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Abstract 

This paper analyzes the reuse choices made by open source developers and relates them to cost efficiency.  

We make a distinction between the commonality among applications and the actual reuse of code. The 

former represents the similarity between the requirements of different applications and, consequently, the 

functionalities that they provide. The latter represents the actual reuse of code. No application can be 

maintained for ever. A fundamental reason for the need for periodical replacement of code is the 

exponential growth of costs with the number of maintenance interventions. Intuitively, this is due to the 

increasing complexity of software that grows in both size and coupling among different modules. The 

paper measures commonality, reuse and development costs of 26 open-source projects for a total of 171 

application versions. Results show that reuse choices in open-source contexts are not cost efficient. 

Developers tend to reuse code from the most recent version of applications, even if their requirements are 

closer to previous versions. Furthermore, the latest version of an application is always the one that has 

incurred the highest number of maintenance interventions. Accordingly, the development cost per new line 

of code is found to grow with reuse.  

Keywords: commonality, software reuse, software cost, maintenance and replacement policies, open 

source. 
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1. INTRODUCTION AND LITERATURE REVIEW 

This paper presents the results of an empirical research investigating the impact of code reuse on the 

development costs of open source applications. The paper makes a distinction between commonality and 

reuse. The former represents the similarity between the requirements of different applications and, 

consequently, the functionalities that they provide. The latter represents the actual reuse of code. 

Applications with high commonality may not be characterized by a correspondingly high reuse of code. 

This occurs when different programs provide the same functionalities.  

Clearly, the high commonality – low reuse situation is economically inefficient (cf. Morisio et al., 2002). 

Open source should enhance reuse, as any software house can retrieve the required source code from 

shared repositories. As a consequence, open source should reduce development costs (Rothenberger et al., 

2002 proposes a cost-benefit-model for systematic software reuse; see also Tomer et al., 2004). The cost 

benefits of open source are generally accepted and broadly advocated as a driver of savings and faster 

response to users (cf. Fitzgerald, 2004). These opportunities are also regarded as a means to an effective 

reduction of the digital divide (cf. Keats, 2004). However, the literature does not provide quantitative 

benchmarks of the cost reductions enabled by open source. Cost reductions have been demonstrated by 

discussing success stories and isolated case studies, but have not been studied extensively (cf. Morad et 

al., 2005, Russo et al., 2003, Salmivalli et al., 2004, Madanmohan et al., 2004).  

The software engineering literature states that systems can change through either vertical or horizontal 

evolution (Parnas, 1976). The former is due to slight changes in requirements to adapt to new business 

situations, while the latter is due to a differentiation of the scope of the application along its evolutionary 

path. Both typologies of changes are carried out through either maintenance or replacement (cf. Basili et 

al., 1996, Barua and Mukhopadhyay, 1989, and Belady et al., 1985). While maintenance modifies an 

existing application by creating a new version of the same code, replacement satisfies requirements by 

developing a new application from scratch. The degree to which code is actually reused represents the 

discriminant between maintenance and replacement (cf. Basili, 1990).  

No application can be maintained for ever (cf. Lehman et al., 2000 and Visaggio, 1999). A fundamental 

reason for the need for periodical replacement of code is the exponential growth of costs with the number 

of maintenance interventions (see Section 2, and cf. Ahn et al., 2003). Intuitively, this is due to the 

increasing complexity of software that grows in both size and coupling among different modules. New 

functionalities must be integrated with existing modules and, thus, integration costs soar (cf. Tan et al., 

2005 and Bianchi et al., 2001). This suggests that there exists a limit to the cost efficient reuse of open-

source software.  

This paper analyzes the reuse choices made by open source developers and relates them to cost efficiency. 

We make a distinction between the commonality among applications and the actual reuse of code. If 

developers make a replacement decision, code is not reused even if commonality is high. In open source 

contexts, this may not be an explicit business decision, but may be due to a difficulty in discovering and 

analyzing the required reusable code. This represents an additional cost of reuse which may further reduce 

benefits.  

The paper provides a model of the concepts of commonality and reuse. The model supports the creation of 

software evolution graphs that show maintenance vs. replacement decisions. Two nodes with the same 

parent represent a substantial differentiation of code which splits into different applications. Conversely, 

two nodes along the same edge represent subsequent versions of the same application. Real software 

evolutionary graphs are built by analyzing open source repositories. The depth and breadth of trees, the 
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time and effort required to develop subsequent versions of applications, the degree of commonality and 

reuse are analyzed as indicators of maintenance vs. replacement decisions and cost efficiency.  

The presentation is organized as follows: Section 2Fel! Hittar inte referenskälla. formalizes the concepts 

of commonality, reuse, maintenance and replacement. Section 3 presents the empirical model adopted to 

measure commonality, reuse and cost efficiency in a real open source context. Section 4 discusses 

empirical findings according to the model proposed. Finally, Section 5 draws preliminary conclusions and 

proposes further work to deepen the research. 

2. PRELIMINARY DEFINITIONS 

This section provides formal definitions of the concept upon which our analysis are based. Sub-section 2.1 

introduces maintenance and replacement according to software engineering literature. Sub-section 2.2 

proposes a definition of commonality and reuse oriented to the analysis of software evolution. 

2.1. Definitions of maintenance and replacement  

Maintenance is defined as the operation that builds a software system Si following a change in the 

functional requirements of the system Ri. By definition then changes in requirements causes changes in the 

software system. 

This definition excludes corrective maintenance, which takes place even if the set of requirements does 

not change (Ri-1=Ri). However, adaptive and perfective maintenance are considered, which traditional 

software engineering studies have found to constitute more than 75% of total maintenance effort (Basili et 

al., 1996, Chan et al., 1996, Lientz et al., 1981). 

Replacement is defined as the operation that replaces a system Si-1 with a new system Si that differs from 

Si-1 by a given percentage of code. 

It is important to note that replacement can take place even if requirements do not change (Ri=Ri-1). 

While
1 1i i i i

R R S S
! !

" # " , the opposite is not always verified.  

Banker (1993) and Tan (2005) provide an expression for maintenance cost which takes into account four 

different components: 

� fixed cost of maintenance operations, such as the effort required to plan and organize the task of 

implementing a new set of functionalities; 

� linear cost of specifying requirements and developing new functionalities; 

� quadratic cost associated with the integration of new modules of code among themselves (as suggested 

by Banker et al., 1993); 

� cost due to the integration of new modules of code with pre-existing software, exponentially 

proportional to the number of interventions on the application and to the entropy of the system (see 

Bianchi et al., 2001). 

The last term is related to the fact that each maintenance operation inevitably increases the “chaos” of a 

software system and, thus, the effort required by subsequent maintenance operations. Hence, no 

application can be maintained forever and replacement is needed to reset the effects of software  

degradation. 

The software engineering and information systems literature offer several metrics to measure reuse 

benefits, some derived from enterprise case studies (e.g., Banker et al.,1991, Rothenberger et al.,1999), 

other from economic models (e.g., Poulin et al., 1993; cf. Mili et al., 1999 for a comparison of seventeen 

literature models of software reuse). However, the literature has not developed a model explaining the 

relationship between reuse and maintenance. Basili (1990) suggested that reuse can be seen as a 
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maintenance intervention on existing code and, therefore, if a software is reused multiple times, it is 

inevitably subject to degradation. As a consequence, reuse reduces the linear cost associated to 

development, but can increase the non linear cost related to integration, if it is not optimized. The 

following section proposes an empirical model of commonality, reuse and development costs to 

empirically analyze their relationship. 

 

2.2. Commonality and reuse 

Commonality is formally defined as an assumption held uniformly across a given set of objects (Coplien 

et al., 1998). If this definition is applied in software engineering, commonality becomes a property of the 

requirements of a software architecture that enables the reuse of pre-existing components. 

Let us consider two software systems Si and Sj. If Ri and Rj represent the requirements sets of Si and Sj, the 

commonality of Si with Sj  is defined as:  

,

i j

i j

j

R R

R
!

"
= ,          (1) 

Commonality is equal to 0 if requirements are completely different and, therefore, their intersection is 

empty, while it is equal to 1 if requirements are identical.  �i,j  represents the average fraction of function 

points that can be re-used from Si to implement Sj. 

 

The size growth of the requirements set from Si to Sj is defined as: 

,

j

i j

i

R

R
! = ,           (2) 

 If 
,i j

! is greater than 1, Sj’s requirements set is greater than Si’s and, therefore, Sj’s implementation is 

likely to require a higher number of function points. 

The following relation holds: 

,

,

,

i j

j i

j i

!
"

!
= ,           (3)  

It is important to note that definition (1) refers to requirements as opposed to code. As a consequence, the 

concept of commonality does not coincide with reuse. For example, identical sets of requirements, Ri=Rj, 

may be implemented by distinct modules on different platforms.  

The actual reuse of application i to build application j is defined as: 

,

i j

i j

j

S S

S
!

"
= ,          (4) 

,i j
! represents the fraction of code of Si that can be reused to implement Sj. It can be easily verified 

that
,i j

! varies from 0, when Sj must be developed from scratch, to 1, when Sj reuses all the code of Si. Si 
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and Sj may represent two versions of the same application which has undergone maintenance  or 

replacement. 

 

Similar to (2), the size growth of the code set from Si to Sj is defined as: 

,

j

i j

i

S

S
! = ,           (5) 

 Similar to (3), the following relation holds: 

,

,

,

i j

j i

j i

!
"

!
= ,           (6) 

 

3. AN EMPIRICAL MODEL OF COMMONALITY AND REUSE 

This section explains how empirical data were collected to support analysis. Sub-section 3.1 describe how 

the sample of applications were selected. Sub-section 3.2 proposes empirical measures of commonality 

and reuse, which were formally introduced in Sub-section 2.2. Sub-section 3.3 presents software 

evolutions graphs and describes how they can be extracted from empirical data. Sub-section 3.4 describes 

how development costs were empirically measured. 

3.1. Selection of the sample of applications 

On the web, there are several open software repositories which allow free browsing and retrieval of code 

in various functional areas. Our empirical analysis is based on the Sourceforge.net repository. This choice 

is motivated by the high number of projects available from Sourceforge.net (more than 100.000) and by 

the completeness of project description. 

Sourceforge.net classifies software projects along several dimensions, including topic, programming 

language, licence, operating system and status (alpha, beta, mature, inactive,…). Analyses have focused 

on a specific category of projects defined as follows: 

� Topic: Databases (more than 35% of total projects), Software Development, Internet and some minor 

projects from Text Processing, Interpreters, Testing, Frameworks and Security; 

� Language: Java 

� Status: mature/ active 

Topics were selected proportionally to the availability of projects which satisfy the following 

requirements: 

� a sufficient number of applications versions have been issued (at least 5), so that evolution analysis are 

significant; 

� description notes are available for all the applications versions and focus on the functionalities, not only 

on bug fixing, because our commonalities measures are based on these description notes (see Sub-

section 3.2); 

� source code of all applications versions is available. 

Java language was selected because the tool we developed to measure reuse (see Sub-section 3.2) 

identifies and compare Java classes and is language-specific. 
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The analysis was limited to mature/active projects, i.e. projects at a mature state of development and 

continuously evolving, in order to exclude random-managed open code from our sample, as suggested by 

Rainer et al. (2005). A total of 26  projects have been selected corresponding to a total of 171 application 

versions. These projects do not constitute all the projects selected by the criteria presented above, but were 

randomly selected among them. Our empirical analysis are currently being extended and consolidated 

with data from more projects. However, given the limited standard variations of the interpolations which 

will be presented in Section 4, we believe that our sample of applications is sufficiently large to support 

preliminaries conclusions. 

Accordingly to the selection criteria adopted, for each project the following data are available from 

Sourceforge.net: 

� code of all application versions, constituting the history of the project; 

� release date of each version; 

� detailed descriptions of each version, including change logs and bug fixing reports. 

These data have been used to measure model parameters, as described in the following sections. 

 

3.2. Measures of commonality and reuse 

A theoretical definition of commonality is provided by equation (1) of Section 2.1. To simplify the 

empirical analysis, the set of requirements Ri of version i of an application is obtained from the functional 

descriptions provided by Sourceforge.net. These descriptions are expressed in natural language. A list of 

significant words is built from text as follows: 

� elimination of stop words (e.g., prepositions, conjunctions,…) and syntactical pre-processing (e.g., 

caps/small cap, singular/plural, tenses of verbs,…) as suggested by Castano et al. (1999) and Li et al. 

(2003); 

� elimination of non significant words according to a context-dependent thesaurus which has been 

designed ad hoc (e.g., in a DBMS project the word “database” is likely to add little value to 

requirements).; 

� construction of a table with significant words and their rate of occurrence; 

Let us consider an example to clarify this type or representation. The following sentence in the description 

notes of an application: 

“The DBMS application allows to connect online to MySQL server; concurrent queries can be managed 

directly by the application or through MySQL server.” 

would result in Table 1: 

Table 1 – Example of table extracted from the description of an application. 

Significant words Occurrence 

MySQL 2 

server 2 

Connect 1 

Online 1 

concurrent 1 

query 1 
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Significant words Occurrence 

directly 1 

manage 1 

 

The commonality among two versions is computed by counting the words which appear in the tables of 

both versions and weighing them with their occurrence rate, according to the following expression: 

,

( )

( )

k

i j

j

Occ W

Occ W

! =

"

"
,           (7) 

where Occ(W) measures the number of occurrence of word W in a table and Wk are the words belonging to 

both the tables of applications i and j.  

Reuse, which is defined by equation (4), can be measured at several levels: application level, Java class 

level, method level or code level. The application level seems too aggregate, while the code can be 

misleading, as the same constructs of a programming language can be used with different formats or 

syntactical rules. In this paper, reuse is measured at the Java class level. A class is considered reused if it 

has the same declaration as a pre-existing class. 

Both commonality and reuse have been computed by means of a tool developed as part of this research. 

 

3.3. Software evolution graphs 

In Sub-section 2.2, the concepts of commonality and reuse have been used to describe the evolution of an 

application through its maintenance operations. This evolution has been defined as vertical. Through 

reuse, an application may also evolve into two different applications. This means that at a certain stage i-1 

of its lifetime, a set of requirements Ri-1 changes originating two different requirement sets 
1

i
R  and 

2

i
R . 

These new requirement sets can either evolve trough maintenance or further split along different evolution 

paths. This origination of multiple requirement sets has been defined as horizontal evolution. This 

complex evolution scenario can be represented by means of a commonality software evolution graph, 

which bears some resemblance to the biological evolution tree. 

In general, 
1

i
R and 

2

i
R will be similar to Ri-1, i.e. will have a high degree of commonality with their parent 

requirement set. However, the greater the distance between two requirement sets within the software 

evolution graph, the lower their commonality.  

Similarly, a reuse software evolution graph can be built by considering the actual evolution of code Si. If 

an application evolves with an high rate of reuse from previous versions, i.e. through maintenance 

interventions, the graph is linear, as Si+1 will have Si as a parent. When a replacement takes place, a new 

branch of the graph is be generated. Intermediate cases are also possible, as a version of an application can 

generate two children versions, which are different from each other.  

Commonality and reuse software evolution graphs have been built for all projects in our sample by 

applying the algorithm described below. As the method is almost the same for commonality and reuse, a 

description is provided only for the former. 
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� Matrix � is computed, where �(i,j)=�i,j. Only elements with j>i are computed, as symmetry relation (3) 

holds for commonality. 

� Projects are analyzed separately. All the applications within a project are considered one by one in a 

chronological order. The first application is a root. 

� For each application j a parent is identified. Application i* is defined as parent of j if and only if the 

following requirements are fulfilled: 

o i* has been released before j 
o 

*, ,max( )
i j i j

i

! !
"

=  

o 
*,i j

! "# , where � is a constant which has been set to 0,7 according to empirical pilot tests 

� If 
,i j

! "< �i temporally antecedent to j, then j is defined as root and a new branch is generated in the 

graph.  

Figure 1 shows an example of commonality and reuse graphs built for an open-source project. It can be 

noted that commonality and reuse software evolution graphs are quite different from each other. The 

implications of this difference is discussed in Section 4. 

 

 

Figure 1. Example of commonality and reuse software evolution graphs. 

 

3.4. Measures of costs 

It is well known (Strike et al., 2001) that the measure of software development cost is difficult, especially 

for an extensive sample of applications. Given the data provided by Sourceforge.net, the time elapsed 

between the release of two subsequent applications within the same project is taken as a proxy of 

implementation cost. Such a measure has the following drawbacks: 

� more than one person may be working on a project; 

� developers may be working part time on a project, especially in an open-source context; 

� developers may not be working on a project over the entire elapsed time between two releases. 
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Future work will address these drawbacks and refine our cost measure.  

4. EMPIRICAL FINDINGS 

Empirical analyses highlight three fundamental findings. First, reuse evolution graphs are in general more 

linear than commonality graphs. In general, developers tend to reuse from the most recent version of an 

application, even if a previous version has greater commonality (see Figure 1). Therefore, developers do 

not reuse code from the applications with the most similar set of requirements, although this may lead to 

higher integration costs. 

In order to measure the linearity of commonality and reuse evolution graphs, we define linearity as 

follows: 

  
1  

graph entropy
linearity

n
= !  ,        (8) 

where n is the total number of the nodes of the graph and graph entropy is defined as: 

!
"

#+$=

Ll

lnlrentropygraph )()1(   ,        (9) 

where  

� r is the number of root nodes in the graph; 

� L = {l1, …, ln} is the set of the cardinalities of edges outgoing from nodes; 

� n(l) is the number of nodes which have exactly l outgoing edges. 

It can be noted that this metric ranges from 0 to 1 and assigns the maximum value of linearity (1) to 

graphs which are a linear sequence of nodes (case a in Figure 2), and the minimum value (0) to two-level 

graphs with a single root  (case b in Figure 2) or to graphs entirely composed by roots (case c in Figure 2). 

 

Figure 2.  Sample graphs with linearity=1 (a) and linearity=0 (b, c). 

Linearity has been measured for both commonality and reuse evolution graphs of our sample of 

applications (Section 3). Results are shown in Figure 3. The figure clearly points out that the linearity of 

reuse graphs is greater than the linearity of commonality graphs for all applications in our sample (all data 

points are located in the upper left area of the graph). This proves that development initiatives generally 

start from the latest release of each application, leading to non-optimized reuse strategies. This is 

consistent with previous literature indicating that the lack of domain analysis and repository management 

specific tools as a failure factor in reuse programs (Morisio et al. 2002). 

The second result is that the cost of software development decreases as reuse grows. Evidence for this 

assertion is provided in Figure 4, plotting the absolute development costs of all application versions as a 
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function of reuse. Costs are expressed in terms of development days as explained in Section 3.4, while 

reuse values have been calculated as explained in Section 3.2. 

 

Figure 3.  Linearity of reuse and commonality evolution graphs of a sample of applications (topic: 

Database).  

 

Figure 4.  Absolute development costs as a function of reuse (Linear interpolation function:  m=-230;  

q=293; �=±70).  

The third and most valuable finding is that the cost per new line of code increases with reuse. This can be 

interpreted as a consequence of the growing complexity of software as the number of maintenance 

interventions increasing. 

Given the data provided by Sourceforge.net and the measurement of actual reuse between different 

versions of the same application, we have measured the cost of each version in terms of days per new line 

of code normalized in the 0-1 range. Results are shown in Figure 5. 
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Figure 5.  Cost per new  line of code as a function of reuse for our sample of  applications (Linear 

interpolation function: m=0,37; q=-0,09;  �=±0,23).  

The graph highlights that costs are an increasing function of reuse. The continuous line interpolates data 

points showing the increasing trend of cost per line of code. This proves that reusing software in a non-

optimized way is not a cost-efficient strategy for software maintenance, probably due to the high cost of 

integration of reused lines of code (see Section 2.1). 

5. DISCUSSION AND CONCLUSIONS 

Results show that reuse choices in open-source contexts are not cost efficient. Developers tend to reuse 

code from the most recent version of applications, even if their requirements are closer to previous 

versions. If a previous version of an application provides code fulfilling current requirements, this code 

should be reused. If it is redeveloped, an implicit replacement decision is made which may not be cost 

efficient.  

Furthermore, the latest version of an application is always the one that has incurred the highest number of 

maintenance interventions. Maintenance increases software complexity and, thus, development costs. 

Consistent with this software engineering principle, the development cost per new line of code is found to 

grow with reuse.  

These results indicate that open source contexts lack methodologies and tools supporting design decisions. 

In particular, code repositories are not managed according to project needs and no decision support is 

provided. The lack of coordination that seems to characterize open source development makes reuse 

inefficient. Costs are higher than they would be if reuse was organized according to software engineering 

principles by taking into account requirements and related commonality. 

The validity of our results obviously depend on the soundness of our measurement, which at present are 

only proxies of the theoretical concepts we have defined. Accordingly, future work will refine the 

measures of commonality, reuse and cost.  

In this work, commonality is measured by means of a syntactical processor of description notes of 

applications. In future work it  will be measured based on the concept of semantic similarity, as suggested 

by Batini et al. (1996) and Li et al (2003). Furthermore, description notes will be integrated with 
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information taken from user interfaces of Java applications. This will provide a finer description of 

requirements which, in turn, can be translated into a more precise measure of commonality. 

Reuse is measured at the class level. This can lead to errors when refactoring interventions are carried out 

which deeply change the structure of a class without changing its name. In future work reuse will be 

measured at the method level, based on graph theory (applying techniques similar to those proposed by 

Grove et al.,1997).  

The measure of costs will be refined by considering the number of people working on a project and their 

time allocation, as opposed to the elapsed time between subsequent versions. This will involve a specific 

data-collection effort with developers. Furthermore, the sample of considered applications will be 

extended to consolidate the results of the analysis. 
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