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Abstract  

In this position  paper we discuss the importance of Green IT as a new research field that investigates 
all the environmental and energy issues related to IT and information systems in general. In particular 
we focus on the energy consumption of software applications, which is amplified by all the above IT 
layers in a data center and thus is worth a greater attention. By adopting a top-down approach, we 
address the problem from a logical perspective and try to identify the original cause that leads to 
energy consumption, i.e. the elaboration of information.  We propose a research roadmap to identify a 
set of software complexity and quality metrics that can be used to estimate energy consumption and to 
compare specific software applications. 

Keywords: Green IT; energy efficiency. 

 



1 INTRODUCTION 

“Green IT” is an expression that indicates a new research field that investigates all the environmental 
and energy issues related to IT (Murugesan, 2008). More specifically, we think that Green IT may 
refer to three different research areas: 

1. Energy efficiency of IT; 

2. Eco-compatible management of the lifecycle of IT; 

3. IT as an enabler of green governance. 

The first research area aims at designing energy-efficient IT architectures and data centers, covering 
also all the effects that utilizations practices have on energy consumption. As we will explain in this 
paper, energy consumption impact on operating cost has grown in the last years and is now very 
significant. The second research area proposes to study new methodologies and technologies for eco-
compatible manufacturing of IT components, to optimize packaging, and to minimize the 
environmental impacts of the whole lifecycle of IT. This includes eco-labeling and eco-compatible 
management and storage of waste and dismissed IT components. Finally, the third research area aims 
at leveraging IT as a means for measuring and monitoring the green parameters (e.g., energy 
consumption, temperature, toxic waste produced) related to all business processes, not limited to the 
IT area. This includes the design of monitoring devices as well as decisional support systems and 
dashboards to store, analyze, and compare green KPIs. 

 

In this position paper we focus on the first research area and propose a research plan to analyze 
software energy efficiency. We illustrate as quantum physics theory offers an overall interpretation for 
the energy consumption of IT: elaborating information requires a minimum energy related to the 
quantum nature of the world. Actual consumptions are by far higher than the minimal theoretical level 
because current IT systems introduce a number of inefficiencies related to many different layers, 
which go from logical gates level to servers architecture and data centers infrastructure level. From 
another standpoint, this means that there are many possibilities for increasing the energy efficiency of 
IT, and this is a great challenge that the scientific community needs to face. 

Software plays a crucial role in this scenario. Although software does not directly consume energy, it 
deeply affects the consumption of hardware equipment. Software applications, ranging from operating 
systems and drivers for hardware devices to decision support systems and ERP suites, indicate how 
information should be elaborated and to some extent guide the functioning of hardware. Consequently, 
they are indirectly responsible of energy consumption. In this paper we propose a research plan to 
measure and compare energy consumption of different applications and to correlate these data with 
traditional software design quality metrics. 

The paper is organized as follows. Section 2 describes why Green IT is gaining more and more 
importance due to the devastating effects of energy consumption on the environment, on operative 
costs, and on scalability. Section 3 describes how energy consumption is distributed in a data center 
and illustrates how the energy actually used for chip-level computation is amplified by all the above IT 
layers. Section 4 presents the theoretical hypotheses at the base of our research, and Section 5 
proposes our research plan. Finally, Section 6 concludes the work. 

 

2 WHY GREEN IT IS IMPORTANT 

Green IT is attracting more and more attention both in the scientific and business communities. In the 
past decades research and innovation have focused on increasing clock frequency and on 



miniaturization (Schaller, 1997), with only a marginal focus on power consumption, mainly associated 
with battery autonomy of laptop devices. This has resulted in extremely fast IT systems, but which 
consume a lot of energy that is very often inefficiently employed. 

Energy consumption has devastating effects on: 

1. Equivalent CO2 emissions; 

2. Operating costs; 

3. Scalability. 

As consumptions rise, the attention on Green IT gains momentum. 

According to recent researches (Murugesan, 2008, Brown and Lee, 2007, Kumar, 2007), IT is 
responsible of more than 2% of global CO2 emissions, and its environmental footprint is comparable 
to that of the aeronautic industry. The average amount of energy consumed by a PC in 1 year 
corresponds to the emission of 1 ton of CO2, and a server has roughly the same annual carbon footprint 
as an SUV doing 5 miles-per-gallon (Restorik, 2007)0. In addition to that, 70% of the landfills of lead, 
cadmium and mercury derives from the IT industry (Brown and Lee, 2007). 

From an economical perspective, whereas the cost of hardware has only slightly grown in the last 12 
years, the cost of power and cooling has grown four times. Figure 1 shows data on the global spending 
for servers in the last  years and estimates for next years. 
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Figure 1 – Global spending for server (Billion dollar, Source: Josselyin et al., 2006). 

Nowadays, power and cooling operating costs represent 60% of the total spending for new 
infrastructures, and consequently have a great impact on TCO (see Figure 2). This proportion is 
expected to rise even more, also because of the continuous growth of energy unit cost. As in most 



companies energy costs are not charged to the IT budget, the importance of this  phenomenon is not 
yet fully perceived, but it is likely that accounting rules will change as the impact of energy costs on 
overall IT costs rises more and more. 

In addition to that, energy consumption is a limit to the scalability of data centers. New IT equipment 
requires an extremely high quantity of energy per square meter (e.g., a rack with 5 blade servers of 8 
units consume more than 20KW, as much as an apartment complex) and also the energy required by 
personal computers rises at a rate of 8-10% per year. When data centers are located in areas with high 
population density, as it often happens in Europe, it may be difficult for power distributors to bring the 
required energy in the same building. As power infrastructure modifications are difficult and 
expensive, data centers that are not energy efficient cannot expand their capabilities. According to 
Forrester Research (Brown and Lee, 2007), in the next few years 60% of data centers will be limited 
by power consumption, cooling, and space issues. 
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Figure 2 – Spending for energy and cooling/ spending for new servers (Percent, Source: Josselyin et 
al., 2006). 

Recent surveys show that there are growing concerns about Green IT in corporate contexts: according 
to Forrester Research  (Forrester Research, 2007)0, 33% of North American and 48% of European IT 
procurement and operations professionals think that environmental and energy-related issues are very 
important in planning their company’s IT operations, whereas only 15% in North America and 6% in 
Europe think that Green IT is not a problem at all. 

 

3 A MULTILAYER APPROACH 

An average data center usually consumes at least 300 KW, whereas a large data center may  consume 
more than 10MW. However, it is important to note that this significant quantity of energy is consumed 
at different layers, i.e. from different parts of the data center with different logical functions. 



According to (Renzi, 2007), 40% of the energy consumed by a data center is absorbed by HVAC 
(cooling) and UPS (back-up batteries) systems, and another 42% is absorbed by fans, AD/DC 
transformers, and storage, whereas only 18% is consumed by the processors. In addition to that, as 
some processors stay idle for some time, the energy really used for computation may be as low as 3% 
of the total. Hence, researches and actions aimed at optimizing the energy consumption of data centers 
should address all the IT layers involved. 

The reduction of power consumption should obviously focus on the optimization of the layers that 
consume the biggest part of energy, i.e. power and cooling and peripherals systems. This requires 
research also on non-IT items, such as UPS, air conditioning and other equipment. In addition to that, 
virtualization can greatly reduce the idle time of processors thus optimizing the energy consumptions. 
All these researches are specific to particular contexts and typologies of infrastructure. 

In this paper we take a different and innovative perspective and we focus on the cause of energy 
consumption by information systems, independently from their infrastructural implementation. In the 
next section we illustrate how elaborating information per se requires energy, according to recent 
quantum physics researches. Quantum physics also quantifies the minimum theoretical amount of 
energy needed to commute a bit of information, which according to the current state of our knowledge 
could be optimally represented by the spin of an electron. Of course this minimal amount of energy is 
much lower than current consumptions. This gap between theoretical and actual consumptions is due 
to all the inefficiencies introduced by the different architectural layers of a computational system, e.g. 
because we use transistors rather than atoms to store and elaborate bits. 

We posit that all these layers amplify the unitary amount of energy required to elaborate information, 
as all the hardware supporting a processor and the infrastructure in a data center are sized according to 
the amount of elementary computations required. This hypothesis will be verified during our research. 

When a processor spends 1W to elaborate information the total energy consumed by the system may 
be as much as 28 times higher, due to drivers, memory, cooling, back-up batteries and all the other 
auxiliary components needed by the processor to work (see Figure 3). Thus, the benefits obtained by 
optimizing  the energy consumed for computation are amplified by the above IT layers and have a 
great impact on the total consumption. 
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Figure 3 – Energy absorbed by a data center (Watt, Source: Renzi, 2007) 

 

Accordingly, our research will focus on analyzing the energy efficiency of software algorithms, i.e. 
how efficiently information is elaborated, thus laying down the foundations for future optimizations.  

Recent researches (Bruschi, 2007) have shown that current energy efficiency of algorithms and 
applications is on average 20%, whereas energy efficiency related to data quality (low quality data 
requires more operations) is no higher than 60% (Restorick, 2007). 

 

4 THEORETICAL FOUNDATIONS 

This section introduces the theoretical foundations of our research roadmap. We will assume both a 
physical and logical perspective. The former is essential to understand how energy is actually 
consumed by the technological infrastructure that is at the base of an information system; the latter 
will help us understand why energy is required to manage information. 

From a physical perspective it is well known that the average power consumed by a microprocessor 
while running an application is  P = I · VCC, where I is the average current and VCC is the supply 
voltage. Since power is the rate at which energy is consumed, the energy consumption of a given 
application is the integral of the power consumption P over time t, that is: 

ECphysical =∫t  I · VCC · dt (1) 



Measuring energy consumption of an application by means of Expression  (1) requires to 
measure I and VCC on the hardware system actually used. Consequently, this kind of measures always 
refer to a specific microprocessor architecture. Moreover, from Expression  (1) it is impossible to 
analyze why energy is consumed. 

In order to solve this problem, we need to link the physical domain (i.e., electric energy consumption) 
to the logical domain. Energy consumption can be assessed by analyzing why a given application 
requires a certain amount of energy to produce the desired output. The following paragraphs introduce 
some theoretical definitions that are required to consider the problem of energy consumption from a 
logical perspective. 

The Margolus-Levitin theorem (Margolus and Levitin, 1998)  posits that the maximum frequency for 
the status commutation of a physical system is directly proportional to the total energy of the system 
itself. As a consequence, the minimum commutation energy required by a system to operate at a given 
frequency can be computed as: 

Emin(f)  = f · h / 4 (2) 

where f is the frequency, and h is the Planck’s constant. For example, if we represent a bit by means of 
the direction of an electron’s spin, the commutation energy required at the frequency of 1 GHz (thus 
comparable to that of current desktop computers, considered that, for an average particle like an 
electron, the maximum commutation frequency is fe ≅ 3 · 1013 Hz) is Ee ≅ 5 · 10-21 J. 

The thermodynamic depth (Lloyd, 2006) is a property of each physical system: it is essentially a 
measure of the information required to describe, and consequently build, the system itself. This metric 
is related to the concept of entropy. It is well known that entropy is the measure of the level of 
disorder in a given system (Haddad et al., 2005). Assuming that a system can always be described by a 
string of bits (e.g., by describing initial speed and position of all its atoms),  entropy is the number of 
bits of the system that are disordered and unavailable to produce work. Conversely,  negentropy is the 
measure that quantifies the number of bits that are ordered and structured. For example, a human being 
has an high degree of negentropy, whereas a balloon full of helium is completely lacking of 
negentropy. If we want to describe a table we need a certain number of negentropic bits, but we do not 
need to describe the positions of all the billions of atoms of the table: these bits can stay entropic 
without affecting our description. 

Based on these definitions, the thermodynamic depth is defined as the number of negentropic bits that 
have been used to build the system.  

The logical depth (Lloyd, 2006) of a generic string of bits, that can be interpreted as the representation 
of a generic system (as well as the output of a computer application), is defined as the computational 
complexity of the most efficient program that is able to produce that output. In other words, it is the 
smallest number of elementary logical operations required to perform the computation that produces 
the desired string of bits.  

A software application executes a certain number of computations on a defined number of bits in order 
to obtain a result. Applying the theoretical definitions discussed above, the energy consumption of a 
software application can be estimated from a logical perspective as: 

EClogical(f) = E(f) · Cc  · Td  (3) 

where E(f) is the energy required by a single bit status commutation at frequency f, Cc is the 
computational complexity of the application that is executed and Td is the thermodynamic depth of the 
computation that is performed onto the problem representation. In other words, Expression (3) 
estimates the energy consumption by considering how much energy is required by a single bit status 
commutation (E(f)) that is applied on a given number of bits (Td) for a given number of operations 
(Cc).  Expression (3) allows to analyze the causes that lead an application to consume energy because 
it is elaborating information, without focusing on the physical and electrical mechanisms of 
consumptions. 



First of all, we note that there is an unavoidable trade-off between energy and frequency: a faster 
system requires more energy. The minimization of energy consumption can be achieved by optimizing 
each of the three terms of Expression (3). 

As discussed before, the minimum energy required for the commutation of a bit status at a given 
frequency is given by the Margolus-Levitin theorem. This is only a theoretical lower bound, which is 
valid if bits are represented by electrons’ spins. As a matter of fact, several attempts of building a 
computing machine that uses the electron’s spin to represent a bit have been made (e.g., Isaac Chuang 
at MIT has factorized the number 15 with a 7 qubit computer (Vandersypen et al., 20010). It should be 
considered that the energy Emin is by far lower than the actual energy that is consumed to switch a bit 
in current computers based on transistors (modern architectures require approximately 10-14 Joules to 
commute a bit, and research are being carried on to reduce this energy to 10-16 Joules1). However, this 
is an hardware-related research area, and goes beyond the purposes of this paper. 

The remaining two terms, namely computational complexity Cc and thermodynamic depth Td can 
instead be faced from an information system perspective.  

The minimization of the computational complexity required to produce a desired output can be 
obtained if the generic application A  that is executed has the minimum possible computational 
complexity, that is, exactly the logical depth Ld of the required output.  

The thermodynamic depth can be minimized by adopting the most efficient way of representing the 
problem and the data required to produce the desired output, that is the minimum thermodynamic 
depth Td-min.  

As a consequence, the lower bound of Expression (3) at a given frequency is given by: 

ECmin(f) = Emin(f) · Ld  · Td-min  (4) 

Just as the minimum energy of commutation given by the Margolus-Levitin theorem, also Expression 
 (4) is only an ideal theoretical lower bound. In particular, the problems of writing an 
application with the minimum computational complexity required to obtain a desired result or stating 
which is the most efficient representation of a given problem are not trivial problems. For example, 
there exist problems for which we do not know whether the algorithms used to compute their solution 
are the most efficient ones (e.g., sorting algorithms). Furthermore, there exist whole classes of 
problems for which we do not even know if an efficient solution exist (e.g., the NP-complete problem 
class, if P≠NP). On the contrary, it is possible to design a methodology that allows the comparison of 
different applications from the efficiency of energy consumption point of view. By considering 
Expressions  (1) and (3), we posit that: 

ECphysical(f) ∝ EClogical(f) (5) 

That is, the energy consumption described from the physical perspective can be considered as a 
measurement proxy of energy consumption defined from the logical perspective. Accordingly, the 
comprehension and the optimization of application on the logical level should directly impact on the 
physical level, i.e. on the actual power absorption. 

The following section presents in detail the research roadmap for the definition of such methodology. 

 

                                                      
1 http://www.itrs.net. 



5 A RESEARCH ROADMAP 

Our research roadmap focuses on the definition of a methodology that allows the comparison of 
different applications from the efficiency of energy consumption perspective. Our research roadmap 
includes the following steps: 

1. Comprehension of the problem and study of the state of the art. 

2. Identification and operationalization of proxy metrics for computational complexity and 
thermodynamic depth of specific software applications. 

3. Implementation of a tool that measures these metrics. 

4. Measurement of actual power consumption. 

5. Analysis of data and identification of the most representative proxy metrics. 

6. Integration of the results in a software tool to support IT managers in assessing software 
energy efficiency. 

7. Evaluation of the impact of energy costs on the Total Cost of Ownership of an application. 

 

After a first step focusing on getting a more detailed comprehension of the problem, we plan to define 
benchmarking methodologies to compare different applications and, finally, to propose optimization 
approaches. 

The definition of our methodology requires a thorough analysis of the boundary conditions for the 
execution of the applications that should be analyzed. Therefore we will perform our analyses on a 
number of different configurations of hardware infrastructures. 

We assume that the commutation energy E(f) of Expression (2) is constant for a given hardware setup 
(please note that also the frequency f  can be made constant for current hardware setup by disabling 
dynamic frequency adaptation mechanisms such as Intel SpeedStep or AMD PowerNow!). As a 
consequence, we will focus our analyses on the assessment of energy consumption inefficiencies 
caused by computational complexity Cc and thermodynamic depth Td.  

From a theoretical perspective, the minimization of the computational complexity term would require 
to evaluate how far the actual computational complexity Cc of a given application is from its lower 
bound, that is from the logical depth Ld of the output that the application is intended to produce. 
However, as noted in Section 4, such solution is really hard to achieve, if not unsolvable at all (at least, 
given the current state of the art). First, it would require a general methodology for defining the 
computational complexity of a generic problem. Second, the actual computational complexity Cc of 
the application should be properly determined. Third, a way to identify the shortest program that 
solves the problem should be determined (that is, define the logical depth Ld of the problem). Fourth, a 
comparison between the values of Cc and Ld should be performed in order to evaluate how far the 
application is from the theoretical optimum. Since phases two and three cannot be completely 
automated, and would require to identify the minimum logical depth for each possible problem (which 
is a clearly not satisfiable requirement), we decided to focus on the definition of benchmarking 
methodologies to compare specific applications. 

One of the first issues to be faced is to find suitable proxy metrics for computational complexity and 
thermodynamic depth of a given application. 

Lloyd (2001)  suggests a list of 42 different complexity metrics that could be used to characterize the 
complexity of a system from three different (yet complementary) perspectives: a) how hard is it to 
describe, b) how hard is it to create, and c) what is its degree of organization. Since our focus is to 
characterize the complexity of a software system, we plan to operationalize and apply such measures 
of complexity (or a subset of them) to software systems. Along with these new metrics, we are also 



going to consider classic software quality metrics as validation terms of comparison, such as the 
McCabe’s Cyclomatic Complexity (McCabe, 1976), the Halstead’s Software Science (Halstead, 
1977)0, and the design quality metrics for object oriented systems proposed by Chidamber and 
Kemerer (1994) and Brito e Abreu (1995). These metrics are not direct measures of computational 
complexity, but of software design quality and cohesion. Although there is not yet any empirical proof 
that these metrics are correlated with computational complexity, an high quality software is usually 
well structured and its operations follow a logical flow. Software quality metrics may be proxies, or 
indirect measures, of computational complexity. This hypothesis will be verified during the research. 

With regard to the thermodynamic depth term, we acknowledge that different representations of the 
same computational problem (e.g., the file structure adopted to store data) can be more or less 
efficient, as well as the fact that different ways of representing single bits can have different 
commutation energy requirements. However, these issues will be included in our future works. Given 
the current absence of consolidated metrics for thermodynamic depths, we will perform our analyses 
on software systems and data sets of comparable dimensions, so to be in a situation of comparable 
thermodynamic depth. 

After the definition of the theoretical framework and the operationalization of variables, we will 
develop a tool to measure these metrics by analyzing the code of an application. 

We will then assess which subset of our metrics best represent computational complexity and 
thermodynamic depth and thus could be used to operationalize  Expression (4).  This will require  to 
compare the data gathered by our tool with measures of actual energy consumption. 

The measurement of energy consumption (ECphysical)  related to the execution of specific applications 
will be performed through the use of ammeter clamps. Such methodology is commonly adopted 
(e.g.,Isci and Martonosi, 2003) since it does not require particularly instrumented hardware, nor the 
definition of instruction-level energy consumption models for the target microprocessor (as done for 
example by Tiwari et al., 1994). Figure 4 shows the details of the power measurement setup that will 
be used to measure the actual power absorbed by a microprocessor. 

We will conduct our experiments on a number of different hardware configurations, and for each 
configuration we will analyze the relationship between actual power consumption and the set of 
measured metrics. Metrics will be gathered for a sample of Open Source applications similar for 
domain, functionalities, and language. Different classes of applications will be considered and 
comparative analyses will be performed within each domain and for each specific hardware setting. 
Application classes will be selected according to relevance, usage (optimization is convenient only if 
usage is high), and also availability of a minimum number of Open Source projects. For example, ERP 
and DBMS systems are likely to be included in the analysis as they both respect all the criteria listed 
above. For each class specific scripts will be implemented to automatically generate benchmark 
workload and compare the consumption of the different applications. For example, for DBMS 
different kind of queries will be considered (e.g., CREATE/ INSERT/ DELETE on a test database 
with 20 fields and 1.000.000) and for ERP different activities flow will be created (e.g., create a new 
order, receive the goods in the warehouse, etc.). 

 

 

Figure 4 – Power measurement setup. 



 

We consider the realization of a software tool that can help IT managers in assessing the power 
consumption efficiency of software applications the first milestone of our research roadmap. 

Finally, we will evaluate the impact of energy cost on the Total Cost of Ownership of an application 
and, more generally, of an information system. 

 

6 CONCLUSIONS AND FUTURE WORK 

In this paper we have proposed a research roadmap to identify a set of software complexity and quality 
metrics that may be used to assess the energy efficiency of a specific application. We plan to validate 
our theoretical framework by measuring the actual power consumption on a number of different 
hardware systems. Our research will result in a tool able to extract a set of energy-related metrics by 
analyzing the code of an application. Our tool will allow to compare the energy efficiency of two or 
more applications with the same functionalities, thus enabling a green-aware choice. Project managers, 
software developers, and software buyers will greatly benefit from our research as they will be able to 
assess the differences in power consumption among a set of software applications. An issue that will 
need investigation is how energy consuming will be the code analyzer tool, as it may turn out that the 
energy required to analyze and optimize an application outweigh the savings obtained. However, 
optimization costs occur one time only, whereas savings are repeated every time the application is 
executed. Moreover, most of the currently available code-based metrics can be easily and quickly 
computed by parsers and code analyzer tools. 

After the first phase of our research, we foresee that we will extensively apply our methodology to 
Open Source applications so that we will gather a significant quantity of data to analyze. Our research 
will then focus on optimizing the energy efficiency of applications by identifying development best-
practices. 
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