
Association for Information Systems
AIS Electronic Library (AISeL)

MCIS 2011 Proceedings Mediterranean Conference on Information Systems
(MCIS)

2011

MUTABILITY MATTERS: BASELINING THE
CONSEQUENCES OF DESIGN
Jonas Sjöström
Uppsala University, jonas.sjostrom@im.uu.se

Pär J. Ågerfalk
Uppsala University, Sweden, par.agerfalk@im.uu.se

Ruth A. Lochan
Uppsala University, ruth.lochan@im.uu.se

Follow this and additional works at: http://aisel.aisnet.org/mcis2011

This material is brought to you by the Mediterranean Conference on Information Systems (MCIS) at AIS Electronic Library (AISeL). It has been
accepted for inclusion in MCIS 2011 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please
contact elibrary@aisnet.org.

Recommended Citation
Sjöström, Jonas; Ågerfalk, Pär J.; and Lochan, Ruth A., "MUTABILITY MATTERS: BASELINING THE CONSEQUENCES OF
DESIGN" (2011). MCIS 2011 Proceedings. 33.
http://aisel.aisnet.org/mcis2011/33

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301355094?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fmcis2011%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/mcis2011?utm_source=aisel.aisnet.org%2Fmcis2011%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/mcis?utm_source=aisel.aisnet.org%2Fmcis2011%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/mcis?utm_source=aisel.aisnet.org%2Fmcis2011%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/mcis2011?utm_source=aisel.aisnet.org%2Fmcis2011%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/mcis2011/33?utm_source=aisel.aisnet.org%2Fmcis2011%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E


MUTABILITY MATTERS: BASELINING THE CONSEQUENCES 
OF DESIGN 

Sjöström, Jonas, Uppsala University, Sweden, jonas.sjostrom@im.uu.se 

Ågerfalk, Pär J., Uppsala University, Sweden, par.agerfalk@im.uu.se 

Lochan, A. Ruth, Uppsala University, Sweden, ruth.lochan@im.uu.se 

 

Abstract  
Artefact mutability has been proposed as an important component of design theory in information 
systems. Although initial work on establishing a solid foundation for discussing mutability has been 
reported, conceptual as well as practical uncertainty still prevails. This paper draws on empirical 
work in a design science research project in the health sector to explore the notion of mutability and 
provides a novel conceptualization based on four different types of mutability. The study shows that in 
order to embrace mutability, IS researchers need to establish a sound philosophy of mutability and be 
open to incorporate theory and best practices from neighbouring fields, perhaps primarily from 
software engineering. 

 

Keywords: Mutability, design science research, design theory. 

1 INTRODUCTION 

Artefact mutability has been proposed as an important component of design theory in Information 
Systems (IS). It is highlighted by Gregor & Jones (2007) that any IS design theory should encompas 
how the artefact, within reason, can be adapted to a continuously changing use context and evolving 
technological infrastructures. When proposing design theories for IT-reliant work, mutability is at the 
core. As suggested by Orlikowski & Iacono (2001), we need to conceive of the emergent properties of 
both technology and the social world, while also recognizing the complex interplay between them (e.g. 
Orlikowski, 1991; El Sawy, 2003; Orlikowski, 2007; Orlikowski & Scott, 2008; Leonardi & Barley, 
2008).  

While Orlikowski & Iacono (2001) call for theorizing the IT artefact, Gregor & Iivari (2007) elaborate 
on the nature of artefacts v. natural/organic phenomena, and propose the notion of an natural-artificial 
continuum: ”We define semizoa as IS or IT artifacts that exhibit the characteristic of mutability to 
some degree, that is, they grow, change (or are changed), and exhibit adaptive behaviour. Further, 
semizoa have the potential to modify, transform or constrain their surrounding environment.” (p. 4). 
Instead of thinking of ‘artefacts’ being designed, Gregor & Iivari (2007) suggest that we understand IT 
artefacts as ‘half-living’ (semizoic) dynamic systems, and highlight that IS research has not paid 
enough attention to understanding design of systems from that perspective. Gregor & Iivari’s (2007) 
concept of semizoa highlights two important characteristics of design: (i) The need to relate design 
work to existing (and emerging) fusion of social and technological structures,  and (ii) the socio-
material insight that new (and existing) artefacts indeed transform the social world where they are put 
into play. 

With respect to technological change, designers need to adapt technological solutions to an existing 
infrastructure. New technology is thus an artefact in a sense, but it is also a contribution to an evolving 
compound of technology. Technology thus undergoes an evolution over time rather than being 
deliberately designed for a well-specified purpose known in advance. Keen & Scott Morton (1978) 
early discussed the problems concerned with intended use versus ‘real’ use. 



The aim of design is clearly to change the way of things in accordance with some design goals. 
However, the idea of designing the social world is problematic, given that IS researchers tend to 
emphasize the view of design as a way to induce change into a soft system (e.g. Checkland, 1981). 
The issues associated with changes to the social world in relation to IS development is well recognized 
in the IS field (e.g. Mumford & Weir, 1979; Checkland, 1981). IS development has, for example, been 
conceptualized as organizational change in which design activities and how they affect various 
stakeholders are taken into account (Lyytinen & Hirschheim, 1988; Kotter, 1996; Hayes, 2002; 
Sjöström, 2010). Ideas from the area of design thinking support this view of IS design as a complex 
socio-material activity (e.g. Krippendorff, 2006). 

The notion of artefact mutability is also a core topic within the field of Software Engineering (SE), 
although SE terminology differs from that in IS. Developments in software design, such as 
modularisation (Parnas, 1972), abstract datatypes (Liskov, 1974), and object orientation (Rentsch, 
1982) reflect incrementally sophisticated solutions to developing software that meet different ideals, 
such as maintainability, without compromising other aspects of software quality. Contemporary 
software projects typically embrace ideals of ’mutability’; for example, through the adoption of a 
service-oriented architecture to promote interoperability between applications, while at the same time 
allow for large degrees of freedom in the design of individual applications. Design patterns (Gamma et 
al. 1995), such as the model-view controller (MVC) pattern, are commonly used in software design to 
promote good architectues. 

However, the concept of mutability as part of IS design research is still not well understood (Gregor & 
Iivari, 2007) and does not sufficiently factor in progress made in the SE field. The aim of this paper, 
therefore, is to conceptualize further the concept of artefact mutability, and to explore the implications 
of such a conceptualization for IS design research. The paper draws on (i) an ongoing IS initiative in 
the Swedish e-Health sector,  (ii) the contemporary meta-theoretical discourse in IS design research, 
and (iii) selected SE theories (as kernel theories for mutability). 

2 IS DESIGN RESEARCH IN THE U-CARE PROGRAMME 

This paper, although primarily adopting a conceptual/analytical approach (Järvinen, 2000), draws on 
design experiences from the U-CARE programme at Uppsala University. The overarching goal of the 
U-CARE programme is to promote psychosocial health among patients struck by somatic disease and 
their significant others, hopefully at a lower cost to the benefit of individuals and society. In order to 
achieve these goals, research is conducted in close collaboration between research groups within the 
fields of clinical psychology, information systems and economics at Uppsala University. Initial 
research activities are performed within the areas of paediatric oncology, adult oncology and 
cardiology in close collaboration with clinicians at Uppsala Akademiska Hospital. The idea of the U-
CARE programme is to bridge scientific and organizational borders in order to offer a meeting place 
for researchers, clinicians, and students from different disciplinary backgrounds in a way that is unique 
within the field of care sciences.  

During 2010-2011, research studies were designed, and a software platform for psychosocial care was 
developed. The platform will be applied within paediatric oncology, adult oncology, and cardiology to 
provide care and psychological treatment to patients and significant others, starting in the second half 
of 2011. 

The development was conducted in close collaboration between IS researchers (who also acted as 
system analysts and software developers) and other stakeholders in the research context. For the IS 
researchers, this development process was part of a design-oriented research endeavour, meaning that 
theory as well as practice informed the development. The theoretical basis was drawn primarily from: 

• Psychosocial care in general, and in particular experiences from Internet-based psychosocial 
care and cognitive behavioural therapy (e.g. Kraft et al., 2009) 

• Software Engineering, including design patterns (e.g. Gamma et al., 1995) 

• Interaction Design  (e.g. Preece et al., 2002)  



• Information Systems, particularly actability theory (Ågerfalk, 2003; Sjöström, 2010) 

The multi-disciplinary approach in U-CARE resonates well with the ideals of rigorous evaluation in IS 
design research as put forth by Hevner et al. (2004). Contributions from psychology and economics, 
disciplines with a strong quantitative evaluation tradition, ingrain our research with evaluation 
methods that will be applied to evaluate (i) the clinical efficacy of psychosocial care delivered via the 
platform, and (ii) the health economics impact of delivering online psychosocial care. Evaluation of 
these aspects will be conducted through randomized controlled experiments that allow for statistically 
significant comparisons between treatment groups and control groups, with stratification for various 
variables. 

Several types of evaluation of the platform are in progress. The DeLone and McLean (1992; 2003) 
model of IS success serves as a cornerstone for evaluation, including organisational impact, system 
functionality and usability, supplemented with input from the other disciplines, such as psychology 
(individual impact) and economics (societal impact). In doing this, we apply a combination of 
qualitative and quantitative approaches.  

It is beyond the scope of this paper to go into details of the evaluation strategy. Instead, we focus on a 
few issues of evaluation work. A large subset of the evaluation work still remains to be done through 
controlled experiments. Nonetheless, the design efforts so far have rendered considerable experience 
worthy of reporting. The development followed a selection of agile development principles (ref). 
Development sprints lasted for 2–3 weeks, followed by sprint reviews where the ‘customers’ – various 
stakeholders (mainly researchers from other disciplines) – were exposed to the most current version of 
the platform. These review meetings rendered feedback and governed the continued development 
efforts. The feedback was documented and field notes were taken. E-mail correspondence has also 
been kept to provide additional corpus. 

The stakeholder-centric (Sjöström, 2010) and iterative approach promotes a focus on value creation – 
a continuous assessment of the platform as a means to contribute to the overarching goals of the U-
CARE programme. This allows for ideas and design principles to be gradually refined. A stakeholder-
centric approach that combines Hevnerian evaluation ideals with action design research (Sein et al. 
(2011) thus forms the core of the research design. Essentially, in keeping with Sjöström & Ågerfalk 
(2009) we embrace rigorous evaluation methods (Hevner et al., 2004) to understand better mutability 
in design theory (Gregor & Jones, 2007; Gregor & Iivari, 2007).  

3 EXPLORING FOUR TYPES OF MUTABILITY 

The notions of design and use, and their relation, has been debated for a long time in IS and HCI 
research. In our conceptualization of mutability, we distinguish between the process of design and the 
product of that design process (Walls et al. 1992; Sjöström & Ågerfalk, 2009). We also conceive of 
the use of an artefact by emphasizing the process where it is used and the characteristics of the artefact 
as such. We thus identify four areas of relevance for mutability: 
 

1. Mutability-in-Use (Process View) 
2. Mutability-in-Use (Product View) 
3. Mutability-in-Design (Product View) 
4. Mutability-in-Design (Process View) 

The four types of mutability are presented in the following subsections. Each type is presented through 
(i) a definition of the type of mutability, including a theoretical justification, (ii) illustrations from the 
U-CARE context, (iii) the implications of this type of mutability for the design process and the design 
product in the U-CARE programme, and (iv) a brief abstraction to raise the issue of the implications in 
a broader IS development context. 



3.1 Mutability-in-Use (Process View) 

The process view of mutability-in-use relates to the influence on the design of continuous changes in 
the socio-material reality of various stakeholders. It mutually serves as both baseline and ultimate 
consequence of a design effort. The acknowledgement of the duality of technology (Orlikowski, 1992) 
and the emergent properties of the social world is what causes IS researchers to reason about 
mutability, and, the socio-material view is a premise to theorizing the IT artefact (in keeping with 
Orlikowski and Iacono, 2001). Users' appropriation of technology may lead to ways of use that were 
neither intended nor anticipated by designers. The phenomena of ‘design in use’ has been discussed by 
IS researchers in terms of, for example, drift (Ciborra, 1996), tailoring (Trigg and Bödker, 1994), 
adaptation (Majchrak et al., 2000), reinvention (Rogers, 1995) and appropriation (e.g. De Sanctis and 
Poole, 1994; Orlikowski, 2000). Thus, while we recognize that the distinction between ‘design’ and 
‘use’ is not trivial, still we find it important for conceptual clarity to analytically distinguish between 
the two.  
 

3.2 Mutability-in-Use (Product View) 

A main concern for software developers is to make sense of customers’ needs. This becomes evident 
when one looks at the plethora of methods and techniques for ‘interaction design’, ‘requirements 
engineering’, ‘customer collaboration’, et cetera. Different design approaches range from conservative 
(engineering-style) approaches, via romantic (creative and artistic) approaches, to pragmatic 
approaches, focusing social interaction between stakeholders (Fällman, 2003). A large number of 
stakeholders in the design process tends to increase the complexity in making sense of customer needs. 
In the U-CARE context, the researchers (i.e. “customers”) intend to conduct nine different studies, 
structured into three work packages. After a number of sprint reviews, it became clear that the 
different work packages had different needs. The solution was to build a generic (and configurable) 
platform. The term ‘generic’ is used here to denote that the design intention is to make the platform 
applicable in new situations insofar as possible, without further design efforts other than user 
configurations. The term thus points towards an ideal, rather than denoting a claim to make an artefact 
that is applicable in all future situations. 

This principle for mutability is to allow for the users to adapt the artefact to new situations through 
configuration. Configurable features (in contrast to hard-coded features) make the platform mutable-
in-use. Our experience is that a strive for generic features increase the complexity of the artefact. This 
created a design tension – a trade-off situation between simplicity and mutability-in-use. Nevertheless, 
the efforts to create generic features appear to have pleased the customers. At the early stages of 
design, we could not get the customers to agree on the characteristics of the platform. However, once 
we presented fairly advanced implementations of generic character, the customers appeared more 
pleased with the design, since they realized it would satisfy the needs across all workpackages.  

The U-CARE design process has rendered a number of generic features, such as: 

 
● Creation and configuration of research studies with a number of options for inclusion criteria, 

randomization, activation of specific features in the platform (e.g. chat, forum, diary, library 
or FAQ), use of switchable user interface ‘themes’ to suit the target groups in the study (e.g. 
adolescents or elderly), and features to allow users’ control of content. 

● A questionnaire design tool that allows researchers and therapists to create custom 
questionnaires and results from calculations. The questionnaires can, among other things, be 
used to (i) collect research data at customizable observation points in the study, (ii) support the 
inclusion process in the studies, and (iii) allow for automated data analysis of collected data. 

● A content management system that allows therapists to upload various types of items (e.g. pdf 
files and files of different audio and video format). Items are categorized using a triple-
strategy consisting of (i) top-down classification using the dublin core (Duval et al., 2002), (ii) 
bottom-up classification using user-selected keywords (“tagging”), and (iii) on basis of user 
behaviour.  



● Design of psychological interventions, following common principles in cognitive behavioural 
therapy, allowing the therapists to setup new interventions, which ‘unfold’ content to the 
patients on basis of rules defined by the therapist. 

● Dynamic setup of actions, authentication, authorization, and menus. Action and menu setup is 
connected to dynamic roles. The actions and menus are specifically configured for each study, 
which further promotes the use of the platform in different research and treatment situations. 

● Custom events to invoke ‘configuration actions’ at any given time, e.g. switching the role of a 
user at a given point in time, to allow for specific requirements in each known study, and to 
promote the usefulness of the artefact in possible future studies 

The design and implementation of these features imply a rather complex system design. We agree with 
Folmer et al. (2006) that an important task for researchers is not only to propose the characteristics of 
features from a user interface perspective, but also to account for the architectural consequences of the 
proposed features. Aiming for a high mutability thus constitutes a risk. Every ‘generic’ feature adds to 
the architectural complexity of the artefact, and requires more resources to build than a situation-
specific feature. In the U-CARE case, our design desicison were justified by an approximation of the 
desired ‘use trajectory’ of the design product, rather than merely the identifiable and current needs. 

A final reflection is that the ‘generic’ features presented above are not really specific for the context of 
Internet-based psychosocial care. Although our evidence at this point is anecdotal, the ideas for 
mutability-in-use, as well as the concrete solutions, may be of value in other design contexts. But, to 
paraphrase Lee & Baskerville (2003), we are only able to make a generalization from empirical data to 
theory at this point. 

3.3 Mutability-in-Design (Product View) 

As discussed in the previous section, one may attempt to design an IT artefact in a generic way to 
make it support different types of situations. However, it is improbable that such a strategy satisfies all 
future needs. An additional strategy is to take into account the need for future changes through the 
internal software architecture and design. We consider architectural issues to be product-focused 
mutability-in-design.  

As early as in the 1970’s, ideas on software architecture and interface-based modularisation of 
software appeared in the literature, promoting re-use of code and ‘designing for change’ (e.g. Parnas, 
1976). Parnas was an early proponent of separation of concerns, and dependencies between interfaces 
rather than dependencies between concrete implementations. A common approach to architecture is 
based on the concept of the model-view controller (MVC) pattern. Business logic (models) is here 
separated from user interface logic (views) through a controller. These concept were developed by 
Reenskaug at Xerox Parc in the late 1970’s. In contemporary software development environments, and 
in multiple programming languages, there are numerous available implementations of MVC 
frameworks for adoption in software development (At the time of writing, Wikipedia lists 95 MVC 
implementations, covering all major development languages). Doubtlessly, the MVC pattern as an 
architectural design approach is widely adopted in software development practice. By applying the 
MVC framework at an early stage, developers are forced to adhere to certain conventions (e.g. 
separating business logic from user interface design). Such conventions promote change, and support 
programmers who are familiar with the MVC ideas to more quickly interpret code and make 
adaptations to it.  

The U-CARE platform is based on Microsoft’s implementation of MVC (built on top of the .NET 
framework). While MVC promotes changes to the artefact, it does not cover every need for 
mutability-in-design. Several other design patterns from object oriented design have been applied, 
such as the factory pattern (Gamma et al., 1995), and the use of interfaces (e.g. Canning et al., 1989) to 
achieve a weak coupling between classes and allow for unit testing1. Further, use of inheritance and 
filter technology provides all controllers with  the same basic functionality. An example is provided in 
Figure 1. The U-CARE architecture lets the developers quickly add new actions to the controllers. By 

                                              
1The use of interfaces to facilitate unit testing is further discussed in the next section. 



inheriting the class UcareController, the new actions will automatically be plugged into the 
architecture. The pre-action filter uses the action model to see if the new action has been configured. If 
not, it is automatically configured using default values, and an email is sent to the development team, 
urging them to specify the properties of the new action (e.g. meta-data about action and logging 
options). 

 
Figure 1: The U-CARE action framework 

Figure 1 shows how the controllers use the services of the model classes to complete their work, such 
as authorization, logging, user feedback, and user interface themes. While this strategy minimizes the 
effort to add new actions to the artefact, it also provides an opportunity to make a change in a single 
place (e.g. in the pre-action filter) that affects every action in the artefact. The adoption of MVC and 
other object oriented design principles facilitates mutability-in-design, allowing for the developers to 
adapt the artefact to new situations. Experiences from the U-CARE development setting show that 



new features are easily added to the existing ones, and seamlessly integrated into the overall 
architecture.  

3.4 Mutability-in-Design (Process View) 

At an early stage of development, the platform was re-factored from a regular .NET web solution into 
an MVC-based one, based on the idea that it would have a positive long-term impact on productivity. 
At that point, two out of three programmers were inadequately skilled in MVC, which hampered 
productivity in the short-term. Customer requirements are still changing, but the large number of 
existing model classes makes it a relatively easy task to adapt or create new features. The database 
consists of 50 tables, and the code base is approximately 20 KLOC at this stage. Changes to the 
database are followed by a rendering of so-called LINQ classes (supported by Visual Studio), and 
automated rendering of interfaces for data access. The interfaces are rendered using the DAL-
automation script designed in the project. Figure 2 shows relation between the MVC framework and 
data access in the U-CARE project. Sometimes there is a need to manually revise the model classes. 
However, since the models have clear responsibilities, changes to the database lead to a manageable 
and limited set of changes in the source code.  

Developers can change any piece of software (provided they have access to the source code). The 
challenge is to preserve robustness of the software whenever revisions are made. Automated testing is 
a common practice in contemporary software development. The idea is that a change of the source 
codes is followed by an execution of all tests. To make the testing efficient, test cases are automated 
through software implementation. The tools and techniques for automated testing have grown more 
sophisticated over time, one can for instance: 

• Implement unit tests as code 

• Test units in isolation without depending on other units (mock objects) 

• Create re-runnable tests through automation of other IT artefacts, e.g. a web browser 

In brief, automated testing reduces the risk of creating new errors when the existing software is 
adapted to new circumstances, and it is supported through various testing frameworks in different 
development environments.  

 
Figure 2: The U-CARE data access model 

Two basic design patterns are important pre-requisites for automated testing: The Law of Demeter 
(LoD) and the Inversion of Control (IoC) pattern. The Law of Demeter dictates that an object should 
only speak to its closest neighbors. Such a design minimises the number of unnecessarily complex 



connections between different system parts. The Inversion of Control Pattern  (Gamma et al., 1995; 
Johnson & Foote, 1998), similar to Parnas (1972; 1976) ideas, advocates that we need to de-couple the 
execution of a task from its implementation, i.e. only to create dependencies between interfaces. This 
allows for flexible provision of one or more implementations of the interface at any point in time. It 
also allows for ‘mock objects’ for testing purposes; i.e. to create units without actually implementing 
other parts of the system in advance. The idea of only creating dependencies between interfaces is the 
rationale behind the extra DAL layer (Figure 2) and the DAL automation script mentioned above. In 
summary, the architecture and code requires certain architectural characteristics to allow for 
automated unit testing. The initial cost to setup automated testing is high due to several factors: (i) the 
architectural requirements, (ii) design of test cases and extra code to implement those as software and 
(iii) the need to employ developers focused on testing and the resources needed to educate the 
development team on the topic. 

4 CONCLUSION 

In this paper, we have proposed a further developed concept of IT artifact mutability and shown a 
number of empirical examples of how to achieve artifact mutability while at the same time 
maintaining stability of the artifact. This dual purpose affects both the process of design, and the 
characteristics of the design product. Based on these experiences, we conclude that ‘mutability’ as a 
design ideal affects design greatly. We have identified four types of mutability: 
  

1. Mutability-in-Use (Process View) 
2. Mutability-in-Use (Product View) 
3. Mutability-in-Design (Product View) 
4. Mutability-in-Design (Process View) 

These types are an abstraction from one empirical context. Based on the notion of generalizability as 
suggested by Lee & Baskerville (2003), we cannot claim that these types are valid also in other 
development contexts. However, there is a bulk of existing theory that supports the categories, as 
discussed above. 

The four aspects of mutability we propose support design researchers in thinking about the long-term 
impact of IT artifacts. The process view of mutability-in-use tells us to acknowledge the emergent 
properties of the human world and recognize that technology is appropriated, rather than 'used'. Gill & 
Hevner (2011) suggest that "the fitness of a design artifact must be estimated using a utility function 
that considers the full range of characteristics that can impact the likelihood that the artifact will 
further be reproduced and evolve" (p. 247). As design researchers, aiming at producing relevant and 
useful artifacts that impact society, it makes sense to factor in the likelihood of future use and 
evolution of the artifact, not only its aptness to solve a particular problem in a particular situation. The 
product view of mutability-in-use highlights the need for feature flexibility: IT artifacts that the users 
themselves configure for different situations. As designers, this means that the features of the artifact 
need to be based on a thorough understanding of current needs as well as elaborate ideas on future use 
scenarios. The process view of mutability-in-design highlights that design work by 
designers/developers need to be governed, e.g. through automated testing to promote stability when 
revising the artifact. The product view of mutability-in design informs us that mutability impacts the 
conceptual and technical software architecture of the artifact. 



Process� Product�

Use�

Design�
re-design�

and�tes ng�
So ware�

architecture�

Appropria on�

Feature�

flexibility�

 
Figure 3: Different meanings of mutability 

In brief, there are different meanings of mutability; depending on what aspect we focus. Figure 1 
shows examples of how mutability may be interpreted given the proposed aspects of the concept. The 
idea of viewing mutability from these four aspects allows us to elaborate on how they are interrelated. 
Clearly, the ultimate goal is that the IT artifacts we design bring value to the emergent human world. 
Through the U-CARE case, we have shown a number of ways this is accomplished through the three 
other aspects of mutability. First, we attempted to understand a likely 'use trajectory' for the IT artifact, 
and build generic and configurable features in order to support a variety of anticipated immediate and 
future use situations. Gregor & Iivari (2007) use the phrase "re-design as a response to externally 
initiated change" as a way to enable artifact mutability. In a similar way, we see that there is a need for 
learning between the process of use and the process of design. Re-design efforts need to be based on 
what designers learn from users, while at the same time, designers play an important role in proposing 
the use of new technologies and solutions. We have shown that the design process and the software 
architecture are interdependent on one another - an architecture may enable or constrain design 
activities. Finally, every re-design effort affects the IT artifact (i) at an architectural level (e.g. by 
reinforcing or breaking an established architectural pattern, or introducing a new one), and (ii) at a 
feature level. For instance, an old feature may be re-factored to become more generic, or an entirely 
new feature may be added to solve new user needs. 

Another type of interrelation between the mutability aspects is that the IT artifact itself may be built to 
support learning. In the U-CARE case, there are built-in features that allow users to provide feedback 
to designers (e.g. bug reports or wishes for changes). On top of this, there is a feature to enable 
rigorous logging of activities on the web site. The logs may be mined to identify re-design ideas, 
usability problems, and frequent technical problems on the web site. They are also used to filter out 
contextually relevant information for the users. All in all, the proposed conceptualization of mutability 
promotes a systemic thinking about how each aspect of mutability can inform the other ones. 

While Gregor & Iivari (2007) focus on techniques to make IT artifacts adapt over time, e.g. through 
learning or context-aware IT artifacts, we have explicitly added a dimension of process – and thereby 
the social use context of the IT artifact – to explain mutability. Our empirical work has highlighted 
that in order to promote mutability, it needs to be acknowledged throughout the design process. 
Furthermore, IS research needs to build upon the knowledge base from SE, which to a large extent 
focuses on methods and frameworks to promote mutability. 

Given the strong influence of mutability as a design ideal, it may be slightly misleading to regard 
‘mutability’ a characteristic of a design theory (see Gregor & Jones, 2007). A ‘mutable’ solution to 
some problem class implies that good SE practices, such as the ones established in the U- CARE 
project and outlined above, are applied as a complement to any specific design theory. Any IS design 
theory based on the recognition of a continually evolving social world and technological context 
should thus suggest the use of state-of-the-art SE practices, and (if applicable) address principles for 
mutability that are specific to the particular theory (i.e. deviations from state-of-the-art practices that 
may be required in the context of the specific theory). In the case of U-CARE, so far, we have not 
identified any such deviations; still we have shown that mutability is a core issue in the design process. 

Our findings signal that mutability, while having an impact on both the design process and the design 
product, qualify in its own right as an important knowledge base in design theorizing. In order to move 



forward our understanding of mutability in design-oriented research IS researchers need to embrace a 
philosophical foundation that embraces it (as initiated by Gregor & Iivari, 2007) and factors in 
relevant theories from neighbouring fields, such as SE.   

Acknowledgements 
We are grateful to the U-CARE programme at Uppsala University for providing funding and empirical 
context for this research. Part of this research has been funded by the Swedish National Research 
School on Management and Information Technology through a postdoc grant. 

References  
Ågerfalk P J (2003) Information Systems Actability: Understanding Information Technology as a Tool 

for Business Action and Communication. Doctoral Dissertation. Department of Computer and 
Information Science, Linköping University, 2003 

Avison, D.E. and Fitzgerald, G. (1995). Information Systems Development: Methodologies, 
Techniques and Tools. 2nd Edition. McGraw-Hill, London. 

Canning, P.S., Cook, W.R., Hill, W. L. & Olthoff, W. G. (1989) Interfaces for strongly typed object-
oriented programming. ACM SigPlan Notices, 24(10), pp. 25–35 

Checkland, P. B. (1981). Systems Thinking, Systems Practice, Chichester: Wiley. 
Ciborra, C.U. (1996). Groupware and teamwork. New York: John Wiley & Sons. 
De Sanctis, G. and Poole, M.S. (1994). Capturing the complexity in advanced technology use: 

adaptive structuration theory, Organization Science, 5(2), 121-147. 
DeLone, W. and McLean, E. (1992). Information systems success: the quest for the dependent 

variable. Information systems research, 3(1), pp. 60–95. 
Delone, W. and McLean, E. (2003). The DeLone and McLean model of in- formation systems 

success: A ten-year update. Journal of Management Information Systems, 19(4):9–30. 
Duval, E., Hodgins, W., Sutton, S., Weibel, S.L. (2002) "Metadata principles and practicalities", D-Lib 

Magazine, 8(4). 
El Sawy, O. (2003). The IS Core IX: The 3 Faces of IS Identity: Connection, Immersion, and Fusion. 

Communications of the Association for Informa- tion Systems, 12(1):39. 
Fällman, D. (2003). Design-oriented human-computer interaction. In Proceedings of the SIGCHI 

conference on Human factors in computing systems, page 232. ACM. 
Folmer, E., van Welie, M., Bosch, J. (2006) Bridging Patterns: An Approach to Bridge Gaps between 

SE and HCI. Journal of Information and Software Technology. Volume 48, Issue 2, pages 69-89. 
Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995). Design Patterns: Elements of Reusable 

Object-Oriented Software, Reading, MA: Addison-Wesley. 
Gill, T.G. & Hevner, A. R. (2011) A Fitness-Utility Model for Design Science Research. In H. Jain, 

A.P. Sinha, and P. Vitharana (Eds.): DESRIST 2011, LNCS 6629, pp. 237–252. 
Gregor, S. D. & Iivari, J. (2007) Designing for Mutability in Information Systems Artifacts. In Hart, 

D. N. & Gregor, S. D. (Eds.) Information Systems Foundations: Theory, Representation and 
Reality. Canberra: ANU E Press. 

Gregor, S. & Jones, D. (2007). The Anatomy of a Design Theory, Journal of the Association for 
Information Systems, 8(5), pp. 312–335. 

Gregor, S. D. & Jones, D. (2007) The Anatomy of  a Design Theory.  
Hayes, J. (2002). The theory and practice of change management. Palgrave Houndmills. 
Hevner, A.R., March, S.T., Park, J., and Ram, S. (2004) Design Science in Information Systems 

Research," MIS Quarterly (28):1, pp. 75–105. 
Järvinen, P. (2000) Research Questions Guiding Selection of an Appropriate Research Method, in 

Hansen, Bichler and Mahrer (eds.), Proceedings of the 8th European Conference on Information 
Systems, 3–5 July, 2000, Vienna, pp. 124–131. 

Johnson, R. E. & Foote, B. (1988) Designing Reusable Classes. Journal of Object-Oriented 
Programming, 1(2), pp. 22–35. 



Kautz, K. and Mcmaster, T. (1994). The failure to introduce systems development methods: A factor-
based analysis. In Proceedings of the IFIP TC8 Working Conference on Diffusion, Transfer and 
Implementation of Information Technology (Levine, L. Ed.), p. 275, IFIP Transactions A-45, 
North-Holland, Amsterdam. 

Kotter, J. (1996). Leading change. Harvard Business School Press. 
Kraft, P., Drozd, F. & Olsen, E. (2009) ePsychology: Designing Theory-Based Health Promotion 

Interventions.  Communicaions of the AIS: Vol. 24, Article 24, pp. 400 - 426 
Lee, A.S. and Baskerville, R. L. (2003). Generalizing generalizability in information systems research. 

Information Systems Research, 14(3) 221-243. 
Leonardi, P. and Barley, S. (2008). Materiality and change: Challenges to building better theory about 

technology and organizing. Information and Organization, 18(3), pp. 159–176. 
Liskov, B. (1974). Programming with Abstract Data Types, in Proceedings of the ACM SIGPLAN 

Symposium on Very High Level Languages, pp. 50–59, 1974, Santa Monica, California. 
Lyytinen, K. and Hirschheim, R. (1988). Information systems failures – a survey and classification of 

the empirical literature. In Oxford surveys in information technology, page 309. Oxford University 
Press, Inc. 

Majchrzak, A., Rice, R., Malhotra, A., King, N. and Ba., S. (2000). Technology adaptation: the case of 
a computer-supported inter-organizational virtual team. MIS Quarterly. 24(4), 569-600. 

Markus, M.L. and Robey, D. (1988). Information technology and organizational change: Causal 
structure in theory and research. Management Science, 34 (5), 583-598. 

Mumford, E. and Weir, M. (1979). Computer systems in work design–the ETHICS method: effective 
technical and human implementation of com- puter systems: a work design exercise book for 
individuals and groups. John Wiley & Sons. 

Orlikowski, W.J. (1992). The duality of technology: rethinking the concept of technology in 
organizations. Organization Science, 3(3), 398-427. 

Orlikowski, W.J. (2000). Using technology and constituting structures: a practice lens for studying 
technology in organizations. Organization Science, 11(4), 404-428. 

Orlikowski, W. (2007). Sociomaterial practices: exploring technology at work. Organization Studies, 
28(9), pp. 1435–1448. 

Orlikowski W. and Scott, S.V. (2008). Sociomateriality: Challenging the Separation of Technology. 
Work and Organization, The Academy of Management Annals, 2(1), pp. 433–474. 

Parnas, D.L. (1972). On the Criteria to Be Used in Decomposing Systems into Modules, 
Communications of the ACM, 15(12). 

Parnas, D. (1976) On the design and development of program families. IEEE Transactions on 
Software Engineering, Vol. SE-2, pp.1-9, Mar. 1976 

Preece, J., Rogers, Y., and Sharp, H. (2002). Interaction design: beyond human-computer interaction. 
John Wiley & Sons, Inc. New York, NY, USA. 

Rentsch, T. (1982). Object Oriented Programming, ACM SIGPLAN Notices, 17(9), pp. 51–57.  
Sjöström, J. (2010). Designing Information Systems: A Pragmatic Account. PhD Dissertation. Uppsala 

University, Sweden. 
Sjöström, J. & Ågerfalk, P.J. (2009) An Analytic Framework for Design-oriented Research Concepts. 

Proceedings of AMCIS 2009. 
Trigg, R.H. and Bodker, S. (1994). From implementation to design: tailoring and the emergence of 

systemarization in CSCW. Proceedings of CSCW 94, 45-54. 
 
 


	Association for Information Systems
	AIS Electronic Library (AISeL)
	2011

	MUTABILITY MATTERS: BASELINING THE CONSEQUENCES OF DESIGN
	Jonas Sjöström
	Pär J. Ågerfalk
	Ruth A. Lochan
	Recommended Citation


	Microsoft Word - 287592-text.native.1331579987.doc

