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USING INTERPRETIVE STRUCTURAL MODELING TO 

UNCOVER SHARED MENTAL MODELS IN IS RESEARCH 

 

 

Abstract 

The role of grounded approaches has been advocated for long in IS research. However, the 

inherent subjectivity of such approaches and the apparent lack of a basis to validate or even 

replicate such research has often been the subject of debate among IS researchers. As a result, 

many IS researchers tend to fall back on variance-theoretic approaches to conceptualize, design 

and operationalize their research. In this paper, we show how a grounded approach, interpretive 

structural modeling (ISM), can be used to qualitatively elicit individual cognitive structures. 

Further, we show how it can be applied to derive the shared aspects of such a structure across 

many individuals. We use the well-known technology acceptance model (TAM) to demonstrate the 

utility of our approach. We conclude the paper by discussing the strengths and weaknesses of this 

approach. 

Keywords:  Interpretive structural modeling, information system, user acceptance, inductive research, 

research methods 

 

1. INTRODUCTION 

ISM is a graph-theoretic method that belongs to the causal mapping family of approaches. It can be used 

to address problems that are complex and subjective. The ISM approach is useful when a multilevel 

research design is required where the outcome of the research can not be predicted based on available 

research (Klein and Kozlowski, 2000) – implying the use of both theory- and data-driven approaches for 

research. 

Our objective in this paper is to demonstrate the effectiveness of interpretive structural modeling (ISM) in 

carrying out inductive research in information systems (IS). We have focused on inductive research (data-

driven) because of the relative paucity of such research in the IS literature. While we believe that 

inductive approaches have the potential to contribute significantly to both theory and practice, we are also 

aware that theories that are grounded in data tend to be relatively harder to defend. The essential premise 

for the use of such approaches by a researcher tends to be that existing theories do not account for the 

complex phenomena that a researcher faces. It is implicit in inductive approaches that a careful study of 

the phenomenon will reveal the hidden patterns that a researcher believes exist.  

Using the ISM approach, we suggest a way to efficiently elicit and synthesize user responses with respect 

to complex phenomena. We demonstrate that ISM can help to operationalize research approaches that can 

be considered a grounded theory by using graphical techniques to extract underlying structures from data. 

These structures would form what is often the outcome of grounded theory – revealed thought patterns. 

We believe that individuals share aspects of cognitive structures that they form about technology and its 

use. Such shared aspects across individuals can be used to develop theoretical models which can be tested 

and validated subsequently. We refer to the shared aspects of cognitive structure across individuals as 

shared mental models in this paper. 



We apply non-directed and non-model-driven approach of ISM to generate a well-accepted and well-

known theoretical model, technology acceptance model (TAM). We would like to clarify that the focus of 

this paper is not to replicate or revalidate TAM model but to just use it as an example to demonstrate the 

application of ISM approach to generate theoretical models in IS field. By showing that such theory-

generation is possible, we hope to persuade IS researchers to employ this technique appropriately in 

settings or phenomena for which theories do not yet exist. While other causal mapping techniques have 

been used in IS research (Nelson et al., 2000; Tan and Hunter, 2002), the ISM approach is different in that 

it is relatively more efficient (in some cases) and lends itself to being replicated more effectively. 

Since we are not sure about the level of familiarity with ISM methodology among IS researchers, we 

introduce ISM methodology first. We then describe how the characteristics of problems (especially 

complexity and subjectivity) that IS researchers face make the problems well suited for being scrutinized 

with ISM. We then take up a well-tested theory in IS research (the technology acceptance model - TAM) 

and show how ISM can be used effectively to develop a TAM. After analyzing the results, we discuss the 

implications of ISM for IS research in general and elaborate on its strengths and weaknesses. Finally, we 

suggest areas of IS research that could benefit from the use of ISM. 

The contribution of this paper lies not so much in the novelty of the particular finding – but in the novelty 

and potential of data collection and analysis and how ISM approach can be used in IS research. Since we 

were able to recreate the TAM structure, we are encouraged to suggest ISM as a viable research approach 

for many IS research problems that are inherently inductive and qualitative in nature.  

2. EXPLANATORY FRAMEWORKS IN IS RESEARCH 

We start with the premise that no IS research is either completely inductive or completely deductive. To 

that extent, development and/or extension of the theoretical framework is often the precursor to empirical 

support for that theory. However, a major problem with existing approaches to theory development (and 

research, in general) in IS is the fragmented adhocracy, a result of the federated research framework at 

work (Landry and Banville, 1992; Hirschheim et al., 1996). Given the richness of the field and the 

absence of normative or prescriptive frameworks, researchers and consumers of research (who are 

primarily other researchers) tend to align themselves with a well-established set of ideas or work on a 

well-known problem. Researchers usually adopt approaches that tend to reconfirm existing theories in a 

different context or marginally extend them. In doing so, researchers protect themselves from criticisms 

from other groups that do not agree with their assumptions or beliefs. This framework certainly allows for 

a thousand flowers to bloom – and enriches the IS field. However, in being overly theory driven, IS 

researchers may end up playing to the wrong gallery – that of other researchers. However, if IS is an 

applied discipline, then practitioner-driven research can also be effectively and rigorously incorporated 

into the IS research process. Stated differently, research that is grounded in data, and which need not be 

subjected to the researcher’s interpretation, can also be useful to investigate multiple phenomena. 

The notion of causality in IS research has long been held to the same standards as those of its stronger and 

better-established disciplines like psychology and economics. The plurality of perspectives in IS research 

has certainly led to stronger criticism and a shared awareness/need for rigor. This plurality has also 

resulted in a variety of “explanation types” in IS research. Since the field of IS is built from both natural 

and artificial scientific disciplines, Hovorka et al. (2003) argue that explanation types depend on the 

reference disciples through which research phenomena are understood and research agendas are shaped. 

Hovorka et al. (2003) provide the following types of explanation types: descriptive/structural explanation, 

covering-law explanation, statistical relevance explanation, pragmatic explanation and functional 

explanation. While majority of IS research was categorized as statistical relevance (35%), a significant 

proportion of explanation in IS research was categorized as descriptive/structural explanation (25%) and 

framework or model-based (23%). The emergence of process-theory (Soh and Markus, 1995; Crowston, 



2000; Kanungo, 2003) perspective
1
 in IS research points to the need for alternate methodologies to 

support descriptive/structural explanation option.  

Our approach, in this paper, can be considered to belong to the descriptive and pragmatic explanation 

categories. We take advantage of the fact that human knowledge, "consists of models constructed by 

human beings" (Warfield, 1998). Our approach focuses on modeling complex entities created by the 

multiple interactions of components by abstracting from certain details of structure and components, and 

concentrating on the dynamics (or linkages) that define the behaviors, properties, and relationships that 

are internal or external to the system. 

3. INTERPRETIVE STRUCTURAL MODELING (ISM) 

ISM falls into the soft operations research (OR) family of approaches. Soft OR methods can be used to 

augment traditional quantitative methods, but do not replace traditional tools and techniques (Glasgow, 

2000). ISM is a process that helps groups of people in structuring their collective knowledge. The term 

ISM refers to the systematic application of graph theory in such a way that theoretical, conceptual, and 

computational leverage is exploited to efficiently construct a directed graph, or network representation, of 

the complex pattern of a contextual relationship among a set of elements. In other words, it helps to 

identify structure within a system of related elements. It may represent this information either by a 

digraph (directed graph) or by a matrix. Interpretive Structural Modeling results in a “directed graphic 

representation of a particular relationship among all pairs of elements in a set to aid in structuring a 

complex issue area” (Porter, et al., 1980).  

There are three broad steps for developing an interpretive structural model. Step 1: ISM begins with an 

issue or problem (Hansen et al., 1979). Step 2: The next step is to identify the elements that comprise the 

issue context are listed. Step 3: In the third step, pairs of elements are compared graphically or in a 

relation matrix, using a contextual relationship, which is mostly a verb or a verb phrase. Typical generic 

verbs are “influences” or “causes” and verb phrase are “leads to” “is more important than”. Following the 

selection of the contextual relationship, a graphic representation of the mental model is constructed using 

the approach described later in the subsequent paragraphs. Mizuno (1988) describes the relationship 

diagram as a tool that “clarifies intertwined causal relationships in complex problems or situations in 

order to find appropriate solutions (p. 87).” The relationship diagram, therefore, provides a visual means 

of mapping out the causal and/or associated relationships in the development of a coherent theory 

(Anderson et al., 1994). Warfield and Perino (1999) elaborate on the utility of ISM further as the 

representation of a problematique because it captures the richness and the variety of complex phenomena. 

A problematique is a graphical portrayal – a structural model – of relationships among members of a set 

of problems (Warfield and Perino, 1999). 

Application of ISM Approach   

Having discussed the ISM methodology, we now demonstrate the application of ISM approach to uncover 

shared mental models. The shared mental model can be treated as a tentative theoretical framework 

because it captures how respondents commonly understand and explain a phenomenon under 

consideration
2
. We applied ISM to a well-studied phenomenon in IS – information system use. We took 

this approach because we wanted to demonstrate the effectiveness of this technique by validating our 

                                                           

1
 A process framework is denoted by Y = F(C) where Y is the set of outcomes or consequences of a process, C is the set of 

considerations or elements in the process, and F is the network linking the considerations to each other and to the outcomes. 

Process models are often considered to be complementary to models that lend themselves to variance-theoretic approaches – in 

other words statistical models. 

2 This tentative theory can then be subjected to variance theoretic approaches. For instance, a model generated using ISM could 

be statistically validated (or, for that matter, invalidated). 



results with a well-tested theory. We used ISM (Sage, 1977; Warfield, 1973, 1974) to collect, analyze and 

synthesize the data. Following the three broad steps described above, we first identified the problem at 

hand. Our problem was to understand IS use behavior at the individual level. The IS usage context that we 

focused on was spreadsheet usage. We selected spreadsheet usage because it is a well-known and 

ubiquitously available application and yet there is enough variety in terms of its use and acceptance in 

different usage contexts. 

The next step was to identify and list the elements that are relevant in the problem context. For this we 

chose to provide the respondents with a superset of elements from Venkatesh et al’s (2003) unified 

technology acceptance model shown in Table 3. The expectation was that not every user will find every 

element useful or relevant in the context of IS use. We added an additional element, IT-enabled 

productivity, to the list of elements from Unified Theory of Acceptance and Use of Technology 

(UTAUT). This theory is an extension of TAM. Users were given the option of providing any other 

elements that they believed would influence IS use. As stated before, all research can be construed as part 

inductive and part deductive. For this research, this step was useful to provide an initial list of elements 

that each individual user considered to be important to the aspect of IS use. In doing so, we were also able 

to obtain a set of elements that were common to all respondents. 

No. Element Definition 

1 
Performance 

expectancy (PE) 

Performance expectancy is defined as the degree to which an individual believes 

that using the system will help him or her to attain gains in job performance. 

2 
Effort expectancy 

EE) 

Effort expectancy is defined as the degree of ease associated with the use of the 

system. 

3 Social influence (SI) 
Social influence is defined as the degree to which an individual perceives that 

important others believe he or she should use the system. 

4 
Facilitating 

conditions (FC) 

Facilitating conditions are defined as the degree to which an individual believes 

that an organizational and technical infrastructure exists to support use of the 

system. 

5 
Behavioral intention 

(BI) 
Intention to use the information system 

6 Use behavior (Use) Actual use (time spent using the information system) 

7 Self-efficacy (SE) 
Judgment of one’s ability to use a technology (e. g., computer) to accomplish a 

particular job or task. 

8 Anxiety (AN) 
Evoking anxious or emotional reactions when it comes to performing a behavior 

(e. g., using an information system). 

9 
IT-enabled 

productivity (IP) 

Actual improvements or gains in job performance as a result of using the 

information system 

Table 3. Set of Elements Used in the Study 

The third step was to compare pairs of elements graphically or in a matrix. The contextual relationship 

that we used in this study was “influences.” This forms the essence of the inductive process – where each 

user performs pair-wise comparisons among elements of the set of variables and a final structure emerges. 

It is important to reemphasize at this point that although we limited ourselves to the nine elements of 

UTAUT, we did not specify a research model nor did we specify any variables to be dependent or 

independent. This is what makes this approach inductive and the theory emergent. 

The data elicitation protocol was based on a structured interview. Every respondent was provided with a 

9×9 matrix shown in Appendix A. The user was instructed that she would have to fill out the upper 

triangular only. To do that, the user would engage in a pair-wise comparison of elements. For instance, to 



compare the PE and EE pair the user would answer “yes” to only one of the following three questions: 

Does PE influence EE? Does EE influence PE? Are EE and PE unrelated? If the element in the row led to 

the column element, it was coded as �. If the element in the column led to the row element, it was coded 

as �. Lack of a relationship was coded as O. While filling out this the researcher (or the research 

assistant) would also document the reason(s) for why the respondent chose a particular relationship 

between two elements. These would typically be direct quotes from the respondent explaining her 

response. As shown in Appendix B, every respondent was requested to make 36 pair-wise comparisons.  

We collected pair-wise comparison data from 88 individuals. These individuals were selected randomly 

from four organizations to which graduate research assistants were provided access. The average time for 

an interview was one and a half hours. The interviews typically started with the researcher explaining to 

the respondent the study protocol. Most of the time was used up by the pair-wise comparisons and an 

explanation of the constructs along the way. The interview typically ended with the interviewer collecting 

data on the respondent’s gender, age (age range), experience with computer use (in years) and 

voluntariness of use of spreadsheets (descriptive). These data items have not been used in this research 

paper. The interviewer also collected respondents’ justification for their inputs to pair-wise comparisons. 

This was, typically, a single sentence and, sometimes, a small paragraph. 

4. ANALYSIS AND RESULTS  

While we collected data based on all the elements shown in Table 3, in this paper we report on a subset of 

the data – one that pertains to TAM. Table 4 shows how responses were distributed. For instance, we can 

see that 33 out of 88 respondents believed that effort expectancy influences performance expectancy. In 

the same cell, 29 out of 88 respondents believed that performance expectancy influences effort expectancy 

and 26 out of 88 respondents believed that there is no relationship between performance expectancy 

influences effort expectancy. 

 

 PE EE BI Use 

� = 33 � = 26 � = 31 

O = 26 O = 13 O = 13 PE  

� = 29 � = 47 � = 37 

� = 15 � = 27 

O = 7 O = 9 EE  

 

 

 � = 65 � = 45 

� = 13 

O = 14 BI    

� = 50 

Use    

 

 

 

 
Table 4. Frequency of Responses (numbers show the frequency distribution of responses) 

Each individual’s response results in a directed graph. That graph captures how an individual understands 

the linkages between the elements and can be considered to be the individual’s mental model. The shared 

mental model across individuals is captured by the degree of overlap across all the individual directed 

graphs. In order to seek out those common patterns from these data, we employed the straightforward 

counting technique for aggregating data across individuals based on Kanungo et al., (1999). In order to 

retain the “shared” component of the mental models we had to define a minimal level of sharing. This 



minimal level was 50%. This means that for a meaningful shared view (or a pattern) of how individuals 

believed the elements were linked, we opted for a simple majority. While this can be understood to 

capture the shared variation (to use a variance theoretic term), we also have the option of analyzing and 

understanding the inputs of those individuals who did not “fit” into the majority view. This will be taken 

up in the discussion section. 

Based on the 50% cut-off, the following relationships (PE � BI, 54.65%; EE � BI, 74.71%; EE � Use, 

55.56%; and BI � Use, 64.93%) emerged as being common across a majority of respondents. For the 

other relationships, no clear relationship emerged as dominant and hence that lack of clarity was coded as 

the absence of an agreed upon relationship. The final relationship matrix we obtained is shown in Table 5. 

 PE EE BI Use 

PE  O � O 

EE   � � 

BI    � 

Use     

Table 5. Final Relationship Matrix 

This translates into the binary relationship matrix shown in Table 6. The elements in the diagonal are 1 

because every element (from a reachability
3
 standpoint) can “reach” itself. As mentioned before, the “V” 

coding implies that the row variable influences the column variable and not vice versa. So, for instance, in 

the case of PE and BI, PE influences BI. That means that the element in row 1 and column 3 (excluding 

row and column headings) will be 1, while the element in row 3 and column 1 will be 0. The lack of a 

well-agreed relationship is coded as zeros. 

 PE EE BI Use 

PE 1 0 1 0 

EE 0 1 1 1 

BI 0 0 1 1 

Use 0 0 0 1 

Table 6. Binary Relationship Matrix (1 implies a relationship exists) 

Next, we identified the levels associated with each element by identifying the reachability and antecedent 

sets. This iterative process is shown in Tables 7 and 8. Essentially, for all the reachability sets that are 

proper subsets of antecedent sets, we associate the same level and eliminate those variables or elements 

for the next iteration. We do this till we have no more reachability and antecedent sets to compare. 

ei R(ti) A(ti) R(ti) ∩∩∩∩ A(ti) Level 

1 [PE] 1 1, 3 1 1 

2 [EE] 2 2, 3, 4 2 1 

3 [BI] 1, 2, 3 3, 4 3  

4 [Use] 2, 3, 4 4 4  

Table 7. The Reachability Set and the Antecedent Set 

                                                           

3
 “Reachability”, in this case, has to do with relations between elements. Relations between elements are assumed transitive in 

ISM. In other words, if A “leads to” B and B “leads to C”, then A “leads to C”.  From a causality standpoint, every element if 

perfectly correlated with itself. 



Table 7 shows that PE and BE are at the same “level” (level 1) in the hierarchy of the elements that need 

to be structured. Table 8 shows that BI is at level 2. This partitioning of elements into levels creates the 

“structural” model that adds value to the graph by preventing it from being a non-directed graph. 

ei R(ti) A(ti) R(ti) ∩∩∩∩ A(ti) Level 

3 [BI] 3 3, 4 3 2 

4 [Use] 3, 4 4 4  

Table 8. The Reachability Set and the Antecedent Set -II 

The final levels associated with the elements are shown in Table 9. These levels are used to draw the final 

graph shown in Figure 3.  

Level Elements 

1 PE, EE 

2 BI 

3 Use 

Table 9. Final Levels for Elements 

The final structure is constructed using information from Table 7 and Table 4 (steps shown in Appendix 

B). In this case, there are no transitivities to be removed; hence we retain the graph shown in Figure 3. It 

is to be noted that this “model” emerged from the data as it were as opposed to us framing the 

relationships in any predefined manner. 

 

Figure 3.  Final Influence Structure 

Given the contextual relationship (influences), we can read this diagram to convey the following: 

performance expectancy (PE) and effort expectancy (EE) influence behavioral intention (BI), which 

influences IS use (Use). While Figure 3 shows the consensus structure, it is important to keep in mind that 

there are 88 (number of respondents) possible graphs. 

5. DISCUSSION 

The key objective of this paper was to show how a non-directed and qualitative approach could be used to 

replicate results from a validated line of research. The final result in Figure 3 shows that the model that 

emerges from the ISM process is structurally identical to the one suggested by Davis (1989). The primary 

contribution of this research paper lies in demonstrating that ISM is an efficient and effective method to 

undertake research that is aimed at theory development based on an inductive approach. In the remainder 

of this section, we discuss the scientific contributions and implications, practical implications, and 

limitations of our work. 

The structure of equations, variables, and parameters of module is visualized by the ISM hierarchy 

(Warfield 1976). Since the directed graph consisting of extracted linkages does not explain the whole 

systematic order of cause-effect relationships, a researcher may not be able to grasp how to calculate an 

output variable from other input variables and parameters. The structural analysis by ISM classifies 



variables and parameters according to the hierarchical levels, which are obtained by finding a set of nodes 

that cannot reach any other nodes except the set itself. The hierarchically organized directed graph 

ensures that only linkages from a lower level to an upper level are included in the entire graph; however 

there is no reverse directional arc. Nodes at the same level tend to imply that they codetermine or co-

influence elements in the subsequent level. 

An important part of the entire exercise needs to be underscored at this stage. There was no a priori 

definition of a dependent variable. Nor was there any a priori definition of an independent variable. 

However, as argued by Bougon and Weick (1977), who used a variant of this technique as causal maps, 

the variables on the left, middle and right can be treated as the set of givens, means and ends respectively. 

As a result, such a model, once it emerges from research, can subsequently be subjected to further 

empirical scrutiny by subjecting each element pair to tests of correlations individually or using structural 

equation modeling or path analysis. 

It is also important to note from our data collection and analysis process that we have provided a robust 

framework for stepwise refinement and synthesis. Both the ability to do stepwise refinement and 

synthesize multiple inputs are important for inductive research. Stepwise refinement is important from the 

standpoint of localized attention to a specific phenomenon at any given point in time. When a respondent 

deals with pairs of constructs, it is hoped that she is concentrating on those two constructs only (and 

operationalizing the ceteris paribus assumption). The essential idea is to build a larger conceptual model 

piece by piece. Two types of synthesis have also been demonstrated in this paper. The first is the 

synthesis of pair-wise information into a larger graph and the second type of synthesis is the aggregation 

of multiple respondents’ viewpoints into a single graph. 

Depending on the nature of the contextual relationship, the derived ISM can be considered to be a causal 

graph or a causal structure. In this study, given the contextual relationship that we have chosen 

(“influences”), it would be appropriate to consider the emergent graph as a causal model. However, in 

case we had used “is more important than” as the contextual relation, then the emergent graph would be 

more meaningful as a priority structure and it would not be even appropriate to consider it to be a causal 

structure. This is a framework that allows qualitative research to be efficiently replicated. One of the 

major challenges of qualitative research is that it often has a significant interpretive component. Here the 

interpretation is left almost entirely to the respondent and the researcher can focus on addressing the rigor 

of the research protocol. 

Like other methodologies, ISM too has its weaknesses. One weakness of this approach includes 

respondent fatigue. We have found that comparing 36 pairs of elements got the respondents bored – 

especially toward the later stages of the pair-wise comparison process. In addition, some respondents 

could not really shut out other elements while dealing with a specific element pair. For instance, a 

respondent, while comparing PE and EE stated that PE influences EE and her explanation was that “I find 

the spreadsheet easy to use because I use it a lot; and I use it a lot because it improves my job 

performance.” While collecting data, we tended to avoid “educating” the respondent in real-time and 

“contaminating” the data. 

It is also natural for other researchers to question the validity of this approach and, in particular, question 

the relevance of the cut-off value of 50%. Our argument is that if at least fifty percent of respondents 

agree on something, then there is something of significance there. Just as in the case of p-values 

(probability of making a type I error) in inferential statistics, if researchers want additional stringency 

they can reduce the alpha value (maximum allowable type-I error) from 0.05 to 0.01, we could, in our 

case, increase the threshold to 60 or even 70 percent. However, we have found that it is revealing for the 

researcher to start with a lower threshold and incrementally increase the threshold to unravel more 

resilient graph or causal structures. 

A third weakness of this approach, as it has been presented here, is that there is no mention of the strength 

of the relationships between variables. However, there are multiple resolution frameworks for this 



problem. In the context of causal or influence maps, there are many approaches that can be used to impute 

the strength of the causal or relational connection. Techniques like social networks and matrix algebra 

(Axelrod, 1976; Carley and Palmquist, 1992), system dynamics (Eden et al., 1992), relation algebra 

(Chaib-Draa, 2002), neural networks (Rossi et al., 1983), and Bayesian probabilities (Nadkarni and 

Shenoy, 2004) have been used. 

We feel that IS researchers adopting an emic stance to IS research can use this approach to complement 

traditional research approaches. An emic analysis of phenomenon is based on internal structural or 

functional elements of a particular cultural or organizational system. An etic analysis is based on 

predetermined general concepts external to that cultural system (Lovelace, 1984). Since, we have adopted 

an emic perspective that provides the "insider's" or "native's" interpretation of or "reasons" for his or her 

customs/beliefs, this specific perspective can and should be used to compare and contrast with the etic 

perspective which is the external researcher's interpretation of the same beliefs or relationships. In other 

words, this approach can be very useful to compare an IS practitioner’s (user’s or manager’s) mental 

models from what things mean from an analytical, anthropological perspective. 

It would be pertinent to point out at this stage that ISM, as a research approach, may have appeared to be 

overkill when dealing with four variables. We need to keep in mind that our purpose was to demonstrate 

the efficacy of ISM. Needless to say, ISM is far more effective when a researcher is confronted with a 

large number of variables (maybe 10 or more) and where causal ambiguities are a result of the novelty of 

the phenomenon or the inherent complexities. 

Finally, the method, as explained in this study, may not appear as inductive as suggested in the 

introduction. This is because, it may seem that ISM can only be used to generate models of which the 

elements are already known. ISM, as shown here, is capable of generating the relationships between the 

elements. In order to elicit a shared mental model, a variant of the approach presented here, would work 

better. This would involve a two-step approach in which first the elements are collected followed by the 

relationships. This is the suggested approach for researchers planning to adopt this approach. 

6. CONCLUSIONS 

In this study, we were able to show that a qualitative, open-ended and respondent-driven approach 

successfully generated a well-accepted model (theory). The main implication for researchers is that the 

use of such approaches can form an extremely effective and efficient method for capturing the shared 

mental models of IS practitioners. It allows IS researchers to perform research that is interpretive and 

grounded in data efficiently. This is important because, in many instances, IS phenomena are so dynamic 

and changes occur so fast in the IS domain that it is unreasonable to expect researchers to study stable 

phenomena and replicate or disconfirm results obtained by other researchers. Moreover, what happens in 

the field, more often than not, drives academic IS research – and not the other way round. Hence, it is 

important to employ methodologies like ISM that efficiently allow the capture and synthesis of 

practitioners’ viewpoints. From a practical perspective this approach is even more valuable because this 

approach is context sensitive and can be replicated effectively by researchers across contexts. By using 

ISM we have been able to “focus on the concerns of practice, provide real value to [IS] professionals 

Benbasat and Zmud (1999, p. 5)” and apply a balance of pragmatic and academic tone. 
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Performance expectancy  1 2 3 4 5 6 7 8 

Effort expectancy   9 10 11 12 13 14 15 

Social influence    16 17 18 19 20 21 

Facilitating conditions     22 23 24 25 26 

Behavioral intention      27 28 29 30 

Use behavior       31 32 33 

Self-efficacy        34 35 

Anxiety         36 

IT-enabled productivity          

 

This table shows the overall data collection framework. Users were requested to fill in this table with �, 

� or O based on the protocol explained in the body of the paper. Cells that are shaded darker (cell 

numbers 1, 2, 4, 5, 9, 11, 12 and 27) have been used for analysis in this paper. The cell numbers were 

used by the respondents and interviewers to link their responses with justifications for those responses. 

 

Appendix B 

The following steps outline how the interpretive structural modeling methodology is implemented: 

i) Identify elements: The elements of the system are identified and listed. This may be achieved 

through past research, brain storming, or using the nominal group technique. 

ii) Establish a contextual relationship: A contextual relationship between elements is established, 

depending upon the objective of the modeling exercise. This is a verb or verb phrase like 

“increases” or “”is more important than” or “leads to.” 



iii) Prepare a reachability Matrix: For the contextual relation from element Ei to Ej, but not in the 

reverse direction, then element Eij = 1 and Eji = 0 in RM. For the contextual relation from Ej to Ei, 

but not in the reverse direction, then element Eij = 0 and Eji = 1 in RM. For an interrelation 

between Ei and Ej (both directions), then element Eij = 1 and Eji = 1 in RM 

 To represent that Ei and Ej are unrelated, then element Eij = 0 and Eji = 0 in RM. 

iv) Perform level partitioning: Level partitioning is done in order to classify the elements into 

different levels of the ISM structure. For this purpose, two sets are associated with each element 

Ei of the system - A Reachability Set (Ri) that is a set of all elements that can be reached from the 

element Ei, and an Antecedent Set (Ai), that is a set of all elements that element Ei can be reached 

by. In the first iteration, all elements, for which Ri = Ri∩Ai, are Level I Elements. In successive 

iterations, the elements identified as level elements in the previous iterations are deleted, and new 

elements are selected for successive levels using the same rule. Accordingly, all the elements of 

the system are grouped into different levels.  

v) Develop canonical matrix: grouping together elements in the same level develops this matrix. 

The resultant matrix has most of its upper triangular elements as 0, and lower triangular elements 

as 1. This matrix is then used to prepare a Digraph. 

vi) Draw the digraph: Digraph is a term derived from Directional Graph, and as the name suggests, 

is a graphical representation of the elements, their directed relationships, and hierarchical levels. 

The initial digraph is prepared on the basis of the canonical matrix. This is then pruned by 

removing all transitivities, to form a final digraph. 

vii) Create the interpretive structural model: The ISM is generated by replacing all element numbers 

with the actual element description. The ISM therefore, gives a very clear picture of the system of 

elements, and their flow of relationships.  
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