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Abstract 
Enterprises are facing a challenging dilemma. In order to be able to accommodate peak loads on their 
IT systems, they must maintain large computing clusters, which lie idle most of the time. At the same 
time, IT departments are under constant pressure to cut down on hard- and software expenses. Grid 
technology offers a promising way out of this dilemma by allowing the dynamic sharing both within 
enterprises as well as across organizational boundaries. This sharing approach, however, requires 
proper economic incentives. This paper is concerned with the determination of dynamic market-based 
prices. Due to their simplicity, so-called pay-as-bid mechanisms have become popular. This paper is 
novel as we provide an in-depth analysis of two such pay-as-bid mechanisms – Proportional Share 
and a discriminatory pay-as-bid mechanism – for the case of three users, thus extending previous 
work by Sanghavi and Hajek (2004) and Stößer et al. (2008). This analysis is important as we show 
that the nice results for two users cannot be retained once three or more users are present. Even 
worse, we show that these results can even be reversed if we move to games with more than two 
players. 

Keywords: Pay-as-bid Mechanisms, Game-theoretic Analysis, Distributed Resource Allocation. 



1 INTRODUCTION 

Increasingly complex applications require massive amounts of processing power while exhibiting 
fluctuating utilization patterns. One example for such applications are CAx applications such as 
Computer Aided Engineering and Computer Aided Design or so-called “digital factory applications”, 
e.g. for production planning. As a result, companies pile up resources to accommodate few peak loads 
on their systems. In a meta-study, Carr (2005) reports that data centers are only using between 10-35% 
of their available processing power, leading to tremendous inefficiencies. This development is 
exacerbated by intra-organizational boundaries. Even business units and departments within one 
enterprise are unwilling to share idle resources with other units. 

Grid technology offers a promising way out of this dilemma. Using virtualization technologies, 
physical resources can be dynamically assigned to applications according to these applications’ 
priority. Thus, if a unit experiences a peak load on its system, it can accommodate this peak load on 
remote resources, and analogously, in case an organizational unit temporarily has idle resources, it can 
host applications of other units. These applications can be forced out and moved to other resources as 
soon as the unit falls short of resources itself. In essence, Grid technology yields more efficient 
resource utilization as the system load is distributed across all organizational units. This sharing 
approach, however, requires proper economic incentives. Organizational units will only contribute 
their resources to the Grid if they get something in return. At the same time, units need to charge 
resource usage to avoid excessive usage. Both issues can be addressed by introducing dynamic prices. 
This paper is concerned with the determination of dynamic prices that are simple enough to be useful 
in Grids. Due to their simplicity, so-called pay-as-bid mechanisms have become popular – the user 
simply pays what he bid, and receives a share of the resource according to some specific allocation 
rule which relates this user’s bid to the other users’ bids.  

This paper is novel as we provide an in-depth analysis of two such pay-as-bid mechanisms – 
Proportional Share and a discriminatory pay-as-bid mechanism – for the case of three users, thus 
extending previous work by Sanghavi and Hajek (2004) and Stößer et al. (2008). This analysis is 
important as we show that the nice results for two users cannot be retained once three or more users 
are present. Even worse, we show that these results can even be reversed if we move to games with 
more than two players. 

This paper is structured as follows. In Section 2, we introduce a sample scenario which illustrates the 
business case for Grids. Section 3 discusses previous work on Grid market mechanisms. At the core of 
this paper, Section 4 provides a game-theoretic analysis of Proportional Share and the discriminatory 
pay-as-bid mechanism introduced by Sanghavi and Hajek (2004). In Section 5, we discuss our analytic 
results. Subsequently, Section 6 concludes the paper and points to future research directions. 

2 MOTIVATIONAL SCENARIO 

In the following, we showcase a scenario where market mechanisms create value in real business 
cases. The scenario is TXTDemand, an application by TXT e-solutions1 for forecasting demand and 
replenishment within a supply chain. The application combines CPU intense forecasting algorithms as 
well as algorithms for the analysis of historic data and current sales data with interactive revision 
tools. In a typical business scenario, a customer is running the application daily for defining demand 
and replenishment strategies. During the night batches process the previous days’ sales data to define 
initial forecast plans. For example, the replenishment module generates optimized replenishment 
plans, taking historic inventory levels, future demand forecasts and the type of the market into 

                                              
1 http://www.txtgroup.com/ 



consideration. The plans are analyzed and refined by the user at the other day in the interactive mode. 
The rationale for user interaction in the planning process is that users have more in-depth knowledge 
about the context. For example, if a certain fair takes place for the first time, the replenishment plan 
generated from historical data are most likely ignoring this. The user can, hence, significantly improve 
the replenishment plan by conducting as-if scenario analyses, refining the automatically produced 
plan. 

The calculations of the replenishment module are particularly resource demanding when used in real 
business due to the very large amounts of data surpassing several hundred millions of entries. Grid 
computing can help by distributing the calculations on several machines. By pooling resources of 
several providers, the costs for IT infrastructure can be significantly reduced. Since the calculations 
are so demanding, the total cost of ownership for one company alone would make the use of the 
forecasting module unprofitable. It is the pooling of resources in a Grid that amortizes the use of the 
replenishment module. As the pure sharing of resources without compensation is hampered by free-
riding behavior, market mechanisms seem to work well, establishing the right incentives for the 
participants. 

The market mechanisms need to cope with the peculiarities of the domain. We identify two main 
requirements for the market mechanism. In case of interactive applications, the requests for Grid 
resources depend on daily human interactions. Thus there can be unpredictable peaks of requests, 
occurring at any second. This requires from the mechanism to attain an allocation of resources in near 
real-time. Furthermore, from a technical viewpoint, avoiding starvation is an important objective. In 
scheduling theory, starvation denotes the fact that low-priority tasks are prevented from doing any 
progress because all resources are assigned to other higher-value tasks. Combining the economic and 
the technical viewpoint, it can be desirable to give “better” service to high-value applications but to 
also give at least “some” service to low-value applications. 

3 RELATED WORK 

A bulk of mechanisms has been proposed for Grid resource allocation (see Wolski et al. (2001) and 
Neumann et al. (2008) for surveys). In AuYoung et al. (2004), Bapna et al. (2006) and Schnizler et al. 
(2006), the scheduling problem in Grids is formalized as a combinatorial allocation problem. Bapna et 
al. (2006) and Stößer et al. (2007) present greedy heuristics to mitigate the resulting computational 
complexity. While these mechanisms allow for dependencies between multiple Grid resources (e.g. 
CPU and memory), they are based on strong informational assumptions, such as complete knowledge 
about the time constraints and resource requirements of applications. However, in practice the users 
themselves will only have fuzzy knowledge about this information, as can be seen when comparing 
the user estimates and actual runtimes and resource requirements in workload traces from 
supercomputers. 

A fundamentally different approach is taken by mechanisms that continuously assign resource shares 
to applications. These shares are continuously updated as new user requests are submitted or tasks are 
completed, thus allowing for real-time allocations. With an allocation rule purely based on economic 
reasoning (e.g. the prominent Vickrey auction), all available resources would be given to one single 
user, with the highest valuation. However, this will lead to the starvation of other tasks with lower 
value. Consequently, considering the requirements of our scenario, in this work we will consider two 
different allocation mechanisms: Proportional Share (Chun and Culler 2000, Lai et al. 2004) and the 
discriminatory pay-as-bid mechanism by Sanghavi and Hajek (2004). 

Proportional Share is well understood and has been implemented by Hewlett Packard in its Tycoon 
system (Lai et al.). If user ݅ reports a valuation of ݓ௜, he will receive a fraction of the resources 
amounting to ௪೔

∑ ௪ೕ
೙
ೕసభ

.  



The discriminatory pay-as-bid mechanism has been proposed by Sanghavi and Hajek (2004) for 
bandwidth allocation in computer networks. It works slightly different than Proportional Share, giving 
a discount to the high-value user, thus resulting in a lower unit price than the low-value users. The idea 
is to encourage the high-value user to bid close(r) to his true valuation rather than to shade down his 
bid. We will denote the allocated share for each user ݅ of ݊ users for Proportional Share with ߬௜

௣௦ ؔ
௪೔

∑ ௪ೕ
೙
ೕసభ

 and the Sanghavi-Hajek allocation rule with ߬௜
௦௛ ؔ ௪೔

௪೘ೌೣ
׬ ∏ ቀ1 െ ݏ ௪ೕ

௪೘ೌೣ
ቁ ௝ஷ௜ݏ݀ 

ଵ
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Microsystems is considering to integrate the latter mechanism into their Sun Grid Engine (Stößer et al. 
2008). 

4 THE MODEL 

One of the main goals of this work is to compare the performance of the two given allocation 
mechanisms and thus to conclude which of these may be more appropriate for use in typical Grid 
scenarios. Clearly our work is abstract and can be applied to other domains as well though in this work 
we restrict our attention to Grids as the mechanisms can be applied there reasonably. 

In general the performance of mechanisms can be measured analytically, through simulations or with 
laboratory experiments. In this work though we will focus on analytical evaluation since it is well 
known that a common metric for measuring a mechanisms performance analytically is given by 
computing the performance ratio in its Nash equilibrium. Therefore we outline the setting used in our 
work and give a short introduction into Nash equilibria followed by the main analysis of the Nash 
equilibria of the two allocation mechanisms, Proportional Share and Sanghavi-Hajek. We will analyze 
under which conditions (multiple or unique) Nash equilibria exist for the case of more than two users. 
It is well known that the results from 2-player games cannot always be generalized to n-player games. 
Since this applies to our analysis as well, we will consider three players first, showing the tremendous 
challenges and difficulties as well as the rigorous conditions one encounters even for the simple case 
of one additional player. 

4.1 The Setting 

We assume there is an auction with one seller who offers a perfectly divisible good (i.e. there are no 
constraints in how many parts the good may be split up nor the size of these parts) and ݊ buyers, each 
one offering a bid ݓ௜ and receiving a share through the utilized allocation mechanism ߬. Let ݓ ൌ
ሺݓଵ, … , ௜ݓ ௡ሻ be the vector of bids given by the users. We also assumeݓ ൒ 0 for ݅ ൌ 1, … , ݊ with at 
least one ݓ௜ ൐ 0, since a positive ݓ௜ represents the payment made by user ݅. At this point we may 
already say, that we can exclude any Nash equilibria, where negative bids ݓ௜ are submitted, since this 
would mean that user ݅ would receive a payment by the seller for his allocated part of the good and 
thus would turn into a seller, also leading to a contradiction to the assumption of a given non-negative 
payment vector. The vector ݔ ൌ ሺݔଵ, … ௜ݔ ,௡ሻݔ א Թା

଴ , ∑ ௜ݔ ൌ 1௡
௜ୀଵ , denotes the actual allocation, where 

the shares ݔ௜ for each user are allocated according to the allocation mechanism ߬௦௛ for the Sanghavi-
Hajek mechanism and ߬௣௦ for Proportional Share respectively, where each mechanism depends on the 
payment vector ݓ. Furthermore we assume in line with auction theory (Mas-Colell et al. 1995) that 
each user has a quasi-linear utility function ݑ௜ሺݔሻ ൌ ௜ݔ௜ݒ െ ܿሺݔ௜ሻ, with ݒ௜ א Թା denoting the valuation 
of user ݅ for the good and ܿሺݔ௜ሻ ൌ  ,௜ denotes user ݅’s unit price݌ ௜ the linear price function, whereݔ௜݌
i.e. the price user ݅ would have to pay if she were awarded with the whole resources. As was shown in 
Johari and Tsitsiklis (2004), when evaluation the worst-case performance ratio in our setting, it is 
enough to look at linear utility functions. 

Additionally we use in our setting a so-called pay-as-bid pricing scheme, so that we have ܿሺݔ௜ሻ ൌ
௜ݔ௜݌ ൌ ݅ ,௜ݓ ൌ 1, … , ݊. Thus we can reformulate the utility functions to ݑ௜ሺݓሻ ൌ ሻݓ௜߬௜ሺݒ െ  .௜ݓ



4.2 Nash Equilibria 

Since the main goal of this section is to analyze the possible Nash equilibria for the several given 
allocation mechanisms for two, three and ݊ users, the concept and the idea behind this equilibrium 
needs to be clear. One of the main goals of mechanism design is to construct these mechanisms in a 
way that they are incentive compatible, i.e. each user bids his true valuation of the good and has no 
advantage of reporting false valuations, because it will not lead to any improvement for him. In this 
situation the concept of Nash equilibria is widely used (cf. Sanghavi and Hajek 2004). 

Definition 1. (Nash equilibrium) A bid vector ݓோ is a Nash equilibrium, if ݑ௜ሺݓ௜
ோሻ ൒ ,௜ݓ௜ሺݑ ௜ିݓ

ோሻ 
for all ݅ ൌ 1, … , ݊, meaning that no user ݅ can benefit by unilaterally deviating from his equilibrium 
bid ݓ௜

ோ. 

For a given allocation mechanism there may exist no, one unique or several Nash equilibria. We will 
analyze under what conditions we may retrieve no equilibrium but by changing the realizations of the 
users bids and/or valuations slightly we obtain a unique or several Nash equilibria. Also we have not 
only to worry about multiple Nash equilibria but also acceptable (i.e. feasible) ones, meaning that we 
will not accept any solution resulting in a contradiction to our assumptions as already pointed out 
above. Having said this we will speak of a feasible Nash equilibrium if an equilibrium chosen out of a 
given set of several Nash equilibria fulfills all taken assumptions and leads to no contradiction at all. 
Therefore for any possible solution we have to check afterwards if the foregoing assumptions and 
conditions still hold. 

Given the term of a Nash equilibrium we may define the performance ratio of an allocation 
mechanism: 

Definition 2. (Performance ratio) Suppose a set of ݊ users each having a utility function ݑ௜ and a 
provider selling the perfectly divisible good with a utility function ݑ௉. Let the bid vector ݓோ be a 
Nash equilibrium. Then the performance ratio of a given allocation mechanism ߬ is given by 

ோሻሻݓሺ߬ሺݑ
כݑ ൌ

∑ ோሻ൯ݓ௜൫߬ሺݑ ൅ ோሻሻ௡ݓ௉ሺ߬ሺݑ
௜ୀଵ

כݑ  

where כݑ denotes the theoretical optimum giving the whole good to the user with the highest bid. 

The subsequent analysis will be along the following lines: We will compute the resulting Nash 
equilibria for ݊ users (݊ א ሼ2, 3ሽ) for the Sanghavi-Hajek as well as the Proportional Share 
mechanism. We will show under which conditions these equilibria exist and to what outcome (utility 
function) they entail. For this we use the following, well known proposition: 

Proposition 3. For a set of given users ݅, ݅ ൌ 1, … , ݊, the payment vector ݓோ  is a Nash equilibrium, 
if and only if డ௨೔ሺ௪ಿಶሻ

డ௪೔
ಿಶ ൌ 0 for all ݅ ൌ 1, … , ݊. 

Proposition 3 simply means that every agent maximizes his own utility in conjunction with all bids 
given by the other agents. 

4.3 Two Users 

Stößer et al. (2008) analyze the case with two requesters. We will briefly report the main results for 
the sake of completeness. We assume that the two users have the valuations ݒଵ and ݒଶ and without 
loss of generality user 2’s valuation is not less than user 1‘s, i.e. ݒଵ ൑  .ଶݒ

Lemma 4. In the Nash equilibrium ݓோ of the pay-as-bid mechanism ߬௦௛, user 1 bids ݓଵ
ோ ൌ ௩భ

మ

ଶ௩మ
 and 

receives a share of ߬ଵ
௦௛ሺݓோሻ ൌ ௩భ

ଶ௩మ
, whereas user 2 bids ݓଶ

ோ ൌ ௩భ
ଶ

, thus receiving ߬ଶ
௦௛ሺݓோሻ ൌ 1 െ

௩భ
ଶ௩మ

. 



Inserting the above results in the utility functions ݑ௜ for every user ݅, shows that the low-value user 
receives zero utility, while the high-value user has ݑଶሺݓோሻ ൌ ଶݒ െ  .ଵݒ

Lemma 5. In the Nash equilibrium ݓோ of the pay-as-bid mechanism ߬௣௦, user 1 bids ݓଵ
ோ ൌ ௩భ௩మ

௩భା௩మ
െ

ଵݒ ቀ ௩మ
௩భା௩మ

ቁ
ଶ

  and receives a share of ߬ଵ
௣௦ሺݓோሻ ൌ ௩భ

௩భା௩మ
, whereas user 2 bids ݓଶ

ோ ൌ ଵݒ ቀ ௩మ
௩భା௩మ

ቁ
ଶ

 , thus 

receiving ߬ଶ
௣௦ሺݓோሻ ൌ ௩మ

௩భା௩మ
. 

Consequently, for two users there exists a unique Nash equilibrium without implying further 
restrictions on the valuations ݒ௜ of the users. Unfortunately, as we will show below, this does not hold 
any longer for three or more users. 

4.4 Three Users 

Now we will show our results for three users followed by additional examples demonstrating that our 
argumentation is not based on an empty set but that there exist scenarios allowing us to apply our 
analytic results. To illustrate our approach for each proposition we sketch the proofs which are 
straightforward but very in the appendix. We begin with the results of our analysis for the proportional 
Share mechanism for three users and subsequently move to the Sanghavi-Hajek mechanism. 

4.4.1 Proportional Share 

In this section we will analyze whether there exist a unique Nash equilibrium when there are three 
users present. Our main result is captured by Proposition 6, which is quite powerful, as it shows the 
conditions for which feasible Nash equilibria exist. 

Proposition 6. For three users with quasi-linear value functions there exists no unique Nash 
equilibrium for the Proportional Share allocation mechanism. Given the restrictions 

ଷݒ ൒ ௩భ௩మ
௩భା௩మ

ଶݒ , ൒ ඥݒଵݓଷ and ݒଵ ൒ ଶݓ ൅  ଷݓ

there exists a feasible equilibrium. 

Proof. See Appendix. 

Proposition 6 illustrates clearly that there does not exist a unique but two Nash equilibria, from which 
only one is feasible as it avoids payments from the seller to the user. The restrictions imply certain 
conditions (i.e. lower bounds) on the realizations of the valuations of the users but are not unlikely to 
happen in real-world scenarios, since they though being strong are nevertheless easy to check and 
fulfill. For the sake of simplicity we state them as a composition of constraints between the bids and 
the valuations, but since the bids depend unambiguously on the valuations only, more complex terms 
may be stated just using the users valuations. For more details we refer the reader to the appendix. 

Example 7. We will give two simple examples, which illustrate this proposition. Assume there is a 
provider offering a certain amount of Terabytes of storage and three users having their own valuation 
and willing to pay a certain amount to achieve a share of the storage. The valuations are common 
knowledge and each user bids strategically trying to maximize his own utility. 

a) We assume the valuations to be ݒଵ ൌ ଶݒ ,1 ൌ 2 and ݒଷ ൌ 3. Using the results above we can 
compute the only payment vector ݓ ൌ ሺିଵଶ

ଵଶଵ
, ଺଴

ଵଶଵ
, ଼ସ

ଵଶଵ
ሻ. The negative value of ݓଵ is the result 

of the third condition of the above proposition not being fulfilled, as ݓଶ ൅ ଷݓ ൌ ଵସସ
ଵଶଵ

൐ 1 ൌ
 .ଵ. Thus there exists no Nash equilibrium even for this simple caseݒ

b) Changing the valuations given in a) slightly, yields us a feasible outcome and Nash 
equilibrium: Assuming that we have the realization of the valuation vector ݒ ൌ ሺ2, 3, 4ሻ this 



yields ݓ ൌ ሺ ଶସ
ଵ଺ଽ

, ଵଶ଴
ଵ଺ଽ

, ଵ଺଼
ଵ଺ଽ

ሻ and the following vector of utilities ݑ ൌ ሺ ଶ
ଵ଺ଽ

, ଻ହ
ଵ଺ଽ

, ଵଽ଺
ଵ଺ଽ

ሻ thus 

amounting to a total revenue for the provider of ∑ ௜ݓ ൌଷ
௜ୀଵ

ଶ଻ଷ
ଵ଺ଽ

. 

4.4.2 Sanghavi-Hajek Mechanism 

In this section we analyze Nash equilibria for the Sanghavi-Hajek mechanism. These results differ 
very much from the ones we achieved for the Proportional Share mechanism. 

Proposition 8. For three users, the Sanghavi-Hajek allocation mechanism combined with a pay-as-bid 
pricing scheme and quasi-linear utility functions, we have 

a) A unique Nash equilibrium for the realization ݒଷ ൌ ଵ
ଷ

௩భ௩మሺଷሺ௩భା௩మሻାସ√ଶ√௩భ௩మሻ
ଽ൫௩భ

మା௩మ
మ൯ିଵସ௩భ௩మ

 and the 

condition ଼
ଽ

ଵݒ ൑ ଶݒ ൑ ଽ
଼

-ଵ, resulting in zero utility for the lower-bidding users and nonݒ
negative utility for the highest-bidding user. 

b) Multiple Nash equilibria for ݒଷ ൐ ଵ
ଷ

௩భ௩మሺଷሺ௩భା௩మሻାସ√ଶ√௩భ௩మሻ
ଽ൫௩భ

మା௩మ
మ൯ିଵସ௩భ௩మ

 and the realizations of the 

valuations of the three users being so that 2ݓଷേ ൑ ௜ݒ ൑ ݅ ଷേ forݓ3 ൌ 1, 2 holds. 

Proof. See Appendix. 

As we learn from Proposition 8, for the Sanghavi-Hajek mechanism a unique Nash equilibrium may 
exist, but occurs under very restrictive assumptions on the users valuations. We can state immediately 
that in a real-world scenario the exact realization of ݒଷ as given above for a unique equilibrium is very 
unlikely to happen and tends to converge to zero. This is due to the fact that users usually will have 
expectations only about the valuations of the other users. Multiple Nash equilibria may also exist 
under less restrictive conditions though these conditions as seen in Proposition 8 depend on the highest 
given bid ݓଷ. A strict dependency on the valuations of the users only can’t be given since ݒଷ is not 
determined but can be chosen freely above the limit. 

Example 9. To clarify our results, we give two short examples assuming the same scenario as already 
given in Example 7. 

a) Taking into account the conditions involved for finding a unique Nash equilibrium, we 
assume the realizations of the valuations of the lower-bidding users to be ݒଵ ൌ ଶݒ ൌ 1 and 

ଷݒ ൌ ଵ
ଶ

൅ ଵ
ଷ

√2. Thus the users may bid the strategy ݓଷ ൌ ଵ
ସ

ସାଷ√ଶ
ଷାଶ√ଶ

 and ݓଵ ൌ ଶݓ ൌ
ଷ
଼

൫ଶା√ଶ൯ሺସାଷ√ଶሻ

൫ଷାଶ√ଶ൯మ  resulting in a utility vector ݑ ൌ ሺ0, 0, ଵ
ଵଶሺଷାଶ√ଶሻ

ሻ. 

b) If given the valuation vector ݒ ൌ ሺ3, 3, 5ሻ all necessary conditions are satisfied, resulting 
in a zero utility for the lower-bidding users and a positive utility for the highest bidder.  

It is obvious that the conditions necessary for having a Nash equilibrium for both allocation 
mechanisms are different. The question which arises now is if the conditions given for one mechanism 
are stronger than the ones of the other meaning that if we have given one Nash equilibrium of one 
mechanism we would obtain automatically an equilibrium of the second allocation mechanism and 
thus allowing us to compare these mechanisms one to another. Fortunately we have the following 
result: 

Corollary 10. Assume a unique Nash equilibrium ݓோ for the Sanghavi-Hajek mechanism. Then 
 .ோ is also a feasible equilibrium for Proportional Shareݓ

Proof. See Appendix. 

With this we may now compare the performance ratio of the two given allocation mechanisms 
assuming we have the conditions fulfilled for a unique Nash equilibrium for Sanghavi-Hajek. Since 



the proof is a simple computation and straightforward it is omitted. We just state the final result of our 
paper: 

Corollary 11. Assume a unique Nash equilibrium ݓோ for the Sanghavi-Hajek mechanism. Then the 
performance ratio for the Proportional Share mechanism exceeds the ratio of the Sanghavi-Hajek 
mechanism for all feasible realizations of ݒଵ and ݒଶ. 

This outcome is very surprising indeed as it is in opposition to the result obtained by Stößer et al. 
(2008) for two users and will be discussed in the following section. 

Corollary 12. Assume a unique Nash equilibrium ݓோ for the Sanghavi-Hajek mechanism. Then the 
revenue for the Proportional Share mechanism is exceeded by the revenue of the Sanghavi-Hajek 
mechanism for all feasible realizations of ݒଵ and ݒଶ. 

This result coincides with the work for 2-players done by Stößer et al (2008). 

5 DISCUSSION 

Our goal is to compare market mechanisms which can be integrated into existing Grid schedulers to 
achieve efficient resource allocations and dynamic prices. As pointed out earlier, there are three 
possible techniques to do such a comparison: game-theoretic analysis, numerical experiments, and 
laboratory experiments. In this paper, we report the results of our game-theoretic approach. 

Earlier work on Proportional Share and the discriminatory pay-as-bid mechanism for the two user case 
has shown that the Sanghavi and Hajek mechanism is superior to Proportional Share with respect to 
overall efficiency and, given sufficiently close valuations of the two users, also as regards provider’s 
revenue (Stößer et al. 2008). The aim of our analysis in this paper was to generalize these results for 
more than two users. To this end, we need to model the user behavior, i.e. how the users bid based on 
their true valuations. We chose to ground our analysis on the assumptions of quasi-linear utility 
functions and the prominent solution concept of Nash equilibria. We were able to derive conditions on 
the existence of such equilibria for both the Proportional Share and the Sanghavi and Hajek 
mechanism. However, the interpretation of these equilibria for the Sanghavi and Hajek mechanism 
gives rise to four issues: 

• The two low-bidding users are pushed to zero utility while the high-bidding user only achieves a 
slightly positive utility, meaning that the provider reaps almost all the welfare generated by the 
mechanism. This corresponds to the results of Stößer et al. (2008) for the two user case. 
Consequently, the users are indifferent to not participating in the mechanism. One possibly remedy 
could be that the provider gives a small kickback to the low-bidding users to encourage them to 
participate. It can be an interesting question for future research to investigate how this impacts the 
users’ strategic considerations. 

• The user with the lowest valuation ends up being the highest bidder. We explain this somewhat 
paradoxical result by the fact that in order to achieve a (unique or feasible) Nash equilibrium we 
had to set up some (rigorous) restrictions on the valuations of the users. Obviously this cannot be 
done in real-world scenarios and though this procedure is legitimate from a mathematical point of 
view, it may result in odd economic interpretations. 

• The unique Nash equilibrium comprises some interesting cross-dependencies between the given 
bids. Assume two users bid according to their equilibrium strategy. If one of the low-value users 
deviates from his bid, this will not affect his own utility, but instead result in a decrease of the other 
users’ utilities. 

• Interestingly, as shown in Corollary 11, the analytic results for the performance ratio reverse if we 
move from a scenario with two users to a scenario with three users. While with two users the 
Sanghavi-Hajek mechanism always generates higher efficiency than Proportional Share, with three 
users Proportional Share dominates the Sanghavi-Hajek mechanism. 



In summary, our analysis showed that complexity increases tremendously already when adding only 
one more user. We need to introduce strong restrictions on the users’ valuations in order to obtain 
feasible Nash equilibria, let alone unique equilibria. While the analytic approach is attractive due to its 
elegancy, this strikingly shows the limitations of the analytic approach, as these equilibria are unlikely 
to occur in real-world scenarios. 

This is exacerbated by the fact that we assume a scenario with complete information. In practice, users 
will at most have a rough estimate about the valuations of other users. Including such Bayesian 
solution concepts into our model would surely drive complexity beyond analytic feasibility. 

In conclusion, we need to rely on numerical simulations and/or laboratory experiments when trying to 
analyze these mechanisms in more complex and realistic settings. 

6 CONCLUSION & FUTURE WORK 

In this article, we have approached the concept of scheduling in Grid systems from an economic 
viewpoint. Due to the strategic nature which is inherent to these systems, market-based schedulers are 
deemed promising to increase the efficiency of such systems, while at the same time providing 
incentives to contribute resources to the Grid. So-called pay-as-bid mechanisms score with their ease-
of-use. Furthermore, they impose only a very low communicational and computational burden on the 
scheduling process and consequently allows for real-time allocations. 

In this paper, we analyzed the Proportional Share mechanism and the discriminatory pay-as-bid 
mechanism by Sanghavi and Hajek (2004), two prominent proxies of such pay-as-bid mechanisms, 
thus extending previous work by Sanghavi and Hajek (2004) and Stößer et al. (2008). In order to study 
the performance of these mechanisms, e.g. as regards efficiency and provider’s revenue, we modeled 
the strategic behavior of rational users using the prominent solution concept of Nash equilibria. The 
result of this paper is twofold. We show that for three users, Nash equilibria can only be obtained 
under strong assumptions. Moreover, in case we have a Nash equilibrium which holds for both 
mechanisms, Proportional Share achieves higher efficiency than the Sanghavi-Hajek mechanism, thus 
reversing the results for two users. 

This shows the limitations of the analytic approach in more complex and realistic settings, and 
strengthens the case for alternative techniques. In the future, we will analyze the mechanisms by 
means of numerical experiments. This will allow us to model agents with learning capabilities. It will 
also be interesting to compare these simple pay-as-bid mechanisms to combinatorial approaches to 
Grid resource allocation, which have been proposed by several authors (cf. Neumann et al. 2008 for an 
overview). Moreover, our analysis is set within a real-world scenario, the Biz2Grid project which we 
introduced earlier. We thus plan a prototypical implementation of a market-based scheduler, which 
will serve as proof of our concept. 
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7 APPENDIX 

Proof of Proposition 6. Applying the conditions given in Proposition 3 leads us to the following 
system of equations, where for the sake of simplicity we write ݓ௜ instead of ݓ௜

ோ for the components 
of the strategic choosen Nash equilibrium payment vector: 

ଵݓ ൌ ඥݒଵሺݓଶ ൅ ଷሻݓ െ ሺݓଶ ൅ ଶݓ ,ଷሻݓ ൌ ඥݒଶሺݓଵ ൅ ଷሻݓ െ ሺݓଵ ൅  ଷሻ andݓ

ଷݓ ൌ ඥݒଷሺݓଵ ൅ ଶሻݓ െ ሺݓଵ ൅  .ଶሻݓ

Solving this system leads us to a unique value of ݓଷ and two possible options of ݓଵand ݓଶ: 

ଷݓ ൌ ଶ௩భ௩మ௩యሺ௩భ௩యା௩మ௩యି௩భ௩మሻ
ሺ௩భ௩మା௩భ௩యା௩మ௩యሻమ ଶേݓ , ൌ ௩మሺ௩భ௩మേඥ௩భ௩మሺ௩భ௩మାସ௪యሺ௩భା௩మሻሻሻିଶ௩భ௪యሺ௩భା௩మሻ

ଶሺ௩భା௩మሻమ  and 

ଵേݓ ൌ ඥݒଵሺݓଶേ ൅ ଷሻݓ െ ሺݓଶേ ൅  .ଷሻݓ

Clearly we have multiple Nash equilibria. In order to achieve a unique equilibrium we have to imply 
one condition on the valuation of user 3, i.e. ݒଵݒଶ൫ݒଵݒଶ ൅ ଵݒଷሺݓ4 ൅ ଶሻ൯ݒ ൌ 0 yields the condition 
ଷݒ ൌ ଵ

ଷ
௩భ௩మ

௩భା௩మ
. Furthermore, we need to check whether or not all payments ݓ௜ made by the users are 

non-negative, which is not given by the above equations. A simple computation shows us, that ݓଷ ൒ 0 
is equivalent to ݒଷ ൒ ௩భ௩మ

௩భା௩మ
ଶݓ , ൒ 0 is equivalent to ݒଶ ൒ ඥݒଵݓଷ and ݓଵ ൒ 0 is equivalent to ݒଵ ൒

ଶݓ ൅ ݅ ,௜ݒ ଷ. Of course all of these conditions may be expressed by the valuationsݓ ൌ 1, … ,3, but 
results in much more complex inequations. This leads us directly to the conclusion that there is no 
unique Nash equilibrium for three users, since the realization of ݒଷ ൌ ଵ

ଷ
௩భ௩మ

௩భା௩మ
 yields to the negative bid 

ଷݓ ൏ 0, which is not feasible. Finally, it is straightforward, that for any positive value of ݓଷ we obtain 
_ଶݓ ൑ 0, hence we may discard the second solution and focus on ݓଵା and ݓଶା though we may not 
speak of a unique equilibrium but rather of a feasible equilibrium. 

 



Proof of Proposition 8. In order to be able to apply the mechanism, we have to determine the user who 
submitted the highest bid. Without loss of generalization we may assume an ascending order for the 
payment vector, thus being ݓଷ ൌ  ௠௔௫ the highest bid. Similar to the discussion of the Proportionalݓ
Share allocation mechanism we have the following equation system 

ଵݓ ൌ ଷ௪యሺ௩మିଶ௪యሻ
௩మ

ଶݓ , ൌ ଷ௪యሺ௩భିଶ௪యሻ
௩భ

 and 

ଷݒ ൌ ଺௪య
య

ଷ௪యሺ௪భା௪మሻିସ௪భ௪మ
, 

which leads to two possible solutions of ݓଷ: 

ଷേݓ ൌ ଵ
ସ଼௩య

ሺ9ݒଷሺݒଵ ൅ ଶሻݒ െ ଶݒଵݒ േ ට81ݒଷ
ଶ ቀݒଵ

ଶ ൅ ଶݒ
ଶ െ ଽ

ଵସ
ଶቁݒଵݒ െ ଵݒଷሺݒଶݒଵݒ18 ൅ ଶሻݒ ൅ ଵݒ

ଶݒଶ
ଶሻ. 

It is obvious that in order to obtain a unique Nash equilibrium, the sum contained in the root has to be 
zero, hence we need to demand a further condition on one of the valuations. Choosing that valuation to 
be ݒଷ it has to be that 81ݒଷ

ଶ ቀݒଵ
ଶ ൅ ଶݒ

ଶ െ ଽ
ଵସ

ଶቁݒଵݒ െ ଵݒଷሺݒଶݒଵݒ18 ൅ ଶሻݒ ൅ ଵݒ
ଶݒଶ

ଶ ൌ 0 is valid for all 
valuations ݒଵand ݒଶ resulting in a direct dependency of ݒଷ from the other two valuations. We receive 

two possible solutions for ݒଷേ ൌ ଵ
ଷ

௩భ௩మሺଷሺ௩భା௩మሻേସ√ଶ√௩భ௩మሻ
ଽ൫௩భ

మା௩మ
మ൯ିଵସ௩భ௩మ

 and therefore forcing ݒଷ to be on a cone-like 

structure. 

 

As it is seen, the second solution gives us, even for very high valuations of the remaining two users, a 
relatively low value of the third valuation, though we assumed the third user to be the highest bidder. 
Since this scenario appears to be an extreme unlikely case, we may discard the second solution and 
focus on the first. Therefore we have a unique solution for ݒଷ and thus for  ݓଷ, both depending only on 
the valuations of the first two, lower-bidding users. The question is, if that is the one and only 
restriction even though it is a very tough condition and may rarely be achieved in real-world 
applications. Unfortunately the answer is that we need even more restrictions, this time on the 
realizations of the valuations of the lower-bidding users to ensure 0 ൑ ௜ݓ ൑ ݅ ௠௔௫ forݓ ൌ 1, 2, since 
otherwise we would have a contradiction to our primary assumptions. A simple computation shows us 
that the first inequality holds, if 2ݒଵ ൒ ଶݒଶ and 2ݒ ൒ ଼  ଵ, while the second inequality holds ifݒ

ଽ
ଵݒ ൑

ଶݒ ൑ ଽ
଼

 ଵ. Since we need both inequalities to hold and the second condition already implies the firstݒ
one, we may focus thereon, which leaves only a narrow margin for the possible choices of ݒଵand ݒଶ. 
At this point we have to remark, that for any given valuations of the lower-bidding users, ݒଷ will take 
on a value which is less than any of this valuations, though we already have chosen the highest 
possible value accordingly to our calculations. The maximum for ݒଷ will be reached exactly if 
ଶݒ ൌ ଽ

଼
 ଵor vice versa, since the lower-bidding users are symmetric, i.e. it does not matter who bids orݒ

valuates the good more than the other one, as long as they do not bid higher than the third user. 

Using the results above, we may compute a solution under the given conditions on the valuations ݒ௜, 
݅ ൌ 1, … ,3. Since the components of the resulting payment vector ݓ are relatively complex, we just 
state here the final result of the utility functions: For any given valuations ݒ௜, ݅ ൌ 1, 2, of the lower-
bidding users their utility functions equal zero, i.e. ݑ௜ ൌ 0 for ݅ ൌ 1, 2 while the utility of the higher-
bidding user is besides being relatively low, non-negative for  ଼

ଽ
ଵݒ ൑ ଶݒ ൑ ଽ

଼
 .ଵݒ

Finally, omitting the restriction of a unique Nash equilibrium we may analyze the case of two 
equilibria. As is seen in Figure 1 a unique equilibrium is achieved for ݒଷ being on the cone like 
structure. For ݒଷ not holding that requirement we can distinguish between two cases: First, ݒଷ being 
inside the structure and second, ݒଷ taking a value outside the cone. For the first case, it is easily seen, 
that we have no Nash equilibrium at all, because we have to deal with a square root of a non-positive 



value. In the second case, we may discard the possibility of ݒଷ taking a value below the structure 
because we assumed the third user to be the highest bidder and thus this choice seems odd. So we 
proceed with the following condition 

ଷݒ ൐
1
3

ଵݒଶሺ3ሺݒଵݒ ൅ ଶሻݒ ൅ ଶሻݒଵݒ√2√4
9ሺݒଵ

ଶ ൅ ଶݒ
ଶሻ െ ଶݒଵݒ14

 

which gives rise to two Nash equilibria depending on the choice of ݓଷേ. To ensure a feasible solution, 
i.e. 0 ൑ ௜ݓ ൑ ݅ ௠௔௫ forݓ ൌ 1, 2, a subsequent analysis shows that it has to hold that 2ݓଷേ ൑ ௜ݒ ൑
݅ ଷേ forݓ3 ൌ 1, 2 resulting in a zero utility for these users as well. At this point we may remark, that 
 ଷ and converges so that we haveݒ ଷേ is ascending and limited for all choices ofݓ

lim௩య՜ஶ ଷേݓ ൌ
ଷሺ௩భା௩మሻേටଽ൫௩భ

మା௩మ
మ൯ିଵସ௩భ௩మ

ଵ଺
. 

We see, that the above condition on the valuations of the lower-bidding users is based upon the value 
of ݓଷേ. Therefore, instead of being able to check the conditions just on the given valuations of the 
three users, we have to compute ݓଷേ first, followed by a decision, which solution of ݓଷ to use. Having 
in mind the conditions on ݒ௜, ݅ ൌ 1, 2, gives rise to the consideration choosing strategically ݓଷା and 
discard ݓଷି though one cannot eliminate the possibility of a feasible equilibrium with the last 
realization. 

 

Proof of Corollary 10. We just have to show that the conditions on the valuations of the users which 
are being implied by the unique Nash equilibrium satisfy also the conditions necessary for a feasible 
equilibrium for the Proportional Share mechanism. This is straightforward. We may fix without loss of 
generalization the valuation of the first user ݒଵ. Then ݒଶ has to satisfy ଼

ଽ
ଵݒ ൑ ଶݒ ൑ ଽ

଼
 ଵ. A simpleݒ

analysis shows us that ݒଷ, depending on the other valuations, is ascending and thus we choose the 
lowest possible value for ݒଷ with ݒଶ ൌ ଼

ଽ
ଷݒ ଵ. This yieldsݒ ൌ ଷݒ ଶ and thus the first conditionݒ ൒

௩భ௩మ
௩భା௩మ

 for Proportional Share holds. To check the second condition ݒଶ ൒ ඥݒଵݓଷ we confirm that ݓଷ is 

ascending as well and with ݒଵ fixed and the above choice of ݒଶ ൌ ଽ
଼

ଷݓ ଵ this results inݒ ൌ ଷ
଼

 ଵand theݒ
second condition holds as well. Since ݓଶ depending on ݓଷ is also ascending we continue with the 
above choice of ݓଷ and have ݓଶ ൌ ଽ

ଷଶ
 ଵ which makes the third condition hold for all possibleݒ

realizations of the valuations of the users implied by the conditions of the unique Nash equilibrium by 
the Sanghavi-Hajek mechanism thus concluding our proof. 


	Association for Information Systems
	AIS Electronic Library (AISeL)
	2009

	NFC based service innovation in retail: An explorative study
	Thomas Meinl
	Jochen Stober
	Dirk Neumann
	Recommended Citation


	Microsoft Word - discr-propshare-n3_final

