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Marco Comuzzi, City University London, Department of Computing, School of Informatics, 
Northampton Square, EC1V 0HB London, UK, sbbd286@soi.city.ac.uk 

Abstract  

In the information age, enterprises base or enrich their core business activities with the provision of 
informative services.  For this reason, organizations are becoming increasingly aware of data quality 
issues, which concern the evaluation of the ability of a data collection to meet users’ needs. Data 
quality is a multidimensional and subjective issue, since it is defined by a variety of criteria, whose 
definition and evaluation is strictly dependent on the context and users involved. Thus, when 
considering data quality, the users’ perspective should always be considered fundamental. Authors in 
data quality literature agree that providers should adapt, and consequently improve, their service 
offerings in order to completely satisfy users’ demands. However, we argue that, in service 
provisioning, providers are subject to restrictions stemming, for instance, from costs and benefits 
assessments. Therefore, we identify the need for a conciliation of providers’ and users’ quality targets 
in defining the optimal data quality level of an informative service. The definition of such equilibrium 
is a complex issue since each type of user accessing the service may define different utilities regarding 
the provided information. Considering this scenario, the paper presents a utility-based model of the 
providers’ and customers’ interests developed on the basis of multi-class offerings. The model is 
exploited to analyze the optimal service offerings that allow the efficient allocation of quality 
improvements activities for the provider. 

Keywords: Data Quality, Efficiency, Service Offerings. 

 

1 INTRODUCTION 

Enterprises increasingly focus their business strategy on information management, since an effective 
use of organizational data can have a considerable impact on business decisions and provide high 
benefits. Furthermore, information can be often exploited to offer additional and valuable services to 
external customers. Informative services manipulate raw data and produce information products 
(Ballou et al. 1998). In order to evaluate the service effectiveness and thus the ability of the provided 
information to meet both the organizational and users’ (customers) requirements, it is then possible to 
consider data quality theories. Data quality is a multi-dimensional concept that evaluates the suitability 
of data to the tasks for which they are required, and thus to the users that access them. Data quality can 
be assessed by means of different dimensions, whose definition and evaluation are strictly dependent 
on the context and users involved. For this reason, the users’ perspective has been always considered 
fundamental in data quality. Consequently, literature contributions have always focused their attention 
on the definition of methodologies and methods that support providers in the achievements of data 
quality targets that would completely meet users’ needs. Quality management mainly suggests the 
adoption of the Zero Defects approach that consists in setting targets to the highest quality values 
(English 1999).  However, if the organization follows a zero defects approach in areas which do not 
need it, resources may be wasted. Moreover, reaching the highest quality values might lead to quality 
improvement that the organization may not be able to afford. In fact, it is necessary to consider that 



providers have their own requirements in provisioning services and many times the complete 
satisfaction of users’ requirements is not convenient since costs are greater than benefits. Hence, the 
Zero-Defects approach to data quality management is often excessive, since it does not consider that 
the data quality improvement is not a trivial task and in some cases it requires very expensive projects, 
which are not always feasible for the service providers. Generally, we argue that it would be better to 
adopt an approach that fixes data quality targets on the basis of a conciliation of providers’ and users’ 
needs. The definition of this equilibrium is a complex issue since, for each provided information, we 
can have different utilities depending on the type of user that accesses it. Considering this scenario, the 
paper presents a utility-based model of the providers’ and customers’ interests developed on the basis 
of multi-class offerings. The model is exploited to analyze the optimal service offerings that allow the 
efficient allocation of quality improvements activities for the provider. 
The paper is organized as follows. Section 2 reviews the literature on similar contributions. Section 3 
presents the main useful concepts for data quality management and shows the model for the definition 
of the users and providers quality targets. Section 4 presents the model of the provider and users’ 
utility functions in a data service scenario and discusses the issue of optimal data quality level 
definition in informative service offerings. 

2 RELATED WORK 

The identification of service offerings that define the most suitable quality targets that contemporarily 
satisfy providers and users’ needs is a research issue that can be generally related to the identification 
of quality level agreements. This is a new open issue in the data quality field, as well as in the broader 
field of Service Oriented Computing. Here, the Service Level Agreement (SLA) is defined as a 
binding contract which formally specifies end-user expectations about the solution and tolerances, i.e., 
it is a collection of service level requirements that have been negotiated and mutually agreed upon by 
the information providers and the information consumers. In fact, providers define some service levels 
as a fixed combination of their specific capabilities on a set of quality dimensions that are also 
considered by the users to define their targets. If providers’ capabilities and users’ needs are not 
immediately compatible, a negotiation phase is required in order to find the most suitable conciliation 
between providers’ and users’ quality targets. In this field, there are several languages proposed for the 
definition and monitoring of the SLA such as WSLA (Keller and Ludwig 2002)  or WS-Agreement 
(Ws-Agreement Framework 2003). WSLA allows providers to define quality dimensions and to 
describe functions to evaluate them. Furthermore, it provides monitoring of the parameters during 
operations and invocation of recovery actions when contract violations occur. Similarly, WS-
Agreement provides constructs for advertising the capabilities of providers and creating agreements 
based on creational offers, and for monitoring agreement compliance at runtime. Once the service 
capabilities description is provided, the selection of the most suitable service is enabled by the 
definition of the users requirements. The SLA definition starts from provider capabilities and users’ 
requirements specification and defines all the condition of the service provisioning.  
In the data quality field, quality requirements are focused on a set of criteria able to define the 
suitability of a data set for the process in which it is involved. Data quality is a multi-dimensional 
concept and the data quality literature provides a thorough classification of data quality dimensions, 
even if there are discrepancies on the definition of most dimensions due to the contextual nature of 
quality. The six most important classifications are presented in (Wand and Wang 1996, Wang and 
Strong 1996, Redman 1996, Jarke et al. 1999, Bovee et al. 2001, Naumann 2002). By analyzing these 
classifications, it is possible to define a basic set of data quality dimensions including accuracy, 
completeness, consistency, timeliness, interpretability and, accessibility, which represent the 
dimensions considered by the majority of the authors (Scannapieco and Catarci 2002). The assessment 
of these dimensions reveals the ability of a data collection to meet users’ needs. 
In the literature, data quality users’ requirements have been mostly used as one of the driver for the 
identification of the most suitable data source (e.g., Scannapieco et al. 2004). Users’ requirements 
have been sometimes translated into utility functions. In (Even and Shankaranarayanan 2007), utility 



functions have been used by supporting multiple assessments of quality, each within a different usage 
context.  Utility functions have been also used to alleviate the problem of data fusion in the presence 
of inconsistencies, for example in combining different versions of the same data (Motro et al. 2004).  
As already discussed in the Introduction, in the data quality field, the provider perspective has been 
scarcely considered. Data quality agreements issue has been only addressed in quality-constrained data 
provisioning (Missier and Embury 2005). Missier and Embury (2005) propose a framework for the 
definition of formal agreements between the provider and the customers. Focusing on the 
completeness dimension, they also provide an algorithm for dealing with constraints on the 
completeness of a query result with respect to a reference data source.  
In our work, the approach can be considered innovative since providers capabilities are not fixed at 
priori. In fact, we primarily consider the users’ requirements and we assume that the provider 
capabilities are functions of the current quality level of their IT services and of the costs related to the 
improvement activities needed to satisfy users requirements.  

3 THE SERVICE PROVISION AND DATA QUALITY 
REQUIREMENTS SPECIFICATION 

A business process can be composed and executed by means of IT and physical services. The former 
are services that are responsible for data manipulation and that aim at generating and providing useful 
information. The latter are business services that are composed of physical activity that cannot be 
made automated (e.g. delivery of goods). In this paper we focus on the first type of services and we 
characterise them by considering functional and non-functional requirements. Since the output 
provided by IT services is information, the quality of such services can be mainly evaluated by 
considering data quality dimensions.  
In our model, in the data quality assessment phase, we consider the quality dimensions introduced in 
the previous section and define an aggregate measure of data quality level (qc) by using a weighted 
average, that is: 

∑
=

⋅=
N

i
ii dqwqc

1
          (1) 

where wi are the weights that denote the importance of the single dimension dqi for the user or the 
provider and N is the total number of the considered criteria. In order to use this model, we make the 
main assumption to consider the quality dimensions independent of each other. 
If the assessment results reveal that the provider sources are characterized by an insufficient data 
quality level, the adoption of quality improvement techniques should be considered. Improvement 
methods are distinguishable in data-oriented and process-oriented techniques. The former focus on 
error detection and correction, whereas the latter aim at identifying and correcting the activity in the 
process responsible for the error. Therefore, data-oriented techniques are characterized by low 
investment costs and short term benefits, whereas process-oriented techniques imply a very high 
investment cost, even though they are likely to provide long-term benefits. Process-oriented 
techniques are, in general, to prefer, since data-oriented techniques need to be performed periodically 
to obtain long-term benefits and thus the total cost will be higher than the initial investment of any 
process-oriented technique.  
In the framework proposed in this paper, the providers should evaluate their convenience to improve 
the data quality level by also considering that low data quality levels raise poor quality costs, mainly 
due to service failures and consequent repair actions. 
A fundamental hurdle is that costs and benefits of attaining a certain data quality level are difficult to 
estimate ex ante. We consider a distinction between non-quality and quality costs.  

• Non-quality costs: they are costs associated with poor data quality and, consequently, with all 
the activities necessary to correct errors and re-execute tasks.  

• Quality costs: they are associated to the activities and resources necessary in the improvement 
project.  



Improvement interventions may be of variable complexity. They could regard the purchase and 
implementation of standard software tools (e.g., data cleaning tools), the design and the development 
of ad-hoc software modules or, in the most complex cases, the re-organization of the whole IT 
architecture (e.g. for improvement of information availability or security). Therefore, quality costs can 
include licence costs, hardware costs for the acquisition of new machines and human resources costs 
for analysis, development or implementation activities.  
It is necessary, however, to consider that non-quality costs can be considered as a potential saving, and 
represent tangible benefits of quality improvement. The benefits of the improvement process are at 
least equal to the savings from non-quality costs. Additional tangible and intangible benefits can be 
achieved in higher-performance scenarios. It must be noted that the quality costs depend on the 
improvement techniques that are implemented and benefits are related to the type of services that are 
improved through data enhancement. 

 
 

Figure 1 - Isolated and interconnected services 

On the basis of the role played by information, it is possible to distinguish different types of IT 
services. In this paper, we consider a distinction between isolated and interconnected services (see 
Figure 1): 

• Isolated services: these are services for which the output data are specially produced for the 
final user and they are not used in the information system of the organization, which supports 
the execution of the organization’s business processes.  

• Interconnected Services: they are services which produce information that is also used in the 
organization’s daily operational activities.  

Systems that provide isolated services can be compared to open loop systems in which the 
improvements in the quality of output data are totally dedicated to meet the user requirements. In fact, 
such improvements do not impact on the provider operational processes and benefits from data quality 
improvements will derive only by the increase of the customer satisfaction. Conversely, systems that 
provide interconnected services can be compared to closed loop systems in which improvements are 
likely to influence the organization’s internal business processes and will produce higher benefits for 
the provider. In fact, improvements of the output data will also impact on the correctness of 
operational data and thus, on the execution of all the business processes. In this case, improvements 
decrease the probability that services might fail as well as the poor quality costs.  
Real-time data about stock quote rates, for instance, can be provided by either financial brokering 
institutions or merchant bankers. In the former case, we can label the service as isolated, since brokers 
simply collect data from different sources in order to satisfy the requirements of their customers. In the 
latter case, the stock quote provisioning service can be considered interconnected, since financial 
institutions, besides selling data to customers, are also likely to exploit the same data for their internal 
activities, e.g., managing customers’ investment portfolios.  
Generally, we can introduce a coefficient α  to express the degree of interconnection of a service. It 
defines the impact that a quality improvement intervention undertaken for a service has on the 
provider operational processes. If α = 0, then the service provisioning process is not connected with 
the organizations business processes, whereas if α > 0 the service provisioning process shows an 
increased degree of interconnection with internal business processes (0 ≤ α ≤1) . 
Furthermore, it is also necessary to clarify that service providers are used to offer services along 
different quality configurations (i.e., service levels) in order to satisfy different user requirements. As 



an example, we can consider the visualization of stock values in a trading activity, a classical financial 
service for which timeliness is a critical dimension. For the sake of simplicity, let us consider two 
classes of users: ordinary retail customers and traders. The two classes of users have different 
requirements on stock information. The ordinary retail users can tolerate a lower quality than the 
trader, as they usually access the service with a lower frequency. Moreover, errors on stock values 
have a considerably lower impact, since operations performed by ordinary retail users are usually less 
risky and involve lower amount of money. On the other hand, the trader needs accurate and updated 
information and, therefore, requires high-quality information. The effects of an inaccurate or delayed 
value can be disastrous, since the trader is often involved in very risky operations involving stocks 
from a large portfolio of customers. Therefore, banks are likely to provide two different quality 
profiles for the stock quotes information service. The first profile is characterized by an acceptable 
value of timeliness while the other one specifies real-time information provisioning and is also 
associated with a higher cost.  
In respect of this example, we consider an information service associated to several classes of users. 
Users belonging to a class have the same requirements on the quality of the data provided by the 
service S. In details, our model of service offerings considers a service S and assumes that a user (or 
customer) u is assigned to one of the K user classes UCk, where k=1,…,K. Each class contains users 
with similar characteristics. The number of users in a given class UCk is indicated as Mk. Users 
belonging to the same class are associated with the same quality requirements for the service S. For 
each user class UCk, we define the data quality level qck defined in the service offerings QC(S) for 
service S. Note that each qck is calculated as a weighted average of the requirements specified for the 
different quality dimensions by using the formula shown in Eq. 1. Hence, the service offering QC(S) 
for service S is defined as a set of increasing data quality levels associated to K classes, that is: 
 

{ }KqcqcSQC ,,)( 1 K= .          (2) 
 
From the provider perspective, the aim is to define a service offering QC(S) that satisfies some 
optimization criteria. A first criterion can be of defining service offerings on the basis of the fulfilment 
of the user requirements. Usually, such criteria tend to minimize the specification of subjective quality 
levels, since service offerings are developed to best fit user requirements. In the next section we 
introduce a utility model for describing the provider and the customers’ interest, and define a criterion 
for defining service offerings which jointly considers the interests of both the provider and the 
customers. 
   

4 A MODEL FOR SERVICE OFFERINGS EFFICIENCY 
ASSESSMENT 

In order to define an efficient way for the provider to define service offerings and to decide the quality 
improvement actions to be performed on data, we first need to introduce a model which defines the 
provider and the customers’ utility functions in our informative service scenario.  
The model relies on the definition of utility functions for both the data provider and customers. In our 
model, we adopt quasi-linear utility functions (Jackson 2003).  Quasi-linear utility functions represent 
an efficient and compact modeling tool for negotiations and bargaining problems in which it is easy to 
isolate, for every participant, value and payment terms. We argue that the case of data quality and, 
specifically, information service offerings falls within such category. Sources of benefits and costs 
related to data service offerings for providers and customers, in fact, have already been analyzed by a 
large body of academic literature (Batini et al. 2006, Eppler and Helfert 2004, English 1999, Loshin 
2001].  
Quasi-linear utility functions are such that the utility value for an agent on a given contract X is 
defined by two terms, i.e., a value and a payment term. The value term determines the value obtained 
by an agent from the contract, whereas the payment term refers to the amount of money that an agent 
is going to receive or pay for the contract. Value and payment terms can be either positive or negative. 



For the provider, the payment term is positive and value term is negative, because the provider 
receives money from customers, but, at the same time, it sustains a cost for providing the negotiated 
contract, therefore losing utility. Conversely, the payment term is negative for customers, whereas the 
value term is positive, because the customers pay money for a contract and, at the same time, have a 
positive evaluation of the contract negotiated with the provider. 
We first introduce the definition of quasi-linear utility functions for data providers and customers in 
the multi-class data service scenario introduced in the previous section. Then, we show how the utility 
model can be exploited to provide a criterion for the provider to define the optimal service offerings 
and, consequently, clarify which quality improvements need to be performed. The optimal service 
offering obtained through our model is then compared against the findings of the zero-defect approach 
for data quality management, which, generally, implies the complete fulfillment of the customers’ 
quality requirements. 
Generally, a quasi-linear utility function defined for an agent P behaving in a service provider’s 
perspective is defined as:  
 

( ) ( )XCostXPriceU P −=          (3) 
 
where Price(X) is the price, that is, the amount of money obtained  by P for providing the generic 
contract X (payment term), whereas Cost(X) represents the cost sustained by P to provide the contract 
X (negative value term).  
Similarly, for the generic agent C behaving as a service customer, the utility of a contract UC(X) 
assumes the following form: 
 

( ) ( )XPriceXValueUC −=           (4) 
 
where Value(X) is the value generated by the contract X to the customer, whereas Price(X) is, as in 
UP(X), the price that the customer has to pay for receiving the contract X. 
According to the model presented in Section 3, in our multi-class data service scenario, the contract X 
assumes the form of the service offering QC: 
 

( )KqcqcQCX ,,1 K==          (5) 
 
where qck is the data quality level provided to customers in class k, with k =1,…K. 
In the following, we will consider two agents, i.e. the provider P, providing the service S, and the 
collection of customers C of service S. 
The total amount of money Price(QC) received by the data provider P for the provisioning of a given 
service offering QC is given by the sum of the money received from customers in each service class 
defined in the service offering, that is: 
 

( ) ( )∑
=

⋅=
K

k
kk MqcpQCP

1

,          (6) 

 
where p(qck) is the price of data provided for users in class k, while Mk is the number of users that 
belong to class k. 
The term Cost(QC) represents the cost sustained by the provider to provide a service offerings QC. 
and can be expressed as: 
 

( ) ( ) ( )KPKP qcBqcCQCCost −=         (7) 
 
where CP(qcK) is the cost actually sustained by the provider to provide the maximum quality level qcK 
to its customers, whereas BP(qcK) is a quantification of the benefits introduced in the provider’s 
internal business processes by attaining a maximum data quality level qcK. CP(qcK), is a function of 
only the maximum data quality level qcK in QC(S) since we argue that, once the provider commits to 



provide qcK to its customers, the marginal cost of providing the data service with a lower quality level 
qck, with 1 < k < K-1, is negligible. Similarly, we also argue that it is rational for the provider to use, in 
its internal business processes, data at the maximum quality level qcK. Therefore, BP(qcK) is a function 
of only the maximum data quality level qcK.  
The value term Value(QC) in UC(QC) can be expressed as the sum of values vk(qck) generated for each 
class of customers k. Therefore: 
 

( ) ( ) ( )∑
=

==
K

k
kk qcvQCValueXValue

1
        (8) 

Our objective is to study the optimal service offering QC*=(qc1*,…,qcK*) that maximises the sum of 
the utility for the provider and the service customers. Moreover, we demonstrate that such QC* differs 
from the optimal QCz imposed by the zero-defect approach to data quality management, which implies 
the service offering to fully satisfy the requirements of the customers. More specifically, in our model, 
we argue that the full satisfaction of customers’ requirements occurs when a service offering 
maximises the value vk(qck) for each class of customers. Therefore, in the zero-defect approach, the 
optimal service offering QCz can be defined as follows: 
 

( )z
K
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The sum of the utility of customers and suppliers can be expressed: 

( ) ( ) ( ) ( ) ( ) ( ) ( )∑
=
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k
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1
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Since UP+UC, as a function of QC, is separable in the variables qck, with k=1,…,K, the conditions 
under which UP(QC)+UC(QC) is maximised can be expressed as: 
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           (10) 

 
Since both CP and BP are a function of only qcK, for the first K-1 equations implied by Eq. 10, we can 
write the following: 
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While the Kth equation becomes: 
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In order to go into detail in the analysis of the optimal service offering QC*, we need to characterise 
the functions vk(qck), CP(qcK), and BP(qcK) in our information service offering settings. 
Considering past contributions (Batini et al. 2008, Eppler and Helfert 2004, English 1999, Loshin 
2001) on data quality costs, it is possible to consider the following form of costs CP(qcK) sustained by 
a provider: 
 

)exp()( KKKP qcIqcPFqcC ⋅+⋅+=         (13) 
 



where the F, P, and I are coefficients that reflect the complexity of a generic data quality project. The 
coefficient F is related to the fixed costs of the data quality projects required for achieving qcK, such as 
licence costs or hardware costs for the software and IT infrastructure required by the project. The 
coefficient P relates to the project development part, in which we have variable costs associated to the 
analysis and implementation activities that are evaluated by considering their duration and involved 
human resources. The coefficient I is related to the improvement of some data quality dimensions 
(e.g., availability, accessibility, security). Such improvements usually require considerable changes in 
the whole IT architecture and therefore the costs associated to them grows exponentially with the level 
of data quality qcK that needs to be achieved. 
We make the assumption that the benefits obtained by the service provider to attain a maximum data 
quality level qcK are a fraction α, with 0 < α < 1 of the sustained costs. Such a fraction α is determined 
by the degree of interconnection of the provider’s internal business processes defined in Section 3. 
Specifically, the higher the degree of interconnection, the higher the benefits that the provider can 
obtain on its internal business processes. Therefore: 
 

( ) )exp()( KKKPKP qcIqcPFqcCqcB ⋅+⋅+=⋅= αααα      (14) 
 
We propose two different types of value functions vk=vk(qck) for the set of customers in the generic k-
th class.  
Type 1: Gaussian customers value functions.  
In this case (see Figure 2), the optimal data quality value qck

z for customers in the kth class under the 
zero-defect principle is qck

z=µk, that is, the one that maximises the customers’ value.  
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Figure 2 - Gaussian utility function for customers in class UCk 

Type 2: Monotonic increasing customers value functions. 
The second type of value functions considers monotonic increasing value that saturates at a certain 
value zqc (specifically, we use a sigmoid function to express this second type of value function, see 
Figure 3). Such level qc is the one identified by the zero-defect approach as the optimal data quality 
level for customers in the k-th class, since it maximises the customers’ value. 
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Figure 3 - Increasing Monotonic utility function for customers in class UCk 



 
The Gaussian increasing value function is suitable to model cases in which customers cannot accept 
higher or lower quality values than the requested ones. Considering the example discussed in Section 
3, normal customers can accept out-of-date stock values since they do not have to use these data in 
critical processes, but they cannot accept higher quality level, since this would require an additional 
cost that they should pay for information that they do not actually need. The monotonic increasing 
value function is suitable to model cases in which customer define their acceptable quality level as the 
minimum acceptable value. For example, traders obviously cannot accept out-of-date stock values 
and, therefore, they are likely to fix a minimum quality requirement. However, traders are also likely 
to be equally satisfied with a quality level that exceeds their minimum requirements, since they may 
need to deal with unpredictable and critical situations which could be benefit from higher quality of 
data.  
In respect of Eq. 11, the optimal data quality level in our model qck*, with k=1,…,K-1, coincides with 
the optimal data quality model identified by the zero defect approach, that is, z

kk qcqc =* . 
In fact, for both Gaussian and monotonic increasing value functions, the following condition holds: 
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== 0:*  for k=1,…,K-1. 

In other words, both our model and the zero-defect approach to data quality management imply that 
customers who do not ask for the maximum level of data quality should be provided with a level of 
data quality that fully satisfy their requirements, that is, that maximises their value. 
For the maximum level of quality provided to customers, the findings of our model differ from the 
corresponding findings obtained with the zero-defect approach, i.e. z

KK qcqc ≠* . 
In our model, the data quality level qcK is determined by solving Eq. 12, which can be rewritten as: 
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which then leads to the following equation: 
 

( ) ( ) ( ) ( )K
K

K qcIP
qc
qcv exp11 ⋅−⋅+−=

∂
∂ αα .         (16) 

A first consideration that must be made is that the maximum level of data quality qcK does not depend 
on the fixed costs F of the data quality project. This is consistent with the fact that, by definition, fixed 
costs must be sustained for any data quality project, the maximum level of attained quality qcK 
notwithstanding.  
Eq. 16 can be solved graphically in two cases C1 and C2 that consider, respectively, Gaussian and 
monotonic increasing functions for modelling the customers’ value. A graphical representation of the 
solutions of Eq. 16 in case C1 and C2 is given in Figure 4 and Figure 5, respectively. Please note that 
in the graphical solution, the function f(x) represents the derivative of the customers’ utility function 
on v(qcK) (i.e. left argument in Eq. 16). 
The graphical representation of the solution to Eq. 16 in case C1 is reported in  Figure 4. 
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Figure 4 - Determining the optimal data quality level (Case C1, Gaussian customer utility) 

The first conclusion that can be drawn is that, generally, z
KK qcqc <* , that is, our model implies a 

maximum data quality level that is lower than the optimal level predicted adopting the zero-defect 
approach. This is consistent with the fact that, while the zero-defect approach only considers the 
maximisation of customer’s requirements, our model considers a trade-off between the costs sustained 
by the provider to provide a certain maximum data quality level (and the benefits induced by these) 
and the value produced for the customers requiring maximum data quality. 
Second, the maximum data quality level *

Kqc  decreases as the costs (both P and I) for providing a 
certain data quality level increase (see *

Kqc  low costs and *
Kqc  high costs in Figure 4). Moreover, 

*
Kqc  decreases as α decreases, since both terms P(1-α) and I(1-α) increase. A lower value of α 

implies a lower degree of interconnection, as defined in Section 3, of the provider’s business 
processes. In our modelling of the informative service provisioning scenario, a lower degree of 
interconnection implies a decrease of the benefits induced on internal business processes by the 
attainment of a certain level of data quality. Therefore, our model can be used to identify which is the 
impact of the degree of interconnection on the decrease of the maximum data quality level *

Kqc  that 
can be provided to customers.  
Third, it has to be noticed that the more spike shaped the Gaussian function representing the value 
created for customers, the closer the quality level *

Kqc  to the zero-defect approach level z
Kqc (see *

Kqc  
spike and *

Kqc  low costs in Figure 4). This can be interpreted by stressing that when customers’ 
interested are clearly stated, i.e., the function representing the value created for customers in the Kth 
class is spiked around µK, then it will be easier for the provider to identify the optimal trade-off 
between the costs sustained for providing quality of data and the value generated for customers (and 
this will be closer to the optimal satisfaction of customers’ requirements hypothesized by the zero 
defect approach to data quality management). 
Finally, in case C1, it has to be noticed that when costs are too high, Eq. 16 cannot be solved, i.e., 
there is no intersection between the two functions (dotted and straight lines in Figure 4, respectively) 



represented in the Figure 4. In other words, it is impossible for the provider to find the trade-off 
between the cost of quality of data and the value generated for customers. 
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Figure 5 - Determining the optimal data quality level (Case C2, Monotonic increasing customer 

utility) 

The graphical representation of Eq. 16 in case C2 is shown in Figure 5. The major findings already 
discussed for case C1 hold also in this case. More in detail, the maximum data quality level  *

Kqc  
predicted by our model will always be lower than the value z

Kqc  implied by the zero-defect approach 
and *

Kqc  decreases as (i) the costs sustained for providing data with a certain level of quality increases 
and (ii) the provider’s business process are less interconnected (i.e., α decreases). 
Similarly to what happens in C1, a solution to Eq. 16 may not be found if costs are very high also in 
C2. Moreover, it has also to be noticed that the value *

Kqc  drastically decreases as the cost terms P(1-
a) and I(1-a) increase.  

5 CONCLUDING REMARKS AND FUTURE WORK 

The paper has presented a novel approach for defining optimal service offerings for information 
services. In particular, our model defines the optimal service offering as the one that maximises the 
sum of the service provider and customers’ utility functions. The optimal service offering obtained 
with our model differs by the one defined by the zero-defect approach in the definition of the 
maximum quality level. In particular, our model argues for lower maximum quality levels, in order to 
keep into consideration the trade-off between the costs sustained by the provider for improving the 
quality of data, the value created by the service offering for customers, and the benefits obtained by 
the provider on its internal business processes from the improvement in the quality of data. 

The limitations of our model imply the need for future work on the model development. First, the 
model relies on the ability of the service provider to estimate the utility functions of the classes of 
users for the provided service. Understanding preferences of users requires the development of user 
profiling and clustering techniques, which should be further investigated. Second, our model defines 



optimality of service offerings in terms of the maximisation of the sum of the provider and customers 
utilities. Optimality may be defined according to other metrics involving utilities of the involved 
actors. In particular, we want to investigate the notion of equilibrium of service offerings, i.e., 
studying optimal service offerings that define an equilibrium among the service provider and the 
customer in the utility space. 
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