
Association for Information Systems
AIS Electronic Library (AISeL)

ECIS 2006 Proceedings European Conference on Information Systems
(ECIS)

2006

Efficiency implications of open source
commonality and reuse
E. Capra
capra@elet.polimi.it

Chiara Francalanci
Dipartimento di Elettronica e Informazione Politecnico di Milano, francala@elet.polimi.it

Francesco Merlo
Politecnico di Milano, merlo@elet.polimi.it

Macello Tosetti

Follow this and additional works at: http://aisel.aisnet.org/ecis2006

This material is brought to you by the European Conference on Information Systems (ECIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ECIS 2006 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Capra, E.; Francalanci, Chiara; Merlo, Francesco; and Tosetti, Macello, "Efficiency implications of open source commonality and
reuse" (2006). ECIS 2006 Proceedings. 152.
http://aisel.aisnet.org/ecis2006/152

CORE Metadata, citation and similar papers at core.ac.uk

Provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301354932?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fecis2006%2F152&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2006?utm_source=aisel.aisnet.org%2Fecis2006%2F152&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2006%2F152&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2006%2F152&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2006?utm_source=aisel.aisnet.org%2Fecis2006%2F152&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2006/152?utm_source=aisel.aisnet.org%2Fecis2006%2F152&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

 1

EFFICIENCY IMPLICATIONS OF OPEN SOURCE

COMMONALITY AND REUSE

Eugenio Capra, Politecnico of Milan, Department of Electronics and Information, via Ponzio 34/5, 20133

Milano (Italy), capra@elet.polimi.it

Chiara Francalanci, Politecnico of Milan, Department of Electronics and Information, via Ponzio 34/5,

20133 Milano (Italy), francala@elet.polimi.it

Francesco Merlo, Politecnico of Milan, Department of Electronics and Information, via Ponzio 34/5,

20133 Milano (Italy), merlo@elet.polimi.it

Marcello Tosetti, former student of Politecnico of Milan, Department of Electronics and Information

Abstract

This paper analyzes the reuse choices made by open source developers and relates them to cost efficiency.

We make a distinction between the commonality among applications and the actual reuse of code. The

former represents the similarity between the requirements of different applications and, consequently, the

functionalities that they provide. The latter represents the actual reuse of code. No application can be

maintained for ever. A fundamental reason for the need for periodical replacement of code is the

exponential growth of costs with the number of maintenance interventions. Intuitively, this is due to the

increasing complexity of software that grows in both size and coupling among different modules. The

paper measures commonality, reuse and development costs of 26 open-source projects for a total of 171

application versions. Results show that reuse choices in open-source contexts are not cost efficient.

Developers tend to reuse code from the most recent version of applications, even if their requirements are

closer to previous versions. Furthermore, the latest version of an application is always the one that has

incurred the highest number of maintenance interventions. Accordingly, the development cost per new line

of code is found to grow with reuse.

Keywords: commonality, software reuse, software cost, maintenance and replacement policies, open

source.

 2

1. INTRODUCTION AND LITERATURE REVIEW

This paper presents the results of an empirical research investigating the impact of code reuse on the

development costs of open source applications. The paper makes a distinction between commonality and

reuse. The former represents the similarity between the requirements of different applications and,

consequently, the functionalities that they provide. The latter represents the actual reuse of code.

Applications with high commonality may not be characterized by a correspondingly high reuse of code.

This occurs when different programs provide the same functionalities.

Clearly, the high commonality – low reuse situation is economically inefficient (cf. Morisio et al., 2002).

Open source should enhance reuse, as any software house can retrieve the required source code from

shared repositories. As a consequence, open source should reduce development costs (Rothenberger et al.,

2002 proposes a cost-benefit-model for systematic software reuse; see also Tomer et al., 2004). The cost

benefits of open source are generally accepted and broadly advocated as a driver of savings and faster

response to users (cf. Fitzgerald, 2004). These opportunities are also regarded as a means to an effective

reduction of the digital divide (cf. Keats, 2004). However, the literature does not provide quantitative

benchmarks of the cost reductions enabled by open source. Cost reductions have been demonstrated by

discussing success stories and isolated case studies, but have not been studied extensively (cf. Morad et

al., 2005, Russo et al., 2003, Salmivalli et al., 2004, Madanmohan et al., 2004).

The software engineering literature states that systems can change through either vertical or horizontal

evolution (Parnas, 1976). The former is due to slight changes in requirements to adapt to new business

situations, while the latter is due to a differentiation of the scope of the application along its evolutionary

path. Both typologies of changes are carried out through either maintenance or replacement (cf. Basili et

al., 1996, Barua and Mukhopadhyay, 1989, and Belady et al., 1985). While maintenance modifies an

existing application by creating a new version of the same code, replacement satisfies requirements by

developing a new application from scratch. The degree to which code is actually reused represents the

discriminant between maintenance and replacement (cf. Basili, 1990).

No application can be maintained for ever (cf. Lehman et al., 2000 and Visaggio, 1999). A fundamental

reason for the need for periodical replacement of code is the exponential growth of costs with the number

of maintenance interventions (see Section 2, and cf. Ahn et al., 2003). Intuitively, this is due to the

increasing complexity of software that grows in both size and coupling among different modules. New

functionalities must be integrated with existing modules and, thus, integration costs soar (cf. Tan et al.,

2005 and Bianchi et al., 2001). This suggests that there exists a limit to the cost efficient reuse of open-

source software.

This paper analyzes the reuse choices made by open source developers and relates them to cost efficiency.

We make a distinction between the commonality among applications and the actual reuse of code. If

developers make a replacement decision, code is not reused even if commonality is high. In open source

contexts, this may not be an explicit business decision, but may be due to a difficulty in discovering and

analyzing the required reusable code. This represents an additional cost of reuse which may further reduce

benefits.

The paper provides a model of the concepts of commonality and reuse. The model supports the creation of

software evolution graphs that show maintenance vs. replacement decisions. Two nodes with the same

parent represent a substantial differentiation of code which splits into different applications. Conversely,

two nodes along the same edge represent subsequent versions of the same application. Real software

evolutionary graphs are built by analyzing open source repositories. The depth and breadth of trees, the

 3

time and effort required to develop subsequent versions of applications, the degree of commonality and

reuse are analyzed as indicators of maintenance vs. replacement decisions and cost efficiency.

The presentation is organized as follows: Section 2Fel! Hittar inte referenskälla. formalizes the concepts

of commonality, reuse, maintenance and replacement. Section 3 presents the empirical model adopted to

measure commonality, reuse and cost efficiency in a real open source context. Section 4 discusses

empirical findings according to the model proposed. Finally, Section 5 draws preliminary conclusions and

proposes further work to deepen the research.

2. PRELIMINARY DEFINITIONS

This section provides formal definitions of the concept upon which our analysis are based. Sub-section 2.1

introduces maintenance and replacement according to software engineering literature. Sub-section 2.2

proposes a definition of commonality and reuse oriented to the analysis of software evolution.

2.1. Definitions of maintenance and replacement

Maintenance is defined as the operation that builds a software system Si following a change in the

functional requirements of the system Ri. By definition then changes in requirements causes changes in the

software system.

This definition excludes corrective maintenance, which takes place even if the set of requirements does

not change (Ri-1=Ri). However, adaptive and perfective maintenance are considered, which traditional

software engineering studies have found to constitute more than 75% of total maintenance effort (Basili et

al., 1996, Chan et al., 1996, Lientz et al., 1981).

Replacement is defined as the operation that replaces a system Si-1 with a new system Si that differs from

Si-1 by a given percentage of code.

It is important to note that replacement can take place even if requirements do not change (Ri=Ri-1).

While
1 1i i i i

R R S S
! !

" # " , the opposite is not always verified.

Banker (1993) and Tan (2005) provide an expression for maintenance cost which takes into account four

different components:

� fixed cost of maintenance operations, such as the effort required to plan and organize the task of

implementing a new set of functionalities;

� linear cost of specifying requirements and developing new functionalities;

� quadratic cost associated with the integration of new modules of code among themselves (as suggested

by Banker et al., 1993);

� cost due to the integration of new modules of code with pre-existing software, exponentially

proportional to the number of interventions on the application and to the entropy of the system (see

Bianchi et al., 2001).

The last term is related to the fact that each maintenance operation inevitably increases the “chaos” of a

software system and, thus, the effort required by subsequent maintenance operations. Hence, no

application can be maintained forever and replacement is needed to reset the effects of software

degradation.

The software engineering and information systems literature offer several metrics to measure reuse

benefits, some derived from enterprise case studies (e.g., Banker et al.,1991, Rothenberger et al.,1999),

other from economic models (e.g., Poulin et al., 1993; cf. Mili et al., 1999 for a comparison of seventeen

literature models of software reuse). However, the literature has not developed a model explaining the

relationship between reuse and maintenance. Basili (1990) suggested that reuse can be seen as a

 4

maintenance intervention on existing code and, therefore, if a software is reused multiple times, it is

inevitably subject to degradation. As a consequence, reuse reduces the linear cost associated to

development, but can increase the non linear cost related to integration, if it is not optimized. The

following section proposes an empirical model of commonality, reuse and development costs to

empirically analyze their relationship.

2.2. Commonality and reuse

Commonality is formally defined as an assumption held uniformly across a given set of objects (Coplien

et al., 1998). If this definition is applied in software engineering, commonality becomes a property of the

requirements of a software architecture that enables the reuse of pre-existing components.

Let us consider two software systems Si and Sj. If Ri and Rj represent the requirements sets of Si and Sj, the

commonality of Si with Sj is defined as:

,

i j

i j

j

R R

R
!

"
= , (1)

Commonality is equal to 0 if requirements are completely different and, therefore, their intersection is

empty, while it is equal to 1 if requirements are identical. �i,j represents the average fraction of function

points that can be re-used from Si to implement Sj.

The size growth of the requirements set from Si to Sj is defined as:

,

j

i j

i

R

R
! = , (2)

 If
,i j

! is greater than 1, Sj’s requirements set is greater than Si’s and, therefore, Sj’s implementation is

likely to require a higher number of function points.

The following relation holds:

,

,

,

i j

j i

j i

!
"

!
= , (3)

It is important to note that definition (1) refers to requirements as opposed to code. As a consequence, the

concept of commonality does not coincide with reuse. For example, identical sets of requirements, Ri=Rj,

may be implemented by distinct modules on different platforms.

The actual reuse of application i to build application j is defined as:

,

i j

i j

j

S S

S
!

"
= , (4)

,i j
! represents the fraction of code of Si that can be reused to implement Sj. It can be easily verified

that
,i j

! varies from 0, when Sj must be developed from scratch, to 1, when Sj reuses all the code of Si. Si

 5

and Sj may represent two versions of the same application which has undergone maintenance or

replacement.

Similar to (2), the size growth of the code set from Si to Sj is defined as:

,

j

i j

i

S

S
! = , (5)

 Similar to (3), the following relation holds:

,

,

,

i j

j i

j i

!
"

!
= , (6)

3. AN EMPIRICAL MODEL OF COMMONALITY AND REUSE

This section explains how empirical data were collected to support analysis. Sub-section 3.1 describe how

the sample of applications were selected. Sub-section 3.2 proposes empirical measures of commonality

and reuse, which were formally introduced in Sub-section 2.2. Sub-section 3.3 presents software

evolutions graphs and describes how they can be extracted from empirical data. Sub-section 3.4 describes

how development costs were empirically measured.

3.1. Selection of the sample of applications

On the web, there are several open software repositories which allow free browsing and retrieval of code

in various functional areas. Our empirical analysis is based on the Sourceforge.net repository. This choice

is motivated by the high number of projects available from Sourceforge.net (more than 100.000) and by

the completeness of project description.

Sourceforge.net classifies software projects along several dimensions, including topic, programming

language, licence, operating system and status (alpha, beta, mature, inactive,…). Analyses have focused

on a specific category of projects defined as follows:

� Topic: Databases (more than 35% of total projects), Software Development, Internet and some minor

projects from Text Processing, Interpreters, Testing, Frameworks and Security;

� Language: Java

� Status: mature/ active

Topics were selected proportionally to the availability of projects which satisfy the following

requirements:

� a sufficient number of applications versions have been issued (at least 5), so that evolution analysis are

significant;

� description notes are available for all the applications versions and focus on the functionalities, not only

on bug fixing, because our commonalities measures are based on these description notes (see Sub-

section 3.2);

� source code of all applications versions is available.

Java language was selected because the tool we developed to measure reuse (see Sub-section 3.2)

identifies and compare Java classes and is language-specific.

 6

The analysis was limited to mature/active projects, i.e. projects at a mature state of development and

continuously evolving, in order to exclude random-managed open code from our sample, as suggested by

Rainer et al. (2005). A total of 26 projects have been selected corresponding to a total of 171 application

versions. These projects do not constitute all the projects selected by the criteria presented above, but were

randomly selected among them. Our empirical analysis are currently being extended and consolidated

with data from more projects. However, given the limited standard variations of the interpolations which

will be presented in Section 4, we believe that our sample of applications is sufficiently large to support

preliminaries conclusions.

Accordingly to the selection criteria adopted, for each project the following data are available from

Sourceforge.net:

� code of all application versions, constituting the history of the project;

� release date of each version;

� detailed descriptions of each version, including change logs and bug fixing reports.

These data have been used to measure model parameters, as described in the following sections.

3.2. Measures of commonality and reuse

A theoretical definition of commonality is provided by equation (1) of Section 2.1. To simplify the

empirical analysis, the set of requirements Ri of version i of an application is obtained from the functional

descriptions provided by Sourceforge.net. These descriptions are expressed in natural language. A list of

significant words is built from text as follows:

� elimination of stop words (e.g., prepositions, conjunctions,…) and syntactical pre-processing (e.g.,

caps/small cap, singular/plural, tenses of verbs,…) as suggested by Castano et al. (1999) and Li et al.

(2003);

� elimination of non significant words according to a context-dependent thesaurus which has been

designed ad hoc (e.g., in a DBMS project the word “database” is likely to add little value to

requirements).;

� construction of a table with significant words and their rate of occurrence;

Let us consider an example to clarify this type or representation. The following sentence in the description

notes of an application:

“The DBMS application allows to connect online to MySQL server; concurrent queries can be managed

directly by the application or through MySQL server.”

would result in Table 1:

Table 1 – Example of table extracted from the description of an application.

Significant words Occurrence

MySQL 2

server 2

Connect 1

Online 1

concurrent 1

query 1

 7

Significant words Occurrence

directly 1

manage 1

The commonality among two versions is computed by counting the words which appear in the tables of

both versions and weighing them with their occurrence rate, according to the following expression:

,

()

()

k

i j

j

Occ W

Occ W

! =

"

"
, (7)

where Occ(W) measures the number of occurrence of word W in a table and Wk are the words belonging to

both the tables of applications i and j.

Reuse, which is defined by equation (4), can be measured at several levels: application level, Java class

level, method level or code level. The application level seems too aggregate, while the code can be

misleading, as the same constructs of a programming language can be used with different formats or

syntactical rules. In this paper, reuse is measured at the Java class level. A class is considered reused if it

has the same declaration as a pre-existing class.

Both commonality and reuse have been computed by means of a tool developed as part of this research.

3.3. Software evolution graphs

In Sub-section 2.2, the concepts of commonality and reuse have been used to describe the evolution of an

application through its maintenance operations. This evolution has been defined as vertical. Through

reuse, an application may also evolve into two different applications. This means that at a certain stage i-1

of its lifetime, a set of requirements Ri-1 changes originating two different requirement sets
1

i
R and

2

i
R .

These new requirement sets can either evolve trough maintenance or further split along different evolution

paths. This origination of multiple requirement sets has been defined as horizontal evolution. This

complex evolution scenario can be represented by means of a commonality software evolution graph,

which bears some resemblance to the biological evolution tree.

In general,
1

i
R and

2

i
R will be similar to Ri-1, i.e. will have a high degree of commonality with their parent

requirement set. However, the greater the distance between two requirement sets within the software

evolution graph, the lower their commonality.

Similarly, a reuse software evolution graph can be built by considering the actual evolution of code Si. If

an application evolves with an high rate of reuse from previous versions, i.e. through maintenance

interventions, the graph is linear, as Si+1 will have Si as a parent. When a replacement takes place, a new

branch of the graph is be generated. Intermediate cases are also possible, as a version of an application can

generate two children versions, which are different from each other.

Commonality and reuse software evolution graphs have been built for all projects in our sample by

applying the algorithm described below. As the method is almost the same for commonality and reuse, a

description is provided only for the former.

 8

� Matrix � is computed, where �(i,j)=�i,j. Only elements with j>i are computed, as symmetry relation (3)

holds for commonality.

� Projects are analyzed separately. All the applications within a project are considered one by one in a

chronological order. The first application is a root.

� For each application j a parent is identified. Application i* is defined as parent of j if and only if the

following requirements are fulfilled:

o i* has been released before j
o

*, ,max()
i j i j

i

! !
"

=

o
*,i j

! "# , where � is a constant which has been set to 0,7 according to empirical pilot tests

� If
,i j

! "< �i temporally antecedent to j, then j is defined as root and a new branch is generated in the

graph.

Figure 1 shows an example of commonality and reuse graphs built for an open-source project. It can be

noted that commonality and reuse software evolution graphs are quite different from each other. The

implications of this difference is discussed in Section 4.

Figure 1. Example of commonality and reuse software evolution graphs.

3.4. Measures of costs

It is well known (Strike et al., 2001) that the measure of software development cost is difficult, especially

for an extensive sample of applications. Given the data provided by Sourceforge.net, the time elapsed

between the release of two subsequent applications within the same project is taken as a proxy of

implementation cost. Such a measure has the following drawbacks:

� more than one person may be working on a project;

� developers may be working part time on a project, especially in an open-source context;

� developers may not be working on a project over the entire elapsed time between two releases.

 9

Future work will address these drawbacks and refine our cost measure.

4. EMPIRICAL FINDINGS

Empirical analyses highlight three fundamental findings. First, reuse evolution graphs are in general more

linear than commonality graphs. In general, developers tend to reuse from the most recent version of an

application, even if a previous version has greater commonality (see Figure 1). Therefore, developers do

not reuse code from the applications with the most similar set of requirements, although this may lead to

higher integration costs.

In order to measure the linearity of commonality and reuse evolution graphs, we define linearity as

follows:

1

graph entropy
linearity

n
= ! , (8)

where n is the total number of the nodes of the graph and graph entropy is defined as:

!
"

#+$=

Ll

lnlrentropygraph)()1(, (9)

where

� r is the number of root nodes in the graph;

� L = {l1, …, ln} is the set of the cardinalities of edges outgoing from nodes;

� n(l) is the number of nodes which have exactly l outgoing edges.

It can be noted that this metric ranges from 0 to 1 and assigns the maximum value of linearity (1) to

graphs which are a linear sequence of nodes (case a in Figure 2), and the minimum value (0) to two-level

graphs with a single root (case b in Figure 2) or to graphs entirely composed by roots (case c in Figure 2).

Figure 2. Sample graphs with linearity=1 (a) and linearity=0 (b, c).

Linearity has been measured for both commonality and reuse evolution graphs of our sample of

applications (Section 3). Results are shown in Figure 3. The figure clearly points out that the linearity of

reuse graphs is greater than the linearity of commonality graphs for all applications in our sample (all data

points are located in the upper left area of the graph). This proves that development initiatives generally

start from the latest release of each application, leading to non-optimized reuse strategies. This is

consistent with previous literature indicating that the lack of domain analysis and repository management

specific tools as a failure factor in reuse programs (Morisio et al. 2002).

The second result is that the cost of software development decreases as reuse grows. Evidence for this

assertion is provided in Figure 4, plotting the absolute development costs of all application versions as a

 10

function of reuse. Costs are expressed in terms of development days as explained in Section 3.4, while

reuse values have been calculated as explained in Section 3.2.

Figure 3. Linearity of reuse and commonality evolution graphs of a sample of applications (topic:

Database).

Figure 4. Absolute development costs as a function of reuse (Linear interpolation function: m=-230;

q=293; �=±70).

The third and most valuable finding is that the cost per new line of code increases with reuse. This can be

interpreted as a consequence of the growing complexity of software as the number of maintenance

interventions increasing.

Given the data provided by Sourceforge.net and the measurement of actual reuse between different

versions of the same application, we have measured the cost of each version in terms of days per new line

of code normalized in the 0-1 range. Results are shown in Figure 5.

 11

Figure 5. Cost per new line of code as a function of reuse for our sample of applications (Linear

interpolation function: m=0,37; q=-0,09; �=±0,23).

The graph highlights that costs are an increasing function of reuse. The continuous line interpolates data

points showing the increasing trend of cost per line of code. This proves that reusing software in a non-

optimized way is not a cost-efficient strategy for software maintenance, probably due to the high cost of

integration of reused lines of code (see Section 2.1).

5. DISCUSSION AND CONCLUSIONS

Results show that reuse choices in open-source contexts are not cost efficient. Developers tend to reuse

code from the most recent version of applications, even if their requirements are closer to previous

versions. If a previous version of an application provides code fulfilling current requirements, this code

should be reused. If it is redeveloped, an implicit replacement decision is made which may not be cost

efficient.

Furthermore, the latest version of an application is always the one that has incurred the highest number of

maintenance interventions. Maintenance increases software complexity and, thus, development costs.

Consistent with this software engineering principle, the development cost per new line of code is found to

grow with reuse.

These results indicate that open source contexts lack methodologies and tools supporting design decisions.

In particular, code repositories are not managed according to project needs and no decision support is

provided. The lack of coordination that seems to characterize open source development makes reuse

inefficient. Costs are higher than they would be if reuse was organized according to software engineering

principles by taking into account requirements and related commonality.

The validity of our results obviously depend on the soundness of our measurement, which at present are

only proxies of the theoretical concepts we have defined. Accordingly, future work will refine the

measures of commonality, reuse and cost.

In this work, commonality is measured by means of a syntactical processor of description notes of

applications. In future work it will be measured based on the concept of semantic similarity, as suggested

by Batini et al. (1996) and Li et al (2003). Furthermore, description notes will be integrated with

 12

information taken from user interfaces of Java applications. This will provide a finer description of

requirements which, in turn, can be translated into a more precise measure of commonality.

Reuse is measured at the class level. This can lead to errors when refactoring interventions are carried out

which deeply change the structure of a class without changing its name. In future work reuse will be

measured at the method level, based on graph theory (applying techniques similar to those proposed by

Grove et al.,1997).

The measure of costs will be refined by considering the number of people working on a project and their

time allocation, as opposed to the elapsed time between subsequent versions. This will involve a specific

data-collection effort with developers. Furthermore, the sample of considered applications will be

extended to consolidate the results of the analysis.

References

Ahn Y., Suh J., Kim S. and Kim H., “The Software Maintenance Project Effort Estimation Model Based

on Function Points”, Journal of Software Maintenance and Evolution: Research and Practice, vol. 15,

no. 2, pp. 71-85, 2003

Banker R., Datar S., Kemerer C., Zweig D., “Software Complexity and Maintenance Costs”, Comm.

ACM, vol. 36, no. 11, pp. 81-94, 1993

Banker R., Kauffman R. J., “Reuse and Productivity in Integrated Computer-Aided Software Engineering:

An Empirical Study”, MIS Quarterly, vol. 14, no. 4, pp. 420-433, 1990

Barua A., Mukhopadhyay T., “A cost analysis of the software dilemma: to maintain or to replace”, Proc.

of the 22th Annual Hawaii International Conference on System Sciences, vol. III: Decision Support

and Knowledge Based Systems Track, pp. 89-98, Jan 1989

Basili V., “Viewing maintenance as reused-oriented software development”, IEEE Software, January 1990

Basili V., Briand L., Condon S., Kim Y.-M., Melo W.L., Valett J.D., “Understanding and Predicting the

Process of Software Maintenance Releases”, Proc. 18
th

 International Conference of Software

Engineering (ICSE 1996), pp. 464-474, 1996

Batini C., Castano S., De Antonellis V., Fugini M.G., Pernici B., “Analysis of an Inventory of Information

Systems in the Public Administrations”, Requirements Eng, vol. 1, no. 1, pp. 47-62, 1996

Belady L. A., Lehman M. M., “Program Evolution”, Processes of Software Change, Academic Press, New

York, 1985

Bianchi A., Caivano D., Lanubile F., Visaggio G., “Evaluating Software Degradation through Entropy”,

Proc. IEEE Seventh International Software Metrics Symp. (METRICS 2001), pp. 210-219, 2001

Castano S., De Antonellis V., Fugini M.G., Pernici B., “Conceptual Schema Analysis: Techniques and

Applications”, ACM Transactions on Database Systems, vol. 23, no. 3, pp. 286-333, 1999

Chan, T., Chung S., Ho T., “An Economic Model to Estimate Software Rewriting and Replacement

Times”, IEEE Transaction on Software Engineering, vol. 22, no. 8, pp. 580-598, 1996

Coplien J., Hoffman D., Weiss D., “Commonality and Variability in Software Engineering”, IEEE

Software, November-December 1998

Fitzgerald B., “A critical look at open source”, IEEE Computer, vol. 37, no. 7, pp. 92-94, 2004

 13

Grove D., DeFouw G., Dean J., Chambers C., “Call Graph Construction in Object-oriented languages”,

Proc. Object Oriented Programming Systems Languages and Applications, pp. 108-124 ,1997

Keats D.W., “Addressing digital divide issues in a partially online masters programme in Africa: the

NetTel@Africa experience”, Proc. IEEE International Conference on Advanced Learning

Technologies, pp. 953-957, Sept. 2004

Lehman M., Kahen G., Ramil J., “Replacement Decisions for Evolving Software”, Proc. of 2nd Workshop

on Economics Driven Software Engineering Research, 2000

Li Y., Bandar Z.A., Mclean D., “An approach for measuring semantic similarity between words using

multiple information sources”, IEEE Transactions on Knowledge and Data Engineering, vol. 155, no.

4, pp. 871-882, 2003

Lientz B.P., Swanson B., Software Maintenance Management, Addison-Wesley, 1981

Madanmohan T.R., Rahul De’, “Open Source Reuse in Commercial Firms”, IEEE Software, 2004

Lim, W.C. “Reuse Economics: A Comparison of Seventeen Models and Directions for Future Research”,

Proceedings of the Fourth International Conference on Software Reuse, pp. 41-51, 1996

Morad S., Kuflik T., “Conventional and open source software reuse at Orbotech – an industrial

experience”, Proc. IEEE International Conf. on Software–Science, Technology and Engineering, pp.

110-117, Feb 2005

Morisio M., Ezran M., Tully C. ”Success and Failure Factors in Software Reuse”, IEEE Transaction on

Software Engineering, vol. 28, no. 4, pp. 340-357, 2002

Parnas D., “On the Design and Development of Program Families”, IEEE Transactions on Software

Engineering, vol. SE-2, no. 3, pp. 1-9, 1976

Poulin J.S., Caruso J.M., “A Reuse Measurement and Return on Investment Model”, 2
nd

 International

Workshop on Software Reusability, Lucca, Italy, 1993

Rainer A., Galen S., “Sampling open source projects from portals: some preliminary investigations”, Proc.

11
th

 IEEE International Software Metrics Symposium (METRICS 2005),2005

Rothenberger M.A., Dooley K.J., “A Performance Measure for Software Reuse Projects”, Decision

Sciences, vol. 30, no. 4, 1999

Rothenberger M.A., Nazareth D., “A cost-benefit-model for systematic software reuse”, Proc. 10
th

European Conference on Information Systems (ECIS 2002), pp. 371-377, June 2002

Russo B., Zuliani P., Succi G., “Toward an Empirical Assessment of the Benefits of Open Source

Software”, Proc. International Conference on Software Engineering (ICSE’03), pp. 117-120,May 2003

Salmivalli L., Nissilä J., “Curing health care information systems with open source software”, Proc. 12
th

European Conference on Information Systems (ECIS 2004), 2004

Strike K., El Emam K., Madhavji N., “Software cost estimation with incomplete data”, IEEE Transactions

on Software Engineering, vol. 27, no. 10, pp. 890-908, 2001

Tan Y., Mookerjee V.S., “Comparing Uniform and Flexible Policies for Software Maintenance and

Replacement”, IEEE Transaction on Software Engineering, vol. 31, no. 3, March 2005

Tomer A., Golden L., Kuflik T., Kimchi E., Schach S.R., “Evaluating Software Reuse Alternatives: A

Model and Its Application to and Industrial Case Study”, IEEE Transaction on Software Engineering,

vol. 30, no. 9, pp. 601-612, 2004

 14

Visaggio G., “Assessing the maintenance process through replicated, controlled experiment”, Journal of

Systems and Software, vol. 44, no. 3, pp. 187-197, 1999

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2006

	Efficiency implications of open source commonality and reuse
	E. Capra
	Chiara Francalanci
	Francesco Merlo
	Macello Tosetti
	Recommended Citation

	Microsoft Word - 316_Paper.doc

