
Association for Information Systems
AIS Electronic Library (AISeL)

ECIS 2009 Proceedings European Conference on Information Systems
(ECIS)

2009

Panel: A call for action in tackling environmental
sustainability through green information
technologies and systems
Donato Barbagallo
Politecinco di Milano, barbagallo@elet.polimi.it

Chiara Francalanci
Dipartimento di Elettronica e Informazione Politecnico di Milano, francala@elet.polimi.it

Follow this and additional works at: http://aisel.aisnet.org/ecis2009

This material is brought to you by the European Conference on Information Systems (ECIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ECIS 2009 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Barbagallo, Donato and Francalanci, Chiara, "Panel: A call for action in tackling environmental sustainability through green
information technologies and systems" (2009). ECIS 2009 Proceedings. 118.
http://aisel.aisnet.org/ecis2009/118

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301355145?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fecis2009%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2009?utm_source=aisel.aisnet.org%2Fecis2009%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2009%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2009%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2009?utm_source=aisel.aisnet.org%2Fecis2009%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2009/118?utm_source=aisel.aisnet.org%2Fecis2009%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

THE RELATIONSHIP AMONG DEVELOPMENT SKILLS, DESIGN
QUALITY, AND CENTRALITY IN OPEN SOURCE PROJECTS

Barbagallo, Donato, Politecnico di Milano, Dipartimento di Elettronica e Informazione, Via Ponzio

34/5, 20133 Milano, Italy, barbagallo@elet.polimi.it
Francalanci, Chiara, Politecnico di Milano, Dipartimento di Elettronica e Informazione, Via Ponzio

34/5, 20133 Milano, Italy, francala@elet.polimi.it

Abstract
In a previous paper, we have found empirical evidence supporting a positive relationship between network
centrality and success. However, we have also found that more successful projects have a lower technical
quality. A first, straightforward argument explaining previous findings is that more central contributors are
also highly skilled developers who are well known for their ability to manage the complexity of code with a
lower attention to the software structure. The consolidated metrics of software quality used by the authors in
their previous research represent measures of code structure. This paper provides empirical evidence
supporting the idea that the negative impact of success on quality is caused by the careless behaviour of
skilled developers, who are also hubs within the social network. Research hypotheses are tested on a sample
of 56 OS applications from the SourceForge.net repository, with a total of 378 developers. The sample
includes some of the most successful and large OS projects, as well as a cross-section of less famous active
projects evenly distributed among SourceForge.net’s project categories.

Keywords: social networks, software quality, software design skills.

1 INTRODUCTION

Social networks represent social systems characterized by very large numbers of individuals and
relationships among individuals. By empirically analyzing the evolution of OS networks modeled as sets of
cooperation relationships among project contributors, previous research has tested the following principles:

• The probability with which a new relationship connects to a contributor is exponentially proportional to the
number of existing relationships involving the contributor (Xu et al. 2006; Gao and Madey 2007). This law
applies to a variety of social networks and is often referred to as the rich-get-richer evolution principle
(Albert and Barabàsi 1999).

• As a consequence of the rich-get-richer principle, OS networks have a few nodes with a number of
relationships significantly higher than the network’s average, called hubs. The alternative random evolution
principle has been found not to apply to OS networks, i.e. relationships are not uniformly distributed across
nodes (Xu et al 2006).

• Hubs have been found to follow a life cycle. Hubs appear, grow, and ultimately stop growing and quickly
disappear (Gao et al. 2005).

• The creation of hubs is enabled by the ability of some nodes to evolve considerably faster than the average
evolution rate of the network (Gao et al. 2005).

In the OS context, Grewal et al. (2006) have hypothesized that hub contributors have a positive impact on the
success of the projects they are involved in. Their claim is that the rich-get-richer principle suggests that hub
contributors have the ability to attract further contributions and, thus, positively influence the evolution of
their projects. The literature provides numerous metrics that help verify whether a node is a hub, called
centrality metrics (see Section 2). Grewal et al. (2006) have tested whether higher values of centrality
metrics are positively correlated with the ranking measure of project success1. By testing correlation for 12
projects from SourceForge.net written in Perl, Grewal et al. (2006) have found mixed results that only
partially support their hypotheses. A possible problem with their approach to testing is the size of the social
network that they have considered, which is limited to the contributors of a few projects and their direct
connections to other contributors in the SourceForge.net community, while the literature clearly indicates
that the laws governing a social network can be observed only if the network is analyzed in the large (cf.
Newman et al. 2006).

In a previous paper (Barbagallo et al. 2008), we have tested Grewal et al.’s relationship on a significantly
larger sample and actually found empirical evidence supporting the relationship between centrality and
success. The relationship between centrality and project success has clear implications for managers. A
company that is interested in making business through OS could aim at having its developers become hubs
as a way to enhance success. However, in our previous research, we have also found that more successful
projects have a lower technical quality. This paper aims at understanding the reasons behind the negative
relationship between success and quality. Is success in and of itself detrimental to quality or are there drivers
of quality other than success that help explain quality degradation? If so, are these drivers related to
centrality?

Answering these questions can help managers understand the implications of gaining a more central position
in the network as a way to reach success. The software engineering literature explains that there exists a
trade off between quality and costs. Since quality represents an investment in the long term, managers are
often willing to accept a lower level of quality if it represents a way to have a marketable output more
quickly (Tan and Mookerjee 2005). Explaining the relationship between success and quality can help
managers understand whether an OS social network represents a governance structure that allows deliberate
quality to cost decisions or it creates new and negative quality degradation effects.

The presentation is organized as follows. Section 2 reviews the literature on social networking centrality
metrics and software design quality metrics. Section 3 discusses our research hypotheses, while Section 4
describes the operationalization of variables, the data sample used to verify our hypotheses, our statistical

1 A definition of ranking in SourceForge.com is given in http://apps.sourceforge.net/trac/sourceforge/wiki/Project%20statistics

approach and reports the results of empirical testing. Finally, Section 5 provides a discussion of empirical
findings and outlines possible directions for future research.

2 RELATED WORK

This section reviews the literature focusing on the concepts of centrality in social networks and software
design quality.

2.1 Centrality in Social Networks

The concept of centrality has been defined as the importance of an individual within a network (Freeman
1979). Centrality has attracted a considerable attention as it clearly recalls notions like social power,
influence, and prestige. Over time, several metrics have been introduced to formalize and then measure
centrality from different points of view.

The first metric of centrality, called degree centrality, discussed by Freeman (1979), is defined as the
number of links of a node normalized to the total number of links in the network. Degree centrality still
represents the simplest and most widely used indicator of centrality, as it is intuitive and easy to calculate
(Choi et al. 2006). A node that is directly connected to a high number of other nodes is obviously central to
the network and likely to play an important role (Sparrowe et al. 2001). A node with a high degree centrality
has been found to be more actively involved in the network’s activities (Hossain et al. 2006).

Freeman has also introduced the metric of betweenness centrality (Freeman 1979). This metric is defined as
the average frequency with which a node is crossed by the shortest path connecting two generic nodes of the
network. This metric is widely used in the literature, as it represents the simplest way to measure the ability
of a node to reach other nodes in the network and act as an intermediary of the interactions between them.
Over time, several refinements of the original Freeman’s metric have been proposed. For example, Newman
(2003) has posited that a random walk among all possible paths should be considered as opposed to the
shortest path. Although the opposite claim could be put forward too, Newman’s metric has the advantage of
lowering the complexity of the algorithm to calculate betweenness centrality.

Freeman has also proposed the metric of closeness centrality, which is meant to extend the concept of
betweenness centrality by measuring how far an actor is from all other actors in the network along the
overall shortest path (Freeman 1979). This metric is less intuitive and more difficult to calculate than the
previous two and has obtained a more limited success. Freeman notes that closeness centrality can be
associated with the idea of independence of a node, since high values of closeness involve a lower need to
depend on other nodes in order to communicate with other parts of the network. However, the metric
becomes meaningless if applied to disconnected networks, as it cannot be calculated for non-reachable
nodes. A more recent metric proposed by Stephenson and Zelen (Stephenson and Zelen 1989), named
harmonic centrality, represents a measure of closeness centrality that considers harmonic distance in place of
shortest path distance.

Previous to Freeman, Bonacich (1972) introduced the metric of eigenvector centrality, which measures
centrality as the principal eigenvector of the whole network’s adjacency matrix. The disadvantage of this
approach is that the eigenvector of the adjacency matrix must be calculated iteratively and convergence can
be very slow. This metric has had limited success, especially due to its mathematical and computational
complexity. Furthermore, Borgatti (1995) has noted that eigenvector centrality is conceptually similar to
degree centrality. However, it should be acknowledged that the PageRank metric proposed by Brin and Page
(1998) is based on the notion of eigenvector centrality. Even earlier than Bonacich, Katz (1953) and Hubbell
(1965) introduced two centrality metrics, which, similar to eigenvector centrality, consider a node important
if it is connected to other important nodes. However, both indices have series convergence issues that have
limited their use in practice.

This paper focuses on degree and betweenness centrality, according to their original definition provided by
(Freeman 1979). Degree and betweenness centrality represent the most intuitive and widely used metrics of
centrality. We acknowledge that closeness and eigenvector centrality are also theoretically important metrics
of centrality in the field of social networks, as discussed in (Borgatti et al. 2006). However, their greater
conceptual and computational complexity makes them more difficult to use in empirical research on large
social networks.

2.2 Software Design Quality

This paper focuses on the quality of software design, i.e. on the internal quality of software. Previous
literature suggests that higher values of software design quality metrics represent drivers of a number of
external quality variables, such as testability, correctness, and reliability (Boehm 1976, Brito e Abreu and
Melo 1996, Marinescu 2005). In turn, these external quality variables affect user satisfaction and can
influence software adoption and actual usage (Bevan 1995). However, the direct analysis of external quality
variables, i.e. of software effectiveness variables, is outside of the scope of the present paper.

Software design quality can be measured by analyzing the design properties of source code. There exists a
consolidated body of literature focusing on code-based design quality metrics. Traditionally, the
measurement of code design quality is based upon i) complexity and ii) design quality metrics. The first
research contributions were aimed at providing operating definitions and metrics of software complexity,
focusing on the analysis of the code’s information flow. Cyclomatic Complexity (McCabe 1976), Software
Science (Halstead 1977), and Information Flow Complexity (Henry and Kafura 1981) represent the most
widely used metrics from this early research.

Over time, design quality has become of increasing importance to cope with the continuously growing size
of software systems. Research has started to distinguish between the complexity due to poor design quality
and the inherent complexity of software due to requirements (Troy and Zweben 1993). The main
contribution of these studies has been to show that design quality is necessary to handle the complexity
caused by challenging requirements.

With the advent of the object-oriented programming paradigm, coupling, cohesion, inheritance, and
information hiding have been identified as the basic properties of software design quality (Emerson 1984,
Symons 1988, Chen and Lu 1993, Sharble and Cohen 1993). Based on these four basic properties, a number
of metrics have been proposed to evaluate the design quality of object-oriented software. The most widely
known metrics have been first proposed by Chidamber and Kemerer (1994) (WMC, NOC, DIT, RFC,
LCOM, and CBO) and by Brito e Abreu (1995) (COF, PF, AIF, MIF, AHF, and MHF). These milestone
contributions have started a lively debate within the software engineering community on the consistency and
generality of such metrics (Harrison et al. 1998). As a matter of fact, metrics such as CBO, NOC, MIF, and
DIT represent a standard and are included in most development environments, such as Eclipse and Visual
Studio.NET. This paper focuses on these standard metrics.

CBO, NOC, and DIT have been found to impact on software maintainability and, hence, on maintenance
effort and costs (Li and Henry 1993). Increasing software design quality is viewed as a costly activity that
pays back in the long term by reducing the cost of subsequent maintenance interventions (Slaughter et al.
1998). With proprietary software, companies usually take a short-term perspective and tend to develop code
faster at the expense of quality, which, in turn, tends to decrease over time (Tan and Mookerjee 2005). As
observed by Tan and Mookerjee (2005), the deterioration of quality over time leads to a break-even time
when a short-term perspective becomes economically inefficient and companies should invest in quality.
This can be obtained either by replacing old software with new code of higher quality or by launching a
maintenance initiative aimed at increasing quality without necessarily developing new functionalities,
commonly referred to as refactoring (Fowler et al. 2001).

In OS applications these phenomena are difficult to observe. Some projects become inactive when they reach
the end of their lifecycle and, until then, they are continuously maintained. However, projects reach their end
for a number of reasons that may not be related to quality deterioration. For example, solo projects, i.e.
projects launched and maintained by individual programmers, are often active for a very short period of time
and come to an end due to lack of interest from the OS community.

The most successful projects, such as Linux and PostgreSQL, are still active although they are considered
mature. Koch (2004) has noted that in OS projects refactoring tends to be a continuous process and
developers allocate time and effort to quality improvements when needed. A previous work by Capra et al.
(2007) has studied the refactoring process of a sample of 95 OS applications (1251 versions) from
SourceForge.net. Empirical analyses have showed that the number of versions between two subsequent
refactorings is highly variable. On average, a significant quality improvement can be observed in 40% of the
total number of versions, while Tan and Mookerjee (2005) have found that in a sample of closed source
applications refactorings occur in about 10% of an application’s versions.

Previous literature indicates that the cost benefits of quality improvements are reaped over time. However, it
provides only partial evidence to demonstrate that quality investments have a positive balance (Slaughter et
al. 1998). From a theoretical standpoint, Tan and Mookerjee (2005) suggest that quality investments
typically represent a zero-sum game. However, the only clear empirical result is that quality involves an
investment and, in the short term, it represents a cost. OS projects challenge also this result, since continuous
refactoring practices should release similarly continuous cost benefits. A previous work by Capra et al.
(2008) has empirically verified that quality and development effort are not correlated in OS projects,
supporting the theoretical observations of Tan and Mookerjee (2005). In this paper, we consider software
design quality and development effort as independent variables.

3 HYPOTESES

In a previous paper (Barbagallo et al. 2008), we have found empirical evidence supporting the following
hypoteses:
• Projects involving contributors with a higher level of centrality are more successful.
• Projects involving contributors with a higher level of centrality are able to attract a greater development

and maintenance effort.
• More successful projects have a lower software design quality.

Overall, these hypotheses indicate that involving contributors that play a more central role in the social
network helps projects to attract investments and eventually reach success. However, it does not seem to help
the quality of the software artifact. These findings are counterintuitive, since they show that more successful
projects (in terms of SourceForge.com ranking) have lower technical quality. In the paper, we discuss the
possible reasons behind this inverse relationship between success and quality. A first, straightforward
argument explaining previous findings is that more central contributors are also highly skilled developers
who are well known for their ability to manage the complexity of code with a lower attention to the software
structure (Lakhani and Wolf 2003). The consolidated metrics of software quality used by the authors in their
previous research represent measures of code structure. Structure is generally considered a proxy of quality,
as it represents the main driver of software maintenance costs (Li and Henry 1996).

This paper aims at providing empirical evidence supporting the idea that the negative impact of success on
quality is caused by the careless behaviour of skilled developers, who are also hubs within the social
network. Our first research hypothesis addresses the relationship between centrality and developers’ skills. In
contexts different from OSS, the literature acknowledges that social networks are a significant enabler of
knowledge transfer processes and related effectiveness (Reagans and McEvily 2003, Tsai 2005). In
particular, higher levels of betweenness centrality in the network have been found to be correlated to a
greater timeliness in reaching new information, while higher levels of degree centrality have been found to
influence the ability to gain access to a broader information base (Mehra et al. 2001). In the OSS context, a
more central position in the social network surrounding a project can foster the growth of the community by
means of the rich-get-richer effect (Gao and Madey 2007). In turn, a more central position can help improve
the communication with other network members, increase the number of cooperation opportunities within a
variety of projects, help gain new skills, and ultimately develop a broader expertise. (Kidane and Gloor
2005) have found a correlation between group density and its performance and creativity in the case of
Eclipse community. These benefits create a virtuous circle, contributing to the growth of developers as hubs
of the network. This leads us to our first research hypothesis:

H1: More skilled contributors are involved in projects with a higher level of centrality.

Our second research hypothesis addresses the relationship between skills and quality. As noted before,
skilled developers have the ability to solve problems quickly and efficiently, but are less willing to design
code according to the software engineering principles ruling structured development (Lakhani and Wolf
2003). It has been demonstrated that organizations tend to apply their most skilled developers in complex
tasks, where devising an efficient algorithm is more important than obtaining a well-structured and
maintainable software (Faraj and Sproull 2000). These results are interesting in a OS context, since we know
from Capra et al (2008) that the governance model of an OS project can resemble that of a closed source
project, with a single sponsor company developing the bulk of code. Furthermore, hub nodes tend to
experience an exponential growth, as the probability to gain new relationships has been found to be
exponentially proportional to the number of existing relationships (Xu et al. 2006, Gao and Madey 2007).

The rate of new change requests (new features, bug reports, etc.) grows accordingly. Hypotesis H1 posits
that more skilled developers are involved in more central projects and, therefore, can benefit from all the
advantages of their central position in terms of knowledge transfer. However, they are also burdened by a
greater information load related to communicating and coordinating with other contributors in development
activities and also in a number of non-development activities, including debugging, translation, advisory, and
documentation. Hinds and McGrath (2006) have empirically found that highly connected social networks
(that is, networks with a high average value of degree centrality) cannot be considered as an effective support
to distributed project development. Findings prove that the coordination overhead caused by the extension of
the network increases the effort required for software development and maintenance. Therefore, more central
developers can be supposed to spend more time in coordination and less time in quality, which, in the short
term, represents a time investment that they may not be able to afford given their information overhead. This
leads to our second research hypothesis:

H2: Projects involving more skilled contributors have a lower software design quality.

4 METHODOLOGY AND RESULTS

This section presents the operationalization of the variables involved in our testing and the data sample used
for empirical verifications.

4.1 Variable Definition and Operationalization

Network model. We model OS social networks as two-mode undirected affiliation networks (Wasserman and
Faust 1994) with two types of nodes: developers and projects. A node representing a developer, say d, is
associated with another node representing a project, say p, when d is a member of p’s team of contributors.
Two distinct one-mode networks can be derived from a two-mode network by considering either developers
or projects only:
• Developers network. All nodes represent developers. Two nodes are linked when both developers are

members of the same project team.
• Projects network. All nodes represent projects. Two nodes are linked when corresponding projects have

at least one developer in common.

Metrics of centrality. The degree centrality (Freeman 1979) cd(ni) of node ni is defined as the ratio of the
number of edges involving node ni, ρ(ni), to the total number of nodes in the network excluding node ni:

cd(ni) = ρ(ni) / (N-1).

The betweenness centrality (Freeman 1979) cb(ni) of node ni is defined as the average frequency with which
a generic node nj crosses node ni to reach a different node nk trough a shortest path:

!

cb (ni) =
2

(N "1)(N " 2)

g jk (ni)

g jkj<k

#
,

where gjk represents the total number of shortest paths from nj to nk and gjk(ni) represents the number of
shortest paths between nodes nj and nk crossing ni. The metric is normalized to the maximum number of
shortest paths crossing ni in an undirected network with N nodes. Betweenness centrality is a measure of the
ability of a node to control the information flows in the network. A node with a high betweenness centrality
can be considered as an important information broker for the network, as it is likely to receive and convey
many information flows (Hossain et al 2006).

Degree and betweenness centrality for developers’ and projects’ networks are indicated with apex d and p,
respectively. For the sake of simplicity, we refer to the degree and betweenness centrality of nodes in the
developers’ networks as developer degree centrality (cd

d) and developer betweenness centrality (cd
b),

respectively. Similarly, we refer to the degree and betweenness centrality of nodes in the projects’ networks
as project degree centrality (cp

d) and project betweenness centrality (cp
b), respectively.

Metrics of software design quality. Two of the most referenced suites of object-oriented design metrics have
been included in our metrics’ set, as suggested by Harrison et al. (1998): the MOOD metrics’ set for the
evaluation of quality at the software system level (Brito e Abreu 1995), and the Chidamber and Kemerer
(1994) metrics’ suite for the evaluation of quality at the class level. The four chosen metrics (MIF, NOC,

CBO, DIT) are the most preferable to provide measures of inheritance and coupling, which are two of the
three sets of fundamental quality metrics, and also the most studied in literature (Capra et al. 2008).

Metrics of skills. Two metrics deal with skills in our model, skill level and skill range. The skill level metric
SLk of project k is defined as the mean value of the average per-skill level of the developers involved in the
project:

!

SL
k

=

SK(i,s)

MAX _VAL* ns(i)
s"S(k)

#

nd(k)
i"k

,

where SK(i,s) is the level of skill s of developer i, S(k) is developer i’s set of skills, MAX_VAL is a constant
representing the maximum skill level (5 in SourceForge.net), ns(i) is the total number of skills of developer
i, and nd(k) is the total number of developers working at project k.

The skill range metric SRk of project k is defined as the ratio between the number of distinct skills owned by
at least one developer in the project and the total number of skills in the project:

SRk = NDSk / NSk,

where NDSk and NSk are the total number of distinct skills and the total number of skills in project k,
respectively. The skill range measures the diversification of skills within a project. For example, if a project
has two developers with the same skill set the metric will evaluate to 0.5, while if the skill sets of the two
developers are disjoint the metric will be equal to 1.

4.2 Data Sample

The data set used for this study has been gathered by analyzing a sample of OS community applications from
the SourceForge.net repository. Data on skills have been extracted by analyzing each developer’s profile on
SourceForge.net. Since mining on line repositories (such as SourceForge.net) can lead to controversial
results because of the varying quality of available data (Howison and Crowston 2004), a first sample of
applications (AS1) has been selected according to the following criteria:
• Project maturity: active and beta status or higher (inactive and less mature applications have been

excluded because of their instability and low significance).
• Version history: at least 5 versions released.
• Programming language: Java.
• Domain: selected applications are uniformly distributed across the SourceForge.net domain hierarchy.

A second sample of applications (AS2) has been considered to allow the correct evaluation of the social
networking metrics described in the previous section. Applications belonging to sample AS2 have been
selected by relaxing some of the criteria used to select applications of sample AS1. AS2 includes all the
active projects of SourceForge.net written in Java. This sample has been used to build a SourceForge.net
social network as wide as possible, with the aim of overcoming network size limitations of previous research
(Newman et al. 2006). As suggested by Marcoulides and Sounders (2006), confidence intervals at level α =
0.05 have been computed for the variables involved in hypotheses testing in order to assess the adequacy of
our sample size. Although the sample is not extremely wide, the confidence intervals are relatively narrow
for all the considered variables. Data on all the applications of samples AS1 and AS2 refer to June, 30th 2007
to guarantee the temporal consistency of the data sets. Table 1 presents cardinalities of application samples
AS1 and AS2.

Variable Dataset AS1 Dataset AS2

Number of projects 56 29,836

Number of developers 378 57,142

Table 1. Cardinality of datasets AS1 and AS2

Social networking metrics have been derived from the analysis of the social network of the applications
included in sample AS2. Social network data has been derived from the SourceForge.net data warehouse

(Gao et al. 2007) for all the applications in sample AS2, and processed by a tool developed ah-hoc. The
computation of social networking metrics has been performed by analyzing the SourceForge.net social
network with Pajek (Batagelj and Mrvar 1997), one of the most used and referenced tools for large networks
analysis.

Software quality metrics have been evaluated by analyzing the source code of all available versions of each
project in our dataset AS1, and considering average values for each metric. Source code has been analyzed
with a tool developed ad-hoc. The tool provides data on all the software quality metrics described in Section
4.1, performing static analyses of Java source code. The static analysis engine is based on the Spoon
compiler (Pawlak 2005), which provides the user a representation of the Java abstract syntax tree in a meta-
model that can be used for program processing.

Statistical analyses and structural equation model testing have been performed with SPSS and AMOS.

4.3 Measurement Model

The measurement model has been defined to verify the assumption that social networking and software
design quality metrics actually measure different aspects of the same phenomena. A principal component
analysis (PCA) has been performed on both sets of metrics to verify the assumption. Results of such analysis
are shown in Table 2.

Figure 1. Measurement model of design quality

Figure 1 presents the measurement model related to the design quality set of metrics. In this case only one
factor has been extracted, and has been labelled as Design Quality.

Figure 2. Measurement model of centrality

Figure 2 shows the measurement model related to the social networking set of metrics. As it can be noted,
two different factorization variables have been identified, related to the centrality of developers and of
projects, respectively. In turn, these two latent variables have been found to be different aspects of the same
concept, that has been named Centrality.

Dependent Variable Independent Variable Standardized

Regression

Weight (b)

Standard

Error

p-value Composite

Factor

Reliability

Cd
d Developer Centrality 0.688 1.311 <0.001 0.830

Cd
b Developer Centrality 0.680 - - 0.684

Cp
d Project Centrality 1.079 0.049 <0.001 0.970

Cp
b Project Centrality 0.896 - <0.001 0.915

Developer Centrality Centrality 1.232 - - -

Project Centrality Centrality 0.722 1.649 <0.001 -

NOC Design Quality -0.983 - - 0.911

CBO Design Quality -0.697 0.525 <0.001 0.740

DIT Design Quality -0.973 0.074 <0.001 0.900

MIF Design Quality -0.748 0.099 <0.001 0.894

Table 2. PCA results and estimates of regression weights for the measurement models of Figure 1
and Figure 2

Table 2 shows the results of the PCA performed on the different parts of the measurement model, along with
the standardized regression weights of the relationships between latent and observed variables. Results show
that all the factorizations should be considered acceptable, since all the composite factor reliability values are
greater or very close to the threshold value of 0.700 as suggested by Bagozzi and Yi (1988). All the
relationships considered between the set of observed variables (either referred to centrality or software
design entropy) and the latent variables are significant with p < 0.001: this confirms that the factorizations in
the measurement model were performed correctly.

4.4 Structural Model Testing

The estimation results of the research model in Figure 3 used to test the research hypotheses are shown in
Table 3. Please note that, for sake of simplicity, the model in Figure 3 is a simplified version in which the
factorizations related to the latent variables Design Quality and Centrality discussed in the previous section
are not shown. Variables Design Quality, and Centrality have been controlled by project age Age, as
suggested by Banker and Slaughter (2000), although the controlling variable Age is not shown to reduce the
complexity of the model in Figure 3.

Figure 3. Structural model for the verification of research hypoteses

Dependent Variable Independent Variable Standardized Regression

Weight (b)

Standard

Error

p-value

Centrality Age 0.526 0.000 <0.001

Skill Level Centrality 0.329 737.241 0.045

Skill Level Skill Range 0.356 0.260 0.050

Design Quality Skill Level -0.556 0.084 <0.001

Table 3. Estimates of regression weights for the research model of Figure 3

All the relationships hypothesized between model variables are significant with p < 0.05, that is, can be
accepted at a significance level α = 95%. Table 4 shows that the overall model fit is satisfactory.

Index Research Model Desired Level Reference

χ2/d.f. 1.727 <3.0 (Carmines and McIver 1981)

p-value 0.003 <0.05 -

IFI 0.944 >0.90 (Bollen 1989)

TLI 0.903 >0.90 (Tucker and Lewis 1973)

CFI 0.941 >0.90 (Bentler 1990)

Table 4. Goodness of fit indices for the research model in Figure 3.

Research hypothesis H1 (more skilled contributors are involved in projects with a higher level of centrality)
is represented within our model by the regression relationship between Centrality (independent variable) and
Skill Level (dependent variable). Our analysis shows that the regression weight is positive and statistically
significant (b = 0.329, p = 0.045). Consequently, research hypothesis H1 is verified.

Hypothesis H2 (projects involving more skilled contributors have a lower software design quality) is tested
by the relationship between Design Quality and Skill Level, where the former is the dependent variable.
Since the regression weight is negative (b = -0.556) and the estimation of this relation is significant (p =
0.050), hypothesis H2 is verified. Please note that Skill Level is controlled by Skill Range in order to consider
not only the depth of skills but also the heterogeneity.

5 DISCUSSION AND CONCLUSIONS

Empirical results support hypothesis H1, thus confirming centrality as a significant driver of the expertise of
developers. Therefore, knowledge seems to represent a first, fundamental benefit of being a hub node in an
OS network. Previous to our work, the literature has described the role of social networking as enabler of
knowledge transfer processes and related effectiveness. As noted in Section 1, our work is the first empirical
contribution providing empirical evidence to support the relationship between network centrality and
expertise. In particular, we have made an effort to overcome some of the limitations of previous research by
measuring our centrality metrics on the largest network of Java projects that can be built from
SourceForge.net, which includes all the relationships among contributors, both direct and indirect. It should
be noted that the metrics of centrality have been originally defined to account for both types of relationships
(Freeman 1979).

Results also support hypothesis H2, suggesting that more skilled developers will tend to produce a software
with a lower design quality. Even if this seems counterintuitive, it should be noticed that hubs in OS
communities are involved in several projects and incur a coordination overhead that reduces the share of
time that they can devote to quality. The literature indicates that quality represents an investment that
requires time and provides its pay-offs over time in terms of lower maintenance costs (Slaughter et al. 1998).
The coordination overhead caused by a more central role may reduce the willingness of developers to invest
in quality.

It should be noticed that in our model the relation between success and design quality remains significant,
thus indicating that development skills are only one of the factors impacting on quality. Future research will
investigate the possible influence of other factors that, overall, may have a mediation effect on success.

Our results show that centrality metrics are significant proxies of developers’ skills that should be monitored
from the perspective of a project administrator or team manager. However, they also prove that projects with
more skilled team members tend to have a lower design quality of software. This has a number of potential
consequences that might be visible to users and could cause negative effects over time. From previous case
studies such as Mozilla and Eclipse, it is clear that in order for a social network of a project to become a
global success, a refactoring intervention is needed, with a consequent infusion of large investments. The
natural behaviour of the social network does not seem to be able to cope with these levels of growth. While it
can help a project to start growing and reach a significant level of success, above a certain level it may
represent a weak management lever. This is consistent with previous literature positing that excessively large
social networks have a lower effectiveness (Herbsleb and Mockus 2003) and represents an interesting subject
for future research.

References
Albert, R. and Barabàsi, A. L. (1999). “Emergence of scaling in random networks”, Science, vol. 286, no.

5439, 509-512.
Bagozzi, R. P. and Yi, Y. (1988). “On the evaluation of structural equation models”, Journal of the Academy

of Marketing Science, 16 (1), 74-94.
Banker, R. D., and Slaughter, S. A. (2000). The Moderating Effects of Structure on Volatility and

Complexity in Software Enhancement. Information Systems Research, 11 (3), 219-240.
Barbagallo, D., Francalanci, C., and Merlo, F. (2008). The impact of Social Networking on Software Design

Quality and Development Effort in Open Source Projects. Proc. of Intl. Conf. on Information Systems.
Batagelj, V., Mrvar, A. (2003). Pajek - Analysis and Visualization of Large Networks. In Jünger, M.,

Mutzel, P. (eds.) Graph Drawing Software, 77-103, Springer, Berlin.
Bentler, P. M. (1990). Comparative fit indexes in structural models, Psychol. Bulletin, 107 (2), 238-246.
Bevan, N. (1995). Usability is Quality of Use. Proc. of Intl. Conf. on Human Computer Interaction.

Boehm, B., Brown, J. R., and Lipow, M. (1976). Quantitative evaluation of software quality, Proc. of Intl.
Conf. on Software Engineering, 592–605.

Boehm, B., Brown, A. W., Madacy, R., and Yang, Y. (2004). A software product line life cycle cost
estimation model, Proc. of Intl. Symposium on Empirical Software Engineering, 156–164.

Bollen, K.A. (1989). A new incremental fit index for general structural equation models, Sociological
Methods and Research, 17, 303–316.

Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique identification, Journal
of Mathematical Sociology. 2, 113-120.

Borgatti, S. P. (1995). Centrality and AIDS, Connections, 18 (1), 112-115.
Borgatti, S. P., Carley, K. M. and Krackhardt, D. (2006). On the robustness of centrality measures under

conditions of imperfect data, Social Networks, 28 (2), 124-136.
Brin, S. and Page, L. (1998). The anatomy of a large-scale hypertextual Web search engine, Comput

Networks ISDN, 30(1-7), 107-117.
Brito e Abreu, F. (1995). The MOOD metrics set, Proc. of ECOOP Workshop on Metrics.
Brito e Abreu, F., Melo, W. (1996). Evaluating the Impact of Object-Oriented Design on Software Quality.

Proc. of METRICS, 90.
Capra, E., Francalanci, C., and Merlo, F. (2007). The economics of open source software: an empirical

analysis of maintenance costs. Proc. of Intl. Conf. on Software Maintenance, 395-404.
Capra, E., Francalanci, C., and Merlo, F. (2008). An empirical study on the relationship between software

design quality, development, and governance in Open Source projects. IEEE Trans. on Soft. Eng., 34 (6),
765-782.

Carmines, E. G. and McIver, J. P. (1981). Analyzing models with unobserved variables: analysis of
covariance structures. In Social Measurement: Current Issues, Bohrnstedt, G. W., and Borgatta, E. F.
(eds.), Sage Publications, Beverly Hills, CA, 65-115.

Chen, J. Y. and Lu, J. F. (1993). A new metric for object-oriented design. J Inform Systems Soft Tech, 35
(4), 232-240.

Chidamber, S. and Kemerer, C. (1994). A metrics suite for object oriented design. IEEE Trans on Soft Eng,
20 (6), 476–493.

Choi, B., Raghu, T. S. and Vinze, A. (2006). An Empirical Study of Standards Development for E-
Businesses: A Social Network Perspective. Proc. Ann. Hawaii Intl. Conf. on System Sciences, 139-148.

Emerson, T. J. (1984). A discriminant metric for module comprehension. Proc. Int. Conf. Soft Eng, 294-431.
Faraj, S. and Sproull, L. (2000). Coordinating Expertise in Software Development Teams. Management

Science, 46 (12), 1554-1568.
Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts, D. (2001). Refactoring: improving the design of

existing code, Addison Wesley.
Freeman, L. C. (1979). Centrality in Social Networks: conceptual clarification. Soc Networks, 1(3), 215-239.
Gao, Y. and Madey, G. (2007). Network analysis of the SourceForge.net community. In Open Source

Development, Adoption and Innovation, Springer Boston.
Gao, Y., Madey, G. and Freeh, V. (2005). Modeling and Simulation of the Open Source Software

Community. Agent-Directed Simulation Symp.
Gao, Y., Van Antwerp, M., Christley, S., and Madey, G. (2007). A Research Collaboratory for Open Source

Software Research. Proc. of Intl. Workshop on Emerging Trends in FLOSS R&D.
Grewal, R., Lilien, G. L., and Mallapragada, G. (2006). Location, Location, Location: How Network

Embeddedness Affects Project Success in Open Source Systems. Manage Sci, 52 (7), 1043-1056.
Halstead, M. H. (1977). Elements of software science, Elsevier Computer Science Library.
Harrison, R., Counsell, S., and Nithi, R. (1998). An evaluation of the MOOD set of object-oriented software

metrics. IEEE Trans on Soft Eng, 24 (6), 491-496.
Henry, S. and Kafura, D. (1981). Software structure metrics based on information flow. IEEE Trans on Soft

Eng, 7 (5), 510–518.
Herbsleb, J.D. and Mockus, A., (2003). An empirical study of speed and communication in globally

distributed software development. IEEE Transactions on Software Engineering, 29 (6), 481-494.
Hinds, P. and McGrath, C. (2006). Structures that work: social structure, work structure and coordination

ease in geographically distributed teams. In Proc. of Conf. on Comp Supp Coop Work, NY, 343-352.
Hossain, L., Wu A. and Chung, K. K. S. (2006). Actor Centrality Correlates to Project Based Coordination.

Proc. of the Conf. Comp Supp Coop Work Conference, 363-372.

Howison, J. and Crowston, K. (2004). The perils and pitfalls of mining SourceForge. Proc. of Intl. Workshop
on Mining Software Repositories, 7–12.

Hubbell, C. H. (1965). An Input-Output Approach to Clique Identification. Sociometry, 28 (4), 377-399.
Jamali, M. and Abolhassani, H. (2006). Different Aspects of Social Network Analysis, IEEE/WIC/ACM Intl.

Conf. on Web Intelligence, 66-72.
Katz, L. (1953). A new status index derived from sociometric analysis, Psychometrika, 18 (1), 39-43.
Kidane, Y. Gloor, P. (2005). Correlating Temporal Communication Patterns of the Eclipse Open Source

Community with Performance and Creativity, NAACSOS Conference.
Kline, R. B. (2004). Principles and practice of structural equation modeling, Second Ed., Guilford Press, NY.
Koch, S. (2004). Agile principles and Open Source software development: a theoretical and empirical

discussion. Extreme Programming and Agile Processes in Software Engineering, Springer, Berlin, 85-93.
Lakhani K. R. and Wolf R. G. (2003). Why Hackers Do What They Do: Understanding Motivation Effort in

Free/Open Source Software Projects, Working Paper 4425-03, MIT Sloan School of Management.
Lanza, M. and Marinescu, R. (2006). Object-Oriented metrics in practice - Using software metrics to

characterize, evaluate, and improve the design of Object-Oriented systems, Springer.
Li, W. and Henry, S. (1993). Maintenance metrics for the object oriented paradigm. Proc. of IEEE Intl.

Software Metrics Symp.
Marcoulides, G. A. and Saunders C. (2006). PLS: A silver bullet?. MIS Quart., 30 (2), 3-4.
Marinescu, R. (2005). Measurement and Quality in Object-Oriented Design. Proc. Intl. Conf. on Soft Maint.
McCabe, T. J. (1976). A complexity measure. Proc. of Intl. Conf. on Software Engineering, 407.
Mehra, A., Kilduff. M. and J. Brass, D. J. (2001). The Social Networks of High and Low Self-Monitors:

Implications for Workplace Performance. Admin. Science Quarterly, 46 (1), 121-146.
Newman, M. E. J. (2005). A measure of betweenness centrality based on random walks. Soc Networks, 27

(1), 39-54.
Newman, M., Barabàsi, A. L. and Watts, D. J. (2006). The Structure and Dynamics of Networks, Princeton

University Press.
Ohira, M., Ohoka, T., Kakimoto, T., Ohsugi, N., and Matsumoto, K. (2005). Supporting knowledge

collaboration using social networks in a large-scale online community of software development projects.
Proc. of Asia-Pacific Software Engineering Conf., 835-840.

Reagans, R., and McEvily, B. (2003). Network Structure and Knowledge Transfer: The Effects of Cohesion
and Range. Administrative Science Quarterly, 48 (2), 240-267.

Sharble, R. C. and Cohen, S. S. (1993). The Object-Oriented brewery: a comparison of two Object-Oriented
development methods. ACM SIGSOFT Software Engineering Notes, 18 (2), 60-73.

Slaughter, S. A., Harter, D. E. and Krishnan, M. S. (1998). Evaluating the cost of software quality. Comm of
the ACM, 41 (8), 67-73.

Sparrowe, R. T., Liden, R. C., Wayne, S. J., and Kraimer, M. L. (2001). Social Networks and the
Performance of Individuals and Groups. Acad of Management Journal, 44 (2), 316-325.

Stephenson, K. A. and Zelen, M. (1989). Rethinking centrality: methods and examples. Soc Networks, 11, 1-
37.

Symons, C. R. (1988). Function Point analysis: difficulties and improvements, IEEE Trans on Soft Eng, 14
(1), 2-11.

Tan, Y., and Mookerjee, V. (2005). Comparing uniform and flexible policies for software maintenance and
replacement. IEEE Trans on Soft Eng, 31 (3), 238–256.

Troy, D. and Zweben, S. (1993). Measuring the quality of structured design, McGraw-Hill International
Series in Software Engineering, 214-226.

Tsai, W. (2001). Knowledge Transfer in Intraorganizational Networks: Effects of Network Position and
Absorptive Capacity on Business Unit Innovation and Performance. Acad Manage J, 44 (5), 996-1004.

Tucker, L. R. and Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analysis,
Psychometrika, 38 (1), 1–10.

Wasserman, S. and Faust, K. (1994). Social Network Analysis: Methods and Applications. Cambridge
University Press, Cambridge.

Xu, J., Christley, S., and Madey, G. (2006). Application of Social Network Analysis to the Study of Open
Source Software. In The Economics of Open Source Software Development, Elsevier B.V.

Ye, Y., Nakakoji, K., Yamamoto, Y. and Kishida, K. (2004). The Co-Evolution of Systems and
Communities in Free and Open Source Software Development. In Free/Open Source Software
Development, Idea Group.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2009

	Panel: A call for action in tackling environmental sustainability through green information technologies and systems
	Donato Barbagallo
	Chiara Francalanci
	Recommended Citation

	Microsoft Word - ECIS2009_submission.doc

