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Abstract 

In this paper we propose a model to analyze community dynamics. Recently, several methods and 
tools have been proposed to extract communities from static graphs. However, since communities are 
not static, but change over time, it is necessary to provide methods to determine and observe the com-
munity transitions and to extract the factors that cause the development. We regard a community as an 
object that exists over time and propose to observe community transitions along the time axis. For this 
we partition the time axis under observation by time windows. In each time window, a set of interac-
tions between community participants is aggregated. These static networks are analyzed for sub-
communities by applying community detection mechanisms. Through this we detect communities in 
each interval and can observe if communities persist over time or undergo a transition. We present 
community transitions and the observable indicators for the respective development. We furthermore 
present a software environment that incorporates several community detection and analysis methods 
to analyze community transitions. It supports a dynamic temporal community analysis and provides 
several forms of visualizations and analysis settings thus providing an interactive tool to observe 
community dynamics.  

Keywords: Communities, Community Dynamics, Social Network Analysis, Visualization. 

1



1 INTRODUCTION 

In organizations people interact with each other for different purposes. Groups of people inside or-
ganizations who share a concern or a passion about a topic, and who interact to expand and exchange 
their knowledge and their expertise are called communities of practice (Wenger et al. 2002). Commu-
nities of practice can often be found in organizations where people usually know each other in person 
and face-to-face communication is the predominant form of knowledge exchange. However, besides 
meetings in person, communities of practice usually make use of technological infrastructure to coor-
dinate, collaborate and communicate (Eales 2003, Cross et al. 2002). Communities that interact via a 
(Web-based) community platform are referred to as online communities (Preece 2000) or Web com-
munities (Flake 2000). Besides the improvement of intra-organizational knowledge sharing, organiza-
tions are keen to extent communication with customers to increase customer loyalty (Manville 2004).  

Irrespective of the type of communities and the members involved, organizations are interested to 
support community building to facilitate knowledge sharing. The success of communities depends on 
internal factors (e.g., a community leadership change) as well as external factors (e.g., publicity in 
mass media). The organization is, at least partially, able, to influence these factors by designing tech-
nological and organizational instruments that have a positive impact on the community.  

In order to support organizations in this process, it is necessary to provide tools to determine commu-
nity transitions since relations in communities are dynamic and change over time. Several tools such 
as SoNIA (Moody et al. 2005) and TeCFlow (Gloor & Zhao 2004) allow temporal social network 
visualization. Both tools visualize temporal social graphs by creating movies of graphs. However, 
since both tools work on the vertex and edge level and thus visualize changing behavior between sin-
gle actors, it is not possible to explore the dynamics of groups. Turner et al (2005) proposed an ego 
centric visualization tool to analyze the range of variation in communication found in newsgroups. In 
contrast, we propose to visualize the temporal changes on the community level to allow for an explo-
ration of sub-group dynamics. We present a dynamical temporal observation of communities along the 
time axis using time windows and regard a community as an object that exists over time. Whether a 
community exists is first determined statically at each time window, as described below. Then, its evo-
lution is observed by comparing the communities appearing in each time window, according to a 
model of community transitions. 

Furthermore, so far, community detection was mainly done on graphs based on aggregated data. This 
approach has two major shortcomings: i) since all interactions in time are treated equally, big aggre-
gates dominate the results and not those that are most current and ii) transitions in the interaction be-
havior such as a merging communities or a periodically active community can not be observed. We 
thus regard a community as a dynamic object that exists over time. We partition the community inter-
actions along the time axis into intervals and determine the appearance of communities (more pre-
cisely sub-communities1) in each time window. Thus, we model a community as a static instance and 
apply methods to detect the community structure in each interval. We obtain a dynamic view by com-
paring the communities in different time windows and assess in which period which communities are 
active. The changes in the community structure are than visualized and the user can choose different 
settings to further explore the community dynamics according to his analysis objectives.  

In the next section we discuss how we model the community interactions and how sub-communities 
can be detected in static graphs. We furthermore present how the changes in the interaction over time 
can be modeled to explore community dynamics. In Section 3 we briefly present community transition 
types, how they can be observed and possible triggers for the development. In Section 4 we discuss 

                                              
1 Some researchers observe the entire graph as a (Web) community. Sub-structures in this graph are thus sub-communities. 
However, those sub-graphs are also often referred to as communities.  

2



our community dynamics miner and present first analysis results of an experiment with community 
data. Section 5 contains the conclusion and an outlook. 

2 MODELLING COMMUNITY DYNAMICS 

The formation of sub-groups of actors can be observed in many networks. To find these community 
structures is therefore of interest for many research fields. Examples are social sciences such as cita-
tions networks (Jeong et al. 2003, Newman 2001), biology such as genetic networks (Wilkinson & 
Huberman 2004) or food webs (Dunne et al. 2002), or in computer science such as the WWW 
(Kleinberg & Lawrence 2001) or email log files (Tyler et al. 2003). To observe communities in large 
networks, we need a community detection method to find dense network partitions that are oft interest. 
The problem of detecting communities has also been discussed, e.g., in (Cortes et al. 2001, Radicchi et 
al. 2004, Aggarwal & Yu 2005). In the following Section 2.1 we briefly discuss which detection 
method we apply to find the communities in a given network. In Section 2.2 we describe how this 
method is extended to allow for a detection and analysis of dynamics in communities. 

2.1 Community Representation and Detection 

So far, communities have been regarded as a static phenomenon and aggregated data over longer peri-
ods has been used to determine communities. The aggregation of the interactions between community 
members has two main drawbacks: i) big aggregates dominate the results and not those that are most 
current since all points in time are treated equally and ii) transitions in the interaction behavior can not 
be observed. We therefore propose a dynamical temporal observation of communities along the time 
axis using time windows and regard a community as an object that exists over time. Whether a com-
munity exists is first determined statically at each time window, as described below. Then, its evolu-
tion is observed by comparing the communities appearing in each time window, according to a model 
of community transitions. The necessary steps (network modeling, graph decomposition and analysis 
of results) are described in the following. 

First, we model the network of interactions in a way suitable to find communities. We do so by defin-
ing a graph G = (V, E), in which V denotes the set of vertices (nodes) and E the set of edges (i, j), with 
i,j ∈ V. Each community member i is denoted a distinct vertex and an interaction between two mem-
bers i and j, e.g., an e-mail exchange, is represented as an edge (i, j). We quantify the interaction be-
tween two members by assigning a weight w(i, j) to the edge (i, j). Appropriate weights are “number 
of messages exchanged” or the “total length of all messages measured in characters”. We stress here 
that this weighting scheme would favor “old” members of the community over newcomers if weights 
are aggregated over time. However, we build the graph and assign the weights for each time window, 
thus avoiding this caveat. 

Next, we decompose the graph into communities. We define a (sub) community as a subset of vertices 
within a graph with a high degree of interaction among the participants. We apply a hierarchical divi-
sive clustering approach that divides the graph by the iterative removal of edges. The edges that are 
removed should be those that do not contribute to a community. We must therefore define a good cri-
terion of interaction between vertices. This criterion must be good in the sense that it gives an indica-
tion for the membership of one vertex to a community. Depending on the size of the network we apply 
the following two measures to find the edges to be removed: 

a. Our first measure is the edge betweenness score proposed by Girvan and Newman (2002). The 
betweenness of an edge is the number of shortest path between pairs of vertices that run along it. 
It is based on the assumption, that the few edges between communities have more “traffic”, as, 
e.g., an information flow between vertices in two communities has to travel along these edges. 
The hierarchical clustering algorithm iteratively removes the edges with the highest edge be-
tweenness score. We apply this method to a multigraph as described by Newman (2004) to in-
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clude weighted edges. Each edge betweenness value is divided by the edge weight. Therefore, the 
edge betweenness value between two very connected pairs is lowered so that rather weak con-
nected pairs are separated faster than strong connected ones. Due to the high complexity to calcu-
late the edge betweenness – O(m2n), where m is the number of edges and n the number of vertices 
– it is only applicable for small networks with up to a few thousand vertices. 

b. Our second measure is proposed by Radicchi et al. (2004) and has a lower complexity: The edge 
clustering coefficient which is based on counting short loops of edges. The basic consideration of 
this method is that edges between communities belong to less short loops, e.g., with lengths 3, as 
the completion of short loops requires a third vertex that also runs between the same communi-
ties. Inter-community edges thus have a low number of loops. The edge clustering coefficient Cij, 
for an edge between vertex i and j, is defined as 
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where zij is the number of triangles to which the edge belongs and ki the degree of vertex i. min(ki-
1, kj-1) is the maximal possible number of triangles including that edge. To avoid penalizing 
edges that belong to no triangles the numerator is increased by 1. For edges that are not strongly 
connected in a community, Cij will be small, as they do not belong to many triangles. The edge 
with the lowest value will be removed and afterwards Cij will be recalculated for the remaining 
edges. Since the clustering coefficient is a local measure it can be calculated faster – O(m4/n2). 
This algorithm is particularly suitable for dense networks with many triangles, such as social 
networks (Watts & Strogatz 1998). 

The results of the hierarchical clustering are presented in a dendrogram, a tree diagram, which illus-
trates the community structure of the graph. Since we have no a priori knowledge about the number of 
communities that exist in a network, we need an indicator on where to partition the dendrogram to ob-
tain a meaningful network partition. For this purpose, we use the quality function proposed by New-
man and Girvan (2004) to determine the best dendrogram cut which is based on the concept of modu-
larity. The quality function Q is defined as: 
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where eii is the fraction of edges in the original network that connect two vertices inside the commu-
nity i and eij the fraction of edges that connect vertices in community i to those in community j. ||x|| 
indicates the sum of all elements in x. Q has a value between 0 and 1. Values approaching Q = 1 indi-
cate strong community structure. Modularity values that are greater than 0.3 appear to indicate signifi-
cant community structure (Newman & Girvan 2004). The higher the value the more well-defined the 
communities are and the most accurate the partition is. To find the best partition, Q needs to be opti-
mized over all possible network partitions.  

We validated the selection of measures and the hierarchical clustering algorithm by applying them on 
the datasets presented in Newman & Girvan (2004). For these datasets, we have obtained comparable 
modularity measures. 

2.2 Modelling Community Dynamics 

Since the interactions between participants and the set of participants are not static but change over 
time, we use the representation of the network but consider the graph as dynamic. Vertices as well as 
edges appear and disappear from the graph through time. We define the dynamic graph gt as a graph in 
interval t. gt consists of all vertices and edges that are active in an interval t. If all interactions would 
be aggregated over time to G by summing up all gi where i = 1, …, t all information about the tempo-
ral development would be lost. Therefore, we define gt as a sliding window over time interval t that 
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spans a set of interactions. In other words, all interactions that take place in this interval t are aggre-
gated to gt.  

To find the right length of the interval is very challenging. Each graph should show enough change, 
but not too much in order to give information about network dynamics. The question concerning the 
right rate of change can be described with respect to different levels (e.g., fast, medium, slow). The 
meaning of these terms depends on the context since the scale will vary across different relations. For 
example, the rate of change for the relation “e-mail-exchange” will be much shorter than for “trade 
relationship”. Thus, chunks of time that capture the nature of events must be identified. The interval 
size for the respective relation under observation is not computed automatically. We assume that the 
intervals are known and provide a mechanism that allows the user to choose the interval size.  

After defining the interval we would intuitively partition the graph over time into equidistant time 
slots, each slot starting when the last slot finished. This modus is called a non-overlapping sliding 
window. An overlapping window partially overlaps with the prior window. The degree to which it 
overlaps must be defined. We apply an overlapping window since it smoothes out the gaps that some-
times occur between two intervals. It can be interpreted as a moving average (Moody & McFarland & 
Bender-deMoll 2005).  

Each window is considered a static representation of the network in the chosen interval. At first we 
apply the community detection mechanism as described in Section 2.1 to obtain a community structure 
for gt. Ct = {ct1, ct2, …, ctn} is the set of communities in gt. To determine whether a community persists 
over time we must be able to assess if a community cxn in gx is the same as a community cym in the in-
terval gy, where n, m ≥ 1 and y > x. Qualitatively we would define that a community in a subsequent 
interval is the same, if the characteristic features are similar. First of all, this would be the set of par-
ticipants. We therefore define that community cxn and community cym are the same if a given percent-
age of members in community cxn in gx is also a member of community cym in the interval gy. The ap-
propriate level of the percentage depends on the community type, the type of relations and the intent of 
the observer. If a community consists of a small set of very active core members and a high number of 
less connected members that often change, the percentage should be rather small. Otherwise, the 
community might not be considered the same just because many of the other “uncharacteristic” mem-
bers changed, even though the most active core members are still detected as a community in different 
intervals. The percentage can therefore be chosen by the user of our system according to his needs.  

The temporal developments of the communities are then visualized in a community history view. The 
procedure is described in more detail in Section 4. In the next section we discuss observable commu-
nity transitions and their possible causes. 

3 OBSERVABLE COMMUNITY TRANSITIONS AND TRIGGERS 

Taking effective methods to support communities implies that we are able to recognize the commu-
nity’s actual status as well as ongoing transitions. For this, it is necessary to know about transition 
types, how to observe them and the triggers that evoke these changes. Ideally, real changes should be 
distinguished from accidental changes. Wenger, McDermott and Snyder (2002) view communities as a 
continually evolving “living being” and observed five stages of development: potential, coalescing, 
maturing, stewardship and transformation. Along this lifecycle, they pointed out necessary activities 
that need to be taken to support communities in their development. Communities may develop accord-
ing to this lifecycle, but often they stay at a certain stage for extended periods and then suddenly 
evolve or they move back- and forward between the stages. Furthermore, it is often difficult to deter-
mine the stage as some characteristics are fulfilled, others not. However, the lifecycle offers some in-
dications about possible types of transitions in communities.  

In the following we briefly discuss four transition types, observable indicators to assess the change and 
internal as well as external factors that influence the development of the community. 
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3.1 Community Transitions and Transition Indicators 

3.1.1 Community persists 

A community must be established in order to say if it actually undergoes a development. In an organ-
izational context, a community is established if it maintains a coherent, ongoing identity known both 
to itself and the environment, e.g., the larger organization, and if it functions as a goal-directed, self-
managing system. To observe the temporal development of a specific community we must therefore 
be able to find corresponding communities at different points in time (Hopcroft et al. 2004). As de-
scribed in Section 2.2 we define that a community persists over time if a given percentage of partici-
pants is detected in several periods as one community.  

However, the periods the community shows up must not necessarily be consecutive. It might happen 
that a community is detected in interval t, not detected in t+n but shows up again in t+m where m > n 
≥ 1. Thus, we define a community still as the same community even though it was inactive for some 
time. The length of the period of “allowed” inactiveness can be chosen by the user.  

The phenomenon that a community persists can be divided into the sub-transitions: The community 
grows or the community declines. We define that a community grows if in the period under observa-
tion its number of participants increases. This evolution is considered more evident if at the same time 
the number of edges in relation to the number of vertices in the community increases. To identify a 
significant development this observation should be made over a certain number of periods. The actual 
number of observed time steps depends on the length of the intervals. If the number of edges in rela-
tion to the number of vertices inside a community increases in several consecutive periods we observe 
that the community evolves. Parallel, the average shortest path between nodes decreases. If the num-
ber of vertices remains constant at a high level but the number of edges increases, we observe a com-
munity that matures. A community declines if, over several periods, the community members become 
less active (number of edges or edge weights decrease) and/or members leave the community (number 
of vertices decreases). If the number of edges and the number of vertices decreases significantly, the 
community might disappear.  

3.1.2 Community disappears 

„When we say that a community disappears, what we mean is that the community is no longer recog-
nized as a separate, functioning system with a known, ongoing identity.” (Gongla & Rizzuto 2004) 
There are many reasons why communities disappear. An abrupt disappearance without any prior indi-
cation is unlikely. Rather, we expect that it takes quite some time to fade. Members gradually leave the 
community, slowly decreasing their participation. During this drift phase, new members rarely join the 
community since the community is not visible to them and any overtures may get little response. Core 
members leave and are not replaced. Members stop identifying with the community and less and less 
activity can be observed. Since this is usually a very slow process it is hard to determine when exactly 
the community finally ceases to exits.  

3.1.3 Community merges 

Communities merge with other communities. We can distinguish between mergers of equal and un-
equal communities (Gongla & Rizzuto 2004). In the former case, communities find that they have a lot 
in common and individual members find themselves in both communities. The knowledge domain of 
each community is either similar or complementary to the other community. The two communities 
disappear and a new community is established in their place. A merger of un-equal communities may 
be observed, if a community constitutes a specialized sub-domain of a larger community. It may join 
willingly the broader community or it may be absorbed by it. We can observe a merger of multiple 
communities by examining the historic view of the communities as shown in Section 4.  
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3.1.4 Community splits 

Analogous to a merger of communities, a community can split into multiple communities. A split can 
be determined if we observe the time axis from the opposite direction. A community split might hap-
pen, e.g., if a sub-group with a more specialized knowledge domain developed which at some point 
separates from the community. Further transition triggers are briefly discussed in the following. 

3.2 Causes of Community Transitions and their Indicators 

The reasons why the structures of communities change are complex. Examples for triggers are a 
change in the organizational or technological structure or in the knowledge domain of the community. 
Both can have a high impact on the behavior of the community members. The challenge is to detect 
the change that triggers the development and the development itself to be able to relate triggers and 
transitions. We discuss two important transition triggers and how they can be observed. 

3.2.1 Community Leadership Change 

The activity in communities is to a big part determined by core members who have a high influence on 
the development of the community. Sometimes this is a single person. However, often the core con-
sists of a (small) group of people that has established the community and that feels responsible for its 
continued existence. Several studies show, that only a small minority of the users posts the majority of 
the messages and thus stimulate activity. Organizations should identify influential members and try to 
prevent leadership changes or take necessary actions in case a leadership change is necessary.  

A leadership change can be best observed on the vertex level. Each vertex has a unique label that it 
retains all along. The variation of certain properties indicates the change in personal behavior. The 
properties that give indications about a changing behavior of one member are the degree, the edge 
clustering coefficient and the vertex betweenness centrality. 
• The degree of a vertex is one indicator for its centrality in a graph. An increasing degree, compared 

to the average degree, over several periods is an indication for an increasing integration into the 
network. If the majority of neighbors belong to the same community, we can assume that the vertex 
is more central. Otherwise, if many neighbors belong to other communities a vertex with a high de-
gree may act as a bridge between two or more communities.  

• As described in Section 2.1, the edge clustering coefficient is a local measure that gives indication 
about the transitivity of the edge. An increasing coefficient indicates a higher probability that one 
or both vertices, which are connected by this edge, become a member or a more central member of 
a community, depending on the previous scores. A decreasing coefficient indicates that the nodes 
move to the border of the community. To distinguish between a node at the border of a community 
and a node, which acts as a bridge between two or more communities one has to observe the edge 
betweenness scores. If the edge clustering coefficient is low, but the edge betweenness is high, the 
probability that the node acts as a bridge is higher. 

• It has been reported that vertices with high vertex betweenness centrality values tend to play a more 
important role compared, e.g., to vertices with a high degree in keeping communities connected 
(Baur & Benkert 2005). If vertices have established a high betweenness value, it is very likely that 
they have an important role in the network. A decreasing betweenness may indicate that a core 
member becomes less active, which might result in a less active community. However, this meas-
ure makes no distinction between vertices in different groups or between geodesics, which remain 
in one group, and those, which cross to different groups. 

It should be noted, that if a leadership change is observed as a change in the community structure, it 
most likely invokes further changes in the community that might be observable in preceding time win-
dows. Thus, a change in the community structure it not only in itself an interesting transition but it can 
also be an indicator for a possible transition in the future. 
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3.2.2 External Influences 

Advertising or publicity in the mass media may influence the development of a community positively 
as well as negatively. A positive report about a community in the media or an award can be very moti-
vating, a negative publicity or a slating review can have devastating effects. Furthermore, seasonal 
variations can be observed, depending, e.g., on the domain of the community. A political community 
might be more active in the run-up to elections, a community of sailors during summer time. 

External influences as advertising usually have an immediate effect on the community. A dramatic 
increase in new members might be a result of a positive publicity campaign. These changes are ob-
servable by comparing global properties of the graph in different intervals and give indications for 
structural changes. These are the number of vertices and edges, the average shortest path, the diameter 
of the graph, the density of the graph, the modularity of the graph (Q-measure) and the number of 
components, which indicates how connected a graph is. Furthermore, the graph clustering coefficient, 
a measure for the network transitivity, can provide good indications for structural network changes. 

4 VISUALIZING COMMUNITY DYNAMICS 

To track the development of established communities and to visualize these transitions we developed a 
software environment that supports temporal graph analysis based on the community detection meth-
ods described in Section 2. The transitions that we consider are displayed in Table 1. The main design 
goals of our tool are i) to decompose the network into communities (cf. 4.1), ii) to provide an interac-
tive visualization of the decomposition (cf. 4.2) and iii) to provide an interactive visualization of the 
community development (cf. 4.3). In the following section, we describe the functionality of the soft-
ware by describing how a user does proceed when performing a community dynamics analysis. 

 

4.1 Community Detection in Static Graphs 

At first the relationships between community members that are stored in a database are transferred in a 
graphical representation where actors are represented as vertices and the relation between members, 
e.g., the communication activity is represented as a weighted edge between two actors. We imple-
mented a Kamada-Kawai graph layout which positions the vertices so that the Euclidean distance be-
tween them is as close as possible to the graph-theoretic (path) distance (Kamada & Kawai 1989) (see 
left screenshot in Figure 1). The user can move vertices and zoom into the graph to investigate the 
structure in more detail. 

The structural changes in the aggregated graph as well as the graph over specific periods can be ana-
lyzed by observing the curves that display the graph clustering coefficient and the average shortest 

Transition Description 

Community Persists ci in gt is matched by a community cj in gt+n, n ≥ 1 

Community Grows ci in gt is matched by a larger community cj in gt+n, n ≥ 1 

Community Declines ci in gt is matched by a smaller community cj in gt+n, n ≥ 1 

Community Disappears ci in gt is not matched by any community cj in gt+n, ∀ n ≥ 1 

Community Merges ci in gt is not matched by a single community in gt+n, n ≥ 1, but the 
combination of two or more communities in gt match cj in gt+n 

Community Splits ci in gt is not matched by a single community in gt+n, n ≥ 1, but the 
combination of two or more communities in gt+n match ci in gt 

Table 1. Community transition types and their description 
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path length (see right screenshot in Figure 1). Further statistics that provide indications of the network 
status for each period are displayed in a table. Currently, we present for each period the number of in-
teractions, of vertices and of edges, minimum, maximum and average degree, the diameter, the edge 
clustering coefficient and the average shortest path. However, other community change indicators can 
be included easily, e.g., the vertex clustering coefficient, vertex betweenness or closeness centrality.  

4.2 Interactive Visualization of Community Structure 

We find the communities in each interval by invoking the hierarchical divisive clustering algorithm 
described in Section 2.1. The results of the clustering are displayed in a table and a dendrogram. 
Again, each row in the table represents one period. For each period the results for the best clustering 
according to the modularity measure are presented. Further statistics include: The modularity (Q-
measure), the number of communities found, the size of the smallest and largest community, the num-
ber of edges to be removed to obtain the maximum modularity and some other statistics.  

The user can experiment on the impact of the Q-measure threshold and tune it to the most appropriate 
value for him: To do so, he only needs to move a slider in the dendrogram (see description of Figure 
2) and observe how the community structures change, both in the graph visualization, where edges are 
added resp. removed, and in the table entries, which are updated accordingly. Besides the dendrogram 
on the left, the right screenshot in Figure 2 has two other major areas: a list of all detected communi-
ties in the small middle window and the curves on the right. The right area has three sub-areas, upper-
most, middle and lowermost. The horizontal axes represent the respective time windows. The vertical 
axes are described in the next paragraph. In the section underneath the three diagrams on the right, a 
list of all members of the chosen community is displayed. 

The lowermost curve displays the total number of interactions between the chosen group (Internal 
Group Activity) and the total number of interactions of all group members with other participants of 
other communities (External Group Activity). The Min Internal Group Activity und Min External 
Group Activity represents the number of reciprocal interactions between two actors. It can be seen that 
the chosen group is only active for about 6 weeks (Internal Group Activity), but some members have 
an active relation with external participants. The middle and the uppermost diagram show how similar 
the internal community interaction behavior is over time. In the middle diagram the vertical axis de-
picts the correlation distance as a similarity measure for the groups in different periods by transform-
ing the matrices of two periods into two vectors to calculate the correlation. It can be seen that the 

   
Figure 1.  Left side: Left graph displays all interactions in aggregated form as a graph. The right 

graph shows all interactions for one interval. Right side: The diagrams show the cor-
responding curves for the graph clustering coefficient and the shortest path over time 
for the aggregated graph (left diagram) and the graph on the right (right diagram). 
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group shows up in two time windows with almost the same members but the structure changes very 
quickly and the group disappears. In the uppermost diagram the y-axis displays the Euclidian distance 
as a similarity measure. The more similar a group interaction in two periods, the lower is the value of 
the Euclidian distance. For both measures we compare the similarity between the chosen interval and 
all other intervals (Fixed Correlation or Fixed Euclidian respectively) and for two succeeding inter-
vals (Periodic Correlation or Periodic Euclidean respectively). 

4.3 Interactive Visualization of Community Dynamics 

In Figure 3 on the left side we see a static representation of a temporal community evolution. In this 
visualization, each detected community is represented as a vertex. The size of the vertex corresponds 
to the size of the community. The minimum community size is defined by the user. Edges are used to 
represent similarity of communities. Thus, vertices that are connected by an edge are similar. In the 
presented screenshot, communities are connected if at least 50 percent of the members belong to both 
communities. Communities with the same members over several periods are positioned closer in the 
graph whereas communities with no members in common should be more separated from each other. 
Furthermore, the different colors help to distinguish between similar communities and those that are 
not. By this, the user can observe how communities stand to each other over a period of time. 

The user can choose for how many periods the community must at least exist to be displayed. If a long 
period is chosen, the user obtains only long-term community whereas in another case it might be of 
interest to find only short-term communities. Another slider for the time distance defines how con-
tinuous the communities are connected, separating communities by a maximum distance. Furthermore, 
one can define the observation period and filter the vertices so that the communities are displayed only 
in a selected period. The described properties can be used to filter communities and their connections 
so that the graph only shows data that is useful for a particular analysis. 

Note, that in the obtained graph in Figure 3 on the left, the temporal development can not be observed, 
as the communities are only displayed according to their similarity. In a next step, the filtered and 
clustered data is copied to a community history view, which allows seeing temporal developments by 
using the coordinates from the graph and putting the vertices on the horizontal axis according to the 
period they appear in (see Figure 3 right side). The position transformation allows tracking the devel-
opment along the time axis. Each community is now represented as a rectangle where the height of the 
rectangle corresponds to the size of the community. All communities that are considered as similar 
according to the actual setting are connected by edges and have the same color.  

   
Figure 2. Left side: Results of the clustering are displayed in a dendrogram. The best dendro-

gram cut is calculated using the modularity measure and represented by the yellow 
slider which can be moved. Right side: Temporal development of a chosen community.
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The left side of the screenshot on the right in Figure 3 shows all communities over time in an overview 
window. The right side displays a cutout to allow for a more detailed view. In the lower part of the 
overview window we can see a community in light blue and one in red that exist over just a few peri-
ods. In the cutout view we can furthermore observe a community in yellow that existed over a longer 
period. We can see that smaller communities merge to one big but split very fast to several small 
communities. However, we can also observe, that the used data unfortunately does not exhibit a stable 
community structure as the interactions between members are fluctuating very fast. 

5 CONCLUSION AND OUTLOOK 

In this paper, we discussed a model to analyze community dynamics. We presented our interactive 
software tool that visualizes the community dynamics by partitioning the graph defined by a time win-
dow. Each window is clustered and the discovered communities are displayed. The obtained visualiza-
tion allows for a better temporal overview in order to see how the communities are related and how 
they develop over time. The software tool is interactive and flexible: It offers several visualization 
forms and provides the user with many analysis settings to detect and explore community dynamics. 
The findings of a community dynamics analysis can be used to support organizations in designing 
technological or organizational measures to improve the community platform and its environment.  

However, as in any observation of online communities, we are only able to visualize a certain amount 
of communication in the organization. The interpretation of the results could be enhanced, if informa-
tion about “offline” communication could also be incorporated in the analysis. 

Further research could focus on how to apply analysis findings in dedicated actions. Thus, community 
designers could improve/enhance the user experience and thus foster the community platform. The 
results of past changes might also be used to predict future community developments. Our aim is fur-
thermore to improve the quantification of the weight of the edges. Counting the number of interactions 
may not represent the quality of the interaction. For example, the incorporation of the content of the 
interaction could provide helpful indications on the quality of the interaction. 

Furthermore, the sliding time window algorithm has still problems to handle strongly fluctuating 
community activities. This makes it complicated to find the right length of the time window. When the 
number of actors and interactions increases quickly, the graph becomes large and dense making it hard 
to analyze the community structure. Therefore, it seems necessary to develop a more appropriate simi-
larity function, which scales better with changing activity and density. So far, we have no quality 
measure for the clustering of the community graph. We investigate whether we can also apply the 
modularity measure. 

    
Figure 3. Left screenshot: Visualization of communities based on the Euclidian distance. Right 

screenshot: Community history view along the time axis. 

t
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