
Association for Information Systems
AIS Electronic Library (AISeL)

ECIS 2009 Proceedings European Conference on Information Systems
(ECIS)

2009

An evaluation of user acceptance of a corporate
intranet
Ansger Jacob
Universität Hohenheim, ansger.jacob@uni-hohenheim.de

Marcus Muller
Universität Hohenheim, marcus.mueller@uni-hohenheim.de

Stefan Kirn
Universität Hohenheim, stefan.kirn@uni-hohenheim.de

Follow this and additional works at: http://aisel.aisnet.org/ecis2009

This material is brought to you by the European Conference on Information Systems (ECIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ECIS 2009 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Jacob, Ansger; Muller, Marcus; and Kirn, Stefan, "An evaluation of user acceptance of a corporate intranet" (2009). ECIS 2009
Proceedings. 65.
http://aisel.aisnet.org/ecis2009/65

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301355173?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fecis2009%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2009?utm_source=aisel.aisnet.org%2Fecis2009%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2009%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2009%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2009?utm_source=aisel.aisnet.org%2Fecis2009%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2009/65?utm_source=aisel.aisnet.org%2Fecis2009%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

AN EVENT-DRIVEN APPROACH TO DYNAMIC SITUATION
DETECTION

Jacob, Ansger, Universität Hohenheim, Information Systems 2, Schwerzstraße 35, 70599
Stuttgart, Germany, ansger.jacob@uni-hohenheim.de

Müller, Marcus, Universität Hohenheim, Information Systems 2, Schwerzstraße 35, 70599
Stuttgart, Germany, marcus.mueller@uni-hohenheim.de

Kirn, Stefan, Universität Hohenheim, Information Systems 2, Schwerzstraße 35, 70599
Stuttgart, Germany, stefan.kirn@uni-hohenheim.de

Abstract

To cope with the emerging demand for individual products and services, new approaches for handling
the individualization in dynamic supply chains are needed. Our object of investigation is to establish
Situation-awareness (SA) in an assistant information system for supply chain partners to cope with
individualization-driven demands. Our contribution is an event-driven architecture design to enable
situational planning using the Situation Calculus upon distributed contextual information. Sensors
raise events among supply chain partner’s information systems, which are combined to context events
in order to derive situations on partner level. Our works follows the Design Science in Information
Systems Research to design and evaluate the architecture design. The preliminary descriptive
evaluation uses life stock transports as an example.

Keywords: Event-driven architecture, context-awareness, Situation Calculus, product
individualization, supply chain management

1 INTRODUCTION

After a period of mass production, the demand for individualized products with prices similar to mass
products is growing (Piller 2003; Pine II 1993; Reichwald and Piller 2006). In order to produce
individualized goods, supply chain partners with special capabilities get together in adaptive
multilevel supply chains. They work together for a limited period of time or for fulfilling the demand
of only few customers. Afterwards that they participate in other supply chains to bring in their special
production capabilities there (Dietrich et al. 2007). New mechanisms are needed to help combining the
right production capabilities quickly and to ensure a high level of product quality as well as supply
chain efficiency. Individualization research is about these adaptive mechanisms for participating
organisations, products and supporting information systems in dynamic multi-tier supply chains (Kirn
et al. 2008). Fleisch et al. (2005) show the past and ongoing development of information technology
usage in companies from using IT for single functions to individualized 1:1 coordination with
customers across company borders. In logistics individualized goods lead to an atomisation of delivery
with more frequent deliveries and smaller quantities (Freitag et al. 2004). To support these future
needs, real-time-management based on ubiquitous computing technologies and identification of
individual products will be needed. Our work focuses on an information systems concept supporting
the product individualisation process while using context and situation interpretation. Stated by
Mertens (2004) Situation-awareness of information systems evolves into a major field of interest for
Business Information Systems (BIS) research.

Our research is motivated by a lack of information system architectures supporting multi-tier product
individualization in an autonomic manner. Object of investigation is an event-driven architecture
which implements situation-based planning. The situation planning is done for each partner on top of
shared context information in a dynamic multi-tier value system. The perspective taken is the
decoupling of context generation and its interpretation through situation logic. This allows to access
varying context information based on partner specific situation logic. Partners can join the value
network and collect available context information relevant for their value transformation from all other
partners to adjust their planning based on their own needs. We argue that situation logic on top of
distributed context information in BIS supports individualized monitoring of the production, storage
and logistics in dynamic value networks. We will present an instantiation of the architecture in life
stock transports to monitor the transport for different supply chain participants. Our work follows the
Design Science in Information Systems Research proposed by Hevner et al. (2004).

Our work uses a livestock transport example for evaluation of the proposed framework. Long journey
livestock transports need monitoring of different parameters during transport. Architectures today, as
shown in the technical specification proposed by the European Union (2006), use static rules causing
alarms based on sensor events recorded by the transport company. To show the individualization
supporting potential of our approach, we propose a company border crossing approach enabling
situation planning for all partners in the livestock supply chain. This allows the optimization of
business processes for the involved partners according to the goods situation. The situation can be set
to the individual customer needs of a product, for example meat from well treated animals.

The rest of the paper is organized as follows: In the second section related work in mass
customization, context and situation information systems research is shown. In section three we
describe our architecture and in section four present an evaluation of the theoretical approach in life
cattle transports fulfilling the European decree for long journey transports (2004). Finally we give an
outlook on future work in section five.

2 THEORETICAL FOUNDATION

After decades of unifying production and products in order to achieve Economies of Scale and Scope,
approaches in Mass Customization aim to support individualization and to keep the cost advantages of
mass production (Piller 2003; Pine II 1993). Differentiation from competitors becomes even more
important in a global economy. In future there will be more options for individualizing goods which
are more suitable for differing customer needs worldwide. An example in shoe industry brings up
promising results for customized goods engineered in multitier supply chains (Dietrich et al. 2007;
EwoMacs 2007). To achieve this, significant changes in information system design for supply chain
information systems have to be applied (Dietrich et al. 2006). On top of the findings of Mass
Customization, Kirn et al. (2008) use a value system centric approach to individualization of goods
and services. According to Porter (1985) a value system couples single value adding activities across
more than one company with certain roles like suppliers, OEM, retailer, service provider or customer,
which can be described using the Porter Value Chain model. The hypothesis in individualization
research is that individualization of goods and services itself is an exclusive value for the customer
that he or she is willing to pay for. Context and situations obtain a major role in building BIS for
supporting pervasively adaptive value systems. Goods can be produced and monitored individually to
support individualization in mostly automated manufacturing processes in an economic manner. Value
system partners can be involved according to the needs of a special good without high cost efforts and
the costs for individualization will decrease enormously. To achieve this, adaption of the value system
in time, space and economy is implied. We realize adaption of value systems using invoked actions
based on detected context and situations in our architecture.

In 1999 Dey, Salber and Abowd (2001) present the context toolkit. It offers a solution for rapid
prototyping of context-aware applications and shows an integrated approach to context-awareness.
The six main features of the context toolkit are encapsulation of sensors, access to context data
through a network API, abstraction of context data through interpreters, sharing of context data
through a distributed infrastructure, storage of context data and basic access control for privacy
protection. To provide these functionalities, the following objects are considered in the context toolkit.
Context widgets give access to context information for applications using the context. Interpreters can
raise the abstraction of a piece of context. Aggregators are used to collect multiple pieces of context
information that are logically related into a common repository. Services execute actions on behalf of
applications. In contrast to a context widget retrieving state information a service changes state
information in the environment via an actuator. Finally the Discoverer maintains a registry of context
capabilities (widgets, interpreters, aggregators and services) actually existing in the framework. The
context toolkit is a framework for dealing with context elements on different levels of abstraction, but
Dey and Abowd do not explicitly define situations. The term situation can be derived from their
definition for context (Dey and Abowed 1999): “Context is any information that can be used to
characterize the situation of an entity. An entity is a person, place, or object that is considered
relevant to the interaction between a user and an application, including the user and applications
themselves.” Following this definition a situation is seen as a combination of context elements and
reflects the detection of these elements. It does not cope with the requirements of a situation which
may occur in future or try to work with special requirements a situation may bring up by its dynamic
state in time. The Context Toolkit integrates important functionalities for dealing with context
elements, and hence we adapt some elements of their approach to handle context information in our
architecture.

Some approaches aim to individualize process execution according to a given context. Schicker et al.
(2007) follow the approach of Case Based Reasoning (CBR) to find similarities between processes and
electronic services within the processes to enforce the reuse of already existing knowledge. Once a
process similar to the actually needed is found, its structure is changing using the adaptive CBR
mechanisms. The possible operations are add, delete, change order and change of structural relations
to adapt the dimensions within the CBR process. The proposed architecture implies high manual effort

in setup and maintaining. Unknown context elements are not considered in order to have a complete
picture of the process. These shortcomings are addressed in our work. Instead of forming processes
based on services, we change the process based on upcoming situations. A situation defines the
context it needs to know.

Handling vague context information using situation mechanisms is made by using methods applied in
artificial intelligence. Bachfischer et al. (2007) make use of Bayesian Networks in order to adapt user
interfaces according to given context information. Their approach optimizes complex modern car
interfaces for accessing entertainment, air conditioning, navigation system, telephone and more
functions. The Bayesian Network is used to estimate the driver’s situation using sensor input from the
car. After the interface of the car is adapted the driver can reach functions in which he or she is most
probably interested in the current situation on top level. A high temperature inside the car may lead to
a high ranking for the buttons to control the air-conditioning. Currently, their implementation tries to
anticipate the driver’s situation and displays a set of POI1 accordingly, e.g. the display shows gas
stations when the gas level is low. This solution is possible in closed systems like a car, but cannot be
prewired in dynamic supply chain networks. Anagnostopoulos et al. (2007) make use of the fuzzy
logic theory to cope with imperfect observations of context. They use and define situation-awareness
as “the particular kind of context-awareness, where situations are viewed as logically aggregated
pieces of context” (Anagnostopoulos et al. 2007). Their definition is one of only few definitions
differentiating between context and situations, but finally implies the aggregation of context only. For
them a situation-aware application has “to estimate the user’s current situation(s) and react
appropriately” and to “autonomously adapt to the user’s current situational context”
(Anagnostopoulos et al. 2007). They propose a situation estimation architecture, which applies rules
for situation detection and action determination by exploiting the user’s reactions in order to become
more pervasive. According to a given estimated situation of a user the system applies actions based on
an ontology containing relations between situations, persons and contexts. The context is differentiated
into personal, temporal, special and artefact context. Using fuzzy algorithms and learning capabilities
is a considerable future enhancement for our work. But the approach Anagnostopoulos et al. take has
its limits in changing sensor environments, which we will cope with.

There are also situation- and individualization-related approaches adapted from artificial intelligence
methods in supply-chain research. Freitag et al. (2004) describe the autonomous logistic concepts
developed within the CRC 637 – Autonomous Cooperating Logistics Processes: A Paradigm Shift and
its Limitations. They establish autonomy and a new control paradigm for logistic processes. Decisions
about a process can be made without human intervention using autonomous software agents, sensor
networks and mobile computing in a transport entity. According to sensor data input, autonomous
agents representing each involved entity make decisions within these ubiquitous surroundings to
optimize the transport. The approach is one of only few approaches not being user-centered in context
aware system design. In contrast to our distributed situation planning approach for each partner, they
shift the control paradigm in value networks to autonomous control without human intervention. Our
approach relies on similar sensor approaches to integrate the system into adaptive business processes
and to rely on decisions made by a system, but does not use autonomous agent technology.

In 1969 John McCarthy and Patrick J. Hayes (1969) pick up a situation description for machines in
“Some philosophical Problems from the Standpoint of Artificial Intelligence”. They propose the
Situation Calculus capable of handling situations in information systems. They form situations based
on fluents, causalities, actions, strategies and knowledge, and abilities. A situation is defined by
McCarthy and Hayes as “… the complete state of the universe at an instant of time”. All changes to
the universe are result of an action, which are applied to a fluent. Changing fluents in a current
Situation leads to a new Situation. Using a model of a situation, a machine would be capable of taking

1 POI (Point of interest) is an overlay map containing spatial information about certain topics as the location of restaurants,
gas stations, sights etc.

actions while only limited knowledge would be needed. Further work from Reiter (1991) helped
solving the frame problem (sometimes) in the Situation Calculus. The extended Situation Calculus
based on Reiter is a logic containing elements for describing a situation, but does not contain any
reasoning or representation abilities. The programming language Golog presented by Levesque et al.
(1997) bases on Reiter’s findings to model complex operations based on the Situation Calculus.
Meanwhile Golog emerged in many ways. There are approaches enhancing Golog to using
concurrency (Giacomo et al. 2000), incremental program execution under incomplete knowledge with
interleaved action, planning, sensing and exogenous events (Sardina et al. 2004), and decision
theoretic planning for robot soccer (Ferrein et al. 2005). Li and Iijima (2007) stated in their analyses of
the Situation Calculus use in IS, that “despite of the existence of these problems, the Situation Calculus
could be applied to business systems when some tradeoffs are made between expressiveness and
reasoning”. Li and Iijima propose Web Service Composition, Context Awareness and Business
Process Management as fields of application for the Situation Calculus. We use the Situation Calculus
based on Reiter’s approaches to build the situation logic for planning situations according to goals and
based on context information. There are different extensions considered, as for example incremental
program execution under incomplete knowledge proposed by Sardina et al. (2004).

Already researchers make use of the Situation Calculus in BIS. Dong et al. (2004) use it to apply
autonomous computing in ubiquitous computing services. Their approach separates available fluents
into a precondition fluent base reflecting the maximum of fluents affecting a situation, decisive fluents
affecting a situation and non decisive fluent not affecting the situation. The Validity Theory ensures
only valid components are Compared to approaches using Finite State Machines for situation
detection, the Situation Calculus allows the detection of non-predefined situations during runtime. The
Validity Theory formalizes application-specific validity requirements to validity-ensured policies, on
which computers can autonomously choose to serve a service request. The approach is a promising
way of reasoning using the Situation Calculus and Validation Theory in ubiquitous computing, but
research is still at its beginning. The authors argue that commercial development methodologies are
not available for the Situation Calculus, and that it is still difficult to deal with the Situation Calculus
on engineering level. The works of Dong et al. are the main starting point for our situation-related
work.

Concluding the related work there is no satisfying approach to use situation logic on top of real world
information represented by sensor-based context information, but there are many promising
approaches in context and situation research already. We include suitable research identified from
context and situation research, especially the ideas from the Context Toolkit from Dey et al. (2001) in
our context layer and the Situation Calculus with its extensions in our situation layer (McCarthy and
Hayes 1969).

3 AN EVENT-DRIVEN APPROACH TO DYNAMIC SITUATION
DETECTION

In this section we propose an event-driven architecture which is capable of situation handling on top of
distributed real world information. It enables higher-level IS to use the paradigms of context- and
situation-awareness based on sensor information. The novelty of our work compared to other
approaches is the combination of a Situation Calculus approach for situational reasoning with an
event-driven context abstraction logic based on sensors. This enables partners in collaborative
environments like dynamic supply chains to maintain their own situation logic expressing their need,
whilst product-related context information can be accessed from all partners in the collaborative
environment. The following is a presentation of the three-layered design of this approach.

Today context- and situation information is used mainly in optimizing the human computer interface
(HCI) design. An example for this field of application is the use of information about the position of a
device which minimizes the data presented to the user to the information relevant for the current

location. This context service is called location-based service as described by Wehrmann (2004) in his
work about situation-dependent mobile services. Beyond location nearly any context information can
be used in a way to simplify interaction with a device. By traditional means an application becomes
context-aware if it causes actions according to changing context information. The definition of
context-awareness presented by Dey (2001) emphasizes the need for a user: “A System is context-
aware if it uses context to provide relevant information and/or services to the user, where relevancy
depends on the user’s task.” In contrast to this user-centred view we follow a more system-centred
one. Distributed sensors in collaborative environments offer their information in an event-driven
manner. This is matched with situation logic and its reasoning capabilities. Context sources become
exchangeable and situations are detected and processed upon their availability. Our architecture
integrates situation reasoning based on assumptions and targets on top of dynamic context knowledge.
A sketch of the architecture including two partners sharing their context information is shown in figure
1 and described in the following sections.

Figure 1. An architecture model for dynamic situation detection

At first we introduce the elements of the Sensor Abstraction Layer (SAL) operating on event level. The
Sensor Services (sens) hide the specifics of a certain sensor. All communications with the sensor are
leveraged to a unified XML-based format. A short history of sensor values, stored in a database of the
sensor hosting node, is implemented to allow queries involving the past. Information about the sensor
range and the position are stored in the database as well. It is developed similar to the concept of
Widgets from the Context Toolkit and extends them in standardization using Web Service technology
(Dey et al. 2001). For the description of sens we use a simplified Sensor Model Language (SensorML)
as proposed by the Open Geospacial Consortium (2007). SensorML itself is a very powerful sensor
description language. Beyond the sensor description itself SensorML stores metadata about the sensor,
especially the sensors position, its availability or its range in space. We used SensorML to develop our
corresponding database.

Besides physical sensors, already available data can also be accessed through the sensor abstraction
layer. The data can be encapsulated like conventional sensors in SensorML using a standard sens
services. Examples for explicit information interesting for encapsulation could be weather
information, traffic information or data from a company’s database. All sensor services are part of a
partners system and are accessible by other partners for the purpose of a specific supply chain need.

On the level above the SAL, the Context Layer (CL) contains Context Composition Services (ccs). The
ccs contain a composition logic and combine elementary sensor information or other ccs information
with higher aggregated context information. These are similar to the concept of Aggregators Dey et al.
used in the Context Toolkit expect the fact a ccs can integrate other ccs (Dey et al. 2001). The ccs raise
the level of context in a cascading manner. A possible combination, for example, is having one sensor
detecting the current outside temperature and another sensor detecting the illumination level in the
same local area. These can be combined to a ccs delivering information about day and night time more
accurately. The ccs are valid depending on their relationship in space and time (for example “in the
same room at the same time”) and can expire according to the availability of underlying sens or other
ccs.

The Access and Registry Service (ars) gives access to one instantiated context framework on top of a
cascade of ccs or even only a single sens. It contains a registry of underlying sens and ccs and is the
entry point for other partners accessing one partners services. The ars can be combined with other
partner’s ars. In this case all lower services become available in both ars. The combination of different
ars is applied to connect different partner domains for a limited time or to reduce handling complexity
in case of larger networks.

All element names from SAL, CL and SL use the concepts of a common Matching Ontology (MO).
Thus we can estimate the closeness of two elements and even match similar elements of every layer.

Formally the CL is a multidimensional undirected graph, in which R are all available edges,
),,(: ARSCCSSENSR →α being the starting points and),,(: ARSCCSSENSR →ω being the

endpoints of an edge. Within this configuration, each CCSccs ∈ can be connected to any
 or other to generate higher levels of context: SENSsens ∈ ccs ∈CCS

),,),,,((ωαRARSCCSSENSCL =

Each Sensor is connected to one sens exclusively. A valid minimum CL is one sens and one ars to
access the sens:

))(),(,),,((min arssensRarssensCL ωα= and 1|| =R

One level above the shared and common CL, the partner-specific Situation Layer (SL) is located,
which is using the Situation Calculus from McCarthy and Hayes (1969) as well as further
developments from Reiter (1991). The SL’s main task is to detect a situation s upon situation template
axioms s* taken from a situation template repository S*.

The Situation Calculus is a first-order language with some second-order features for representing
dynamic domains. According to its definition, all changes to the world are result of an action and the
situation “represents the complete state of the world at an instant of time” (McCarthy and Hayes
1969). Thus a world history is a sequence of actions and is represented by the first order term
situation. The constant S0 denotes the initial situation in which no actions have yet occurred. Objects
catch everything else relevant depending on the situations domain. All ACTIONa∈ are specified by
an action precondition axiom and a successor state. The action precondition axiom is highly important
for our work, because we need to find relevant preconditions fulfilled for a certain situation according
context detected:

),,...,()),,...,((11 sxxsxxAPoss nAn Π≡

AΠ is a formula uniform in s with free variables xi. To define the closeness of a situation to a success,
Dong et al. (2004) use special fluents on top of Reiter’s approach to estimate the closeness to a
successor state. Their concept of incremental successor states containing the distinguished binary
function do(a, s) denotes the situation resulting from performing action a in situation s. helps to
find the way coming closer to a better situation s performing an action a instead of having a binary
function like in traditional Situation Calculus:

aF ,Ψ

))(,()),((()),((, sFxsxadoFsxaPoss aFΨ=⊃

Dong et al. (2004) argue that the definitions for a fluent in standard Situation Calculus would be too
general, and therefore propose an extension to make it capable of comparing situations. They classify
into functional fluents (FF) meaning all available fluents, decisive fluents (DF) meaning a
minimum set of fluents for a situation, non decisive fluents (NF) meaning possible fluents for a
situation and a precondition fluent base (PFB) containing all fluents which may affect a situation:

DFNFPFBFF U=⊂ and ∅=NFDF I

Decisive fluents are all atomic fluents or ones that cannot be derived by other fluents for a specific
situation. Based on the differentiation from Dong et al. (2004), a comparison of situations according to
fluent classification is done in our approach.

Using situation validity based on Validity Theory, Dong et al. (2004) define a minimum set of
relational fluents to ensure the situation validity. For one situation a possible validity fluent is defined
as:

booleanSituationObjectsyVA n →×:),(r

All VA in the vector y contain special terms in which a situation s is valid. The situation s is valid only
if all VA(s) in y hold. A situation can have none, one or more validity arguments to define the state in
which a situation is valid. This is used in our approach to ensure that certain situations only come true
when valid configurations of events occur.

We are using the Situation Calculus in the SL to match with context information available from CL for
a current situation si* from all available situations ** Ss ∈ . The syntax of actions, objects and fluents
in SL is taken from the MO. This ensures a unique syntax in CL and SL. The matching process starts
within the SL matching precondition axioms to ccs or sens of the CL. The search starts at the highest
level in CL, the most upper ccs, going down the graph along the ccs to the sens using graph search
algorithms in order to find a best match to a situation template ** Ss ∈ . Using the MO a possible
combination of sens and ccs can lead to new ccs matching a specific precondition axiom. Detectable
situations are all ** Ssi ∈ with a matching between precondition axioms and ccs or sens:

{ })(*),,...,(max* 1 SENSCCSsxxs inAi ∪Π= I

Once all detectable have been found, the plans can be applied to a detected situation. A plan
can lead to new detectable situations within the SL with new matchings to the CL. The MO is used as
taxonomy in order to have a unique vocabulary to find similarities between the elements of the CL and
SL. In order to prevent a time-consuming search for a best match when applied to the available SenS
and CCS in CL, prebuilt graphs for all elements of the CL are generated every time there is an update
in the CL. Additional functional validity fluents can be used to ensure validity of a ccs or sens in space
and time in more complex environments.

** Ssi ∈

In this section we presented the theoretical approach of our event-oriented architecture. It allows new
sensors and services to be added and removed from the CL during runtime (Michelson 2006). If new
sensors including their corresponding sens are integrated, they register with their correspondent ars
which may spread the information to other related ars. The ars inform current subscribers in SL about

the new service, which may book the service then. The architecture ensures the possibility to compose
dynamic value systems containing many sensors from changing value system partners. Also mobile
sensors which are changing their context in space and time can be handled dynamically, for example
the sensors of a life stock transport can be added logically to the system of the butcher.

4 EVALUATION

The empirical evaluation of the implemented framework in livestock transports will be determined in
the future. Instead we use a descriptive evaluation to detect the situation heat shock for animals in
trailer for the animal transport company and heat stress for the butchery now. Both situations are
based on sensors in the same CL monitoring the drinking water level (sens1) and temperature (sens2)
inside the trailer, and a third sensor monitoring the amount of water the animals drank on the farm in
the stable (sens3) before the transport. This data is accessible via a short history of all sensor values.

At first we model the CL as a graph starting with the ars on top of the sensors and containing direct
links from ars to every sens in the trailer and is aware the ars from the farm:

)),,(),(,),,,,((321321 senssenssensarsRarssenssenssensCL ωα=

The object to be manipulated by the situation heat shock for animals in trailer for the transport
company in SLtransport is the route the transporter will take. To alter an existing route (res(routeo)) in
situation s we need the situational preconditions low water consumption before transport (con_low),
high temperature in trailer (temp_hi) and no drinking water in trailer (¬wat) fulfilled:

),(),(_),(_)),((oooo routeswatrouteshitemprouteslowconsrouteresPoss ¬∧∧≡

Altering a routeo in a situation s should lead to a new routen which either has enough water
consumption before the transport detected, or has enough drinking water for the resulting driving time,
or has no high temperature for the resulting route. A successor state after altering the routeo in
situation s to a new routen is:

),(),(_),(_)),(((nnnon routeswatrouteshitemprouteslowconsrouteresdoroute ∨¬∨¬≡

The situation validity is ensured checking against the maximum driving time tmax allowed for long
journey livestock transports. In European law this is set to a maximum of 8 hours without a break for
the animals (European Union 2004):

))(()(maxtroutetsVA n

def
≤≡

Using an MO with values for livestock transports the elements con_low can be matched to sens3 with a
minimum amount each animal has drunk before, temp_hi is matched to sens2 with a certain minimum
level of temperature detected and wat is matched to a low-level-indication of sens1. The maximum
journey time is set in the MO as well. Each possible routen considered does fulfil the successor state
above. In case there is no route alternative, the driver is informed according to the given situation.

With the same sensor information we can conclude to a different situation for a different supply chain
partner. The object to be manipulated by the situation heat stress in the butchery’s SLbutcher is the heat
stress for the animals transported, which can be detected using temperature and water consumption
sensors. Water consumption uses the history of water levels in order to calculate the water
consumption. The heat stress condition is important in order to estimate the quality of the meat. The
preconditions needed only depend on a high temperature exposure high temperature (temp_hi) and a
high level of water consumption (Δwat):

),(),(_)),((heatstressswatheatstressshitempsheatstressdePoss Δ∧≡

Depending on the precondition fulfilment, the rest time of the animals before being butchered can be
determined by the butchery.

All fluents described in the examples are within the DF , because they affect the current situation. But
we could also detect the situation if we would have an additional parameter like a considered traffic
jam, but no sensor to match to. Then the route would also be altered ignoring traffic jams and the
traffic information is part of NF . This becomes important when dealing with large amounts of
fluents.

Using the proposed architecture for monitoring the transports leads to an adaption of the transport
process during runtime in contrast to single alarm events like high temperature or low water in other
installations of a monitoring environments for long journey livestock transports (Joint Research Centre
2008). This helps not only notifying in case something goes wrong, but preventing something might
go wrong and assist finding solutions. Also other solutions don’t provide individual situations to be
detected by different partners. We presented the detection of two simple situations heat shock for
animals in trailer for the animal transport company and heatstress for the butcher in order to optimize
the company’s business processes based on sensors of the truck and the farm. The sensors are
interchangeable enabling new applications in environments with changing sensor sources.

5 CONCLUSION

We presented the concept of an architecture which uses information about the situation on top of
context information for complex context-based decisions in pervasive computing. The framework is
currently under development and the approach in this work is of theoretical nature. There are still open
issues to solve within the design, especially developing an efficient matching of the elements in the CL
and the situation templates S* based on the MO and an efficient structure of the MO.

Our approach is limited to static situation execution yet. As long as parts of the situation are detected
and no argument is invalid, the situation is considered true. In our future work we need to add the
ability to handle uncertainty in situation detection, for example when two of three preconditions are
fulfilled. Vassos and Levesque (2007) have an interesting approach using the Situation Calculus with
incomplete knowledge of an agent.

A next major step is the implementation of the livestock sensor scenario using IndiGolog proposed by
Sardina et al. (2004). We will use RFID for animal identification, and sensors detecting conditions in
the trailer as well as external parameters. Other supply chain partners are represented by their own
situation client. Within the implemented scenario we will be able to test scalability issues which will
be a challenge to deal with.

In our future work a connection between the framework and a higher level transport information
system will be implemented to demonstrate the advantage of situation handling in logistics. Whereas
new situations based on a changing context are determined, an automated adaption of the planning
process is achievable. Furthermore interesting topics cover human feedback to enhance the system
making more precise situation detections or continuous sensor values substituting other values at a
certain level. An integration of digital world models in our architecture could enhance the capabilities
of the framework by using spatial relations. Nicklas et al. (2001) explore using spatial aware
applications in digital world models. This could enhance our situation reasoning by physical distance
of objects, for example causing a situation “Possible infection transfer” by two animal transports being
next to each other on a rest area.

Our architecture is not limited to animal transports. It can be used whenever distributed systems share
a common data in an event based manner. Thus it can be used in many setting in supply chain BIS. We
are still at the beginning of discovering situation potential in supply chain BIS, and we expect an
increasing level of automation and lower coordination costs.

6 ACKNOWLEDGEMENTS

This work was supported by the German Ministry for Research and Technology (BMBF) within the
research project IT FoodTrace – IT supported Food Traceability (2007).

REFERENCES
Anagnostopoulos, C. B., Ntarladimas, Y. and Hadjiefthymiades, S. (2007). Situational computing: An

innovative architecture with imprecise reasoning. J. Syst. Softw. 80 (12), 1993-2014.
Bachfischer, K., Bohnenberger, T., Hofmann, M., Wäller, C. and Wu, Y. (2007). Kontext-adaptive

Fahrerinformationssystem am Beispiel eines Navigationssystems. Künstliche Intelligenz 03/2007
(3), 57-63.

Dey, A. K. (2001). Understanding and Using Context. Personal and Ubiquitous Computing 5 (1), 4-7.
Dey, A. K. and Abowed, G. D. (1999). Towards a better understanding of context and context-

awareness. GVU Technical Report GIT-GVU-99-22. GVU Center, Atlanta, USA.
Dey, A. K., Salber, D. and Abowd, G. (2001). A Conceptual Framework and a Toolkit for Supporting

the Rapid Prototyping of Context-Aware Applications. Human-Computer Interaction (HCI) Journal
16 (2-4), 97-166.

Dietrich, A. J., Kirn, S. and Sugumaran, V. (2007). A Service-oriented Architecture for Mass
Customization – A Shoe Industry Case Study. IEEE Transactions on Engineering Management 54
(1), 190-204.

Dietrich, A. J., Kirn, S. and Timm, I. J. (2006). Implications of mass customisation on business
information systems. Int. J. of Mass Customization 1 (2), 218-236.

Dong, W., Xu, K. and Lin, M. (2004). A Situation Calculus-based Approach To Model Ubiquitous
Information Services. 2004-4-2. State Key Laboratory of Software Development Environment,
Computer Science & Engineering Department, Beijing University of Aeronautics & Astronautics,
Beijing, China.

European Union (2006). Technical Specifications for Navigation Systems in Long Journey Animal
Transports, Technical Report GO7-TRVA/ (2006). Centre, J. R., 1-90.

European Union (2004). Verordnung (EG) Nr. 1/2005 des Rates vom 22. Dezember 2004 zum Schutz
von Tieren beim Transport und damit zusammenhängenden Vorgängen. 1-44.

EwoMacs (2007). EwoMacs Homepage. http://www.wi2.uni-hohenheim.de/de/p_ewomacs.html,
access date 2008-03-11.

Ferrein, A., Fritz, C. and Lakemeyer, G. (2005). Using Golog for Deliberation and Team Coordination
in Robotic Soccer. Künstliche Intelligenz 05 (01), 24-30.

Fleisch, E., Christ, O. and Dierkes, M. (2005). Die betriebswirtschaftliche Vision des Internets der
Dinge. In: Fleisch, E. (Hrsg.): Das Internet der Dinge: Ubiquitous Computing und RFID in der
Praxis. Visionen, Technologien, Anwendungen, Handlungsanleitungen. Springer, Berlin, 3-38.

Freitag, M., Herzog, O. and Scholz-Reiter, B. (2004). Selbststeuerung logistischer Prozesse – Ein
Paradigmenwechsel und seine Grenzen. Industrie Management - Zeitschrift für industrielle
Geschäftsprozesse 20 (1), 23-27.

Giacomo, G. d., Lespérance, Y. and Levesque, H. J. (2000). ConGolog, a concurrent programming
language based on the situation calculus. Artificial Intelligence 121 (1-2), 109-169.

Hevner, A. R., March, S. T., Park, J. and Ram, S. (2004). Design Science in Information Systems
Research. MIS Quarterly 28 (1), 75-105.

IT FoodTrace (2007). IT FoodTrace Homepage. http://www.itfoodtrace.de, access date 2007-04-17.
Joint Research Centre (2008). Animal Welfare in Transportation. http://awt.jrc.it/, access date 2008-

01-21.
Kirn, S., Anhalt, C., Bieser, T., Jacob, A., Klein, A. and Leukel, J. (2008). Individualisierung von

Sachgütern und Dienstleistungen durch Adaptivität von Wertschöpfungssystemen in Raum, Zeit
und Ökonomie. In: Kirn, S. (Hrsg.): Individualization Engineering. Cuvillier-Verlag, Göttingen, 3-
60.

Levesque, H. J., Reiter, R., Lespérance, Y., Lin, F. and Scherl, R. B. (1997). GOLOG: A logic
programming language for dynamic domains. Journal of Logic Programming 31 59-84.

Li, B. and Iijima, J. (2007). A Survey on Application of Situation Calculus in Business Information
Systems. International Conference on Convergence Information Technology.

McCarthy, J. and Hayes, P. J. (1969). Some philosophical Problems from the Standpoint of Artificial
Intelligence. In: Meltzer, B.; Michie, D. (Hrsg.): Machine Intelligence 4. Edinburgh University
Press, 463-502.

Mertens, P. (2004). Zufriedenheit ist die Feindin des Fortschritts – ein Blick auf das Fach
Wirtschaftsinformatik. Universität Erlangen-Nürnberg, Bereich Wirtschaftsinformatik I. access
date 2008-03-27.

Michelson, B. M. (2006). Event-Driven Architecture Overview. Patricia Seybold Group, Boston.
Nicklas, D., Großmann, M., Schwarz, T., Volz, S. and Mitschang, B. (2001). A Model-Based, Open

Architecture for Mobile, Spatially Aware Applications. 7th International Symposium on Advances
in Spatial and Temporal Databases.

Open Geospacial Consortium Inc. (2007). Sensor Model Language (SensorML).
http://www.opengeospatial.org/standards/sensorml, access date 2008-07-05.

Piller, F. (2003). Mass Customization - Ein wettbewerbsstrategisches Konzept im
Informationszeitalter. Deutscher Universitätsverlag, Wiesbaden.

Pine II, B. J. (1993). Mass Customization - The New Frontier in Business Competition. Harvard
Business School Press, Boston, Massachusetts.

Porter, M. E. (1985). Competitive Advantage. Free Press, New York.
Reichwald, R. and Piller, F. (2006). Interaktive Wertschöpfung - Open Innovation, Individualisierung

und neue Formen der Arbeitsteilung. Gabler, Wiesbaden.
Reiter, R. (1991). The frame problem in the situation calculus: A simple solution (sometimes) and a

completeness result for goal regression. In: Lifschitz, V. (Hrsg.): Artificial Intelligence and
Mathematical Theory of Computation: Papers in Honor of John McCarthy. Academic Press, San
Diego, California, 359 –380.

Sardina, S., Giacomo, G. D., Lespéance, Y. and Levesque, H. J. (2004). On the semantics of
deliberation in IndiGolog - from the theory to implementation. Annals of Mathematics and
Artificial Intelligence 2004 (41), 259-299.

Schicker, G., Kaiser, C. and Bodendorf, F. (2007). Individualisierung von Prozessen und E-Services
mithilfe von Case Based Reasoning. In: Oberweis, A.; Weinhardt, C.; Gimpel, H.; Koschmider, A.;
Pankratius, V.; Schnizler, B. (Hrsg.): eOrganisation: Service-, Prozess-, Market-Engineering, 8.
Internationale Tagung Wirtschaftsinformatik. Universitätsverlag Karlsruhe, Karlsruhe, 713-730.

Vassos, S. and Levesque, H. (2007). Progression of Situation Calculus Action Theories with
Incomplete Information. Twentieth International Conference on Artificial Intelligence. Hyderabad,
India.

Wehrmann, J. (2004). Situationsabhängige mobile Dienste. PhD Thesis, Lehrstuhl für
Wirtschaftsinformatik III, Friedrich-Alexander-Universität.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2009

	An evaluation of user acceptance of a corporate intranet
	Ansger Jacob
	Marcus Muller
	Stefan Kirn
	Recommended Citation

	1 INTRODUCTION
	2 THEORETICAL FOUNDATION
	3 AN EVENT-DRIVEN APPROACH TO DYNAMIC SITUATION DETECTION
	4 EVALUATION
	5 CONCLUSION
	6 ACKNOWLEDGEMENTS

