tweets therefore seem to be 

a good idea especially for companies in the retail business. 

The collective intelligence of Twitter users combined with the often existing location 

based information could be helpful in many other cases. One use case is the possibility 

to conclude stock share values volatility based on the discussions on Twitter. Following 

this example, the early detection of trends is conceivable in various fields, for example, 

disaster detection and the tracking of flu epidemics (Hughes & Palen 2009). 

 

A special use case applies in internal microblogging (enterprise microblogging). If an 

organization has an internal microblogging system, many of the previously discussed 

use cases are transferable. For example, the supplier “Socialcast” (http://socialcast.com) 

provides analysis on the key participants of the platform, trends in various departments 

and additional services labelled “Social Business Intelligence”. Early recognition of 
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project risks or forecasts of cultural developments (e.g. on the basis of the "moods" in 

the micro-blogging system) can be adjusted applications in this context. 

7 Conclusions 
How can we assess Twitter’s collective intelligence? This was the initial research 

question of this paper. Based on a simple and naive set of assumptions we tested the 

question in the Ballgezwitscher experiment. The experiment itself can be considered to 

be a success with nearly 25.000 analysed tweets and a high correctness in the tweet 

analyses. However, based on our insights we redeveloped the working assumptions and 

provided a more complex research model for assessing Twitter’s collective intelligence. 

This model provides a foundation for future projects both in research and practise.  
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