
Association for Information Systems
AIS Electronic Library (AISeL)

ICIS 2006 Proceedings International Conference on Information Systems
(ICIS)

December 2006

Negotiating Response-ability and Repeat-ability in
Requirements Engineering
Nannette Napier
Georgia State University

Lars Mathiassen
Georgia State University

Roy Johnson
University of Pretoria

Follow this and additional works at: http://aisel.aisnet.org/icis2006

This material is brought to you by the International Conference on Information Systems (ICIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ICIS 2006 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Napier, Nannette; Mathiassen, Lars; and Johnson, Roy, "Negotiating Response-ability and Repeat-ability in Requirements
Engineering" (2006). ICIS 2006 Proceedings. 54.
http://aisel.aisnet.org/icis2006/54

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301354857?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Ficis2006%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis2006?utm_source=aisel.aisnet.org%2Ficis2006%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis2006%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis2006%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis2006?utm_source=aisel.aisnet.org%2Ficis2006%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis2006/54?utm_source=aisel.aisnet.org%2Ficis2006%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

 Twenty-Seventh International Conference on Information Systems, Milwaukee 2006 835

NEGOTIATING RESPONSE-ABILITY AND REPEAT-
ABILITY IN REQUIREMENTS ENGINEERING

Alternative Approaches to Information Systems Development

Nannette P. Napier
Computer Information Systems

Georgia State University
nnapier1@gsu.edu

Lars Mathiassen
Center for Process Innovation

Georgia State University
lmathiassen@gsu.edu

Roy D. Johnson

University of Pretoria
Department of Informatics

Roy@UP.ac.az

Abstract

Requirements engineering (RE) practices are critical to success during the development of
business software. As managers assess RE practices, they apply specific perspectives that
determine problems identified and recommendations for improvement. Two perspectives have
recently dominated managerial thinking within the software industry, one rooted in software
process improvement and the other rooted in agile software development. Underpinning these
perspectives are two theories about what constitutes good software practice. In this paper, we
explicate these theories in relation to RE and show how they differ in basic assumptions about the
nature of requirements, requirements capture, requirements usage, change management, and
approach to improvement. The repeat-ability theory holds that good requirements practices are
plan-driven and follow generic best practices to arrive at an agreed-upon baseline of software
requirements. Response-ability holds that good requirements practices are adaptive and involve
close interaction between customers and developers to arrive at satisfactory software solutions.
We use case study data from a software firm, TelSoft, to show how the theories lead to different
interpretations about why current practices are problematic and how problems are resolved.
Relating to the improvement strategy adopted at TelSoft, we demonstrate the superiority, for
managers, of negotiating response-ability and repeat-ability concerns when improving RE
practices. The paper concludes with a discussion of implications for research and practice.

Keywords: Requirements management, agile methods, software process improvement, CMM,
case study

Introduction

Requirements Engineering (RE) involves eliciting, documenting, and maintaining software requirements
throughout the software development lifecycle (Kotonya and Sommerville, 1998). Ineffective RE practices
can have long-term consequences for software projects. For example, discovering requirements errors
during the production phase is estimated to be 100 times more expensive to fix than if that same error is
found during the analysis phase (Boehm, 1983). Acknowledging the significance of RE, software project
managers have identified misunderstood requirements as the second most important risk to be managed
(Schmidt et al. ,2001). Despite RE-specific process descriptions and best practices (Beecham et al.,, 2005b;
CMMI Product Team, 2002; Sommerville and Sawyer, 1997), RE remains one of the most challenging
aspects of business software development (Beecham et al., 2005a). This is due in part to competitive

Alternative Approaches to Information Systems Development

836 Twenty-Seventh International Conference on Information Systems, Milwaukee 2006

business environments characterized by frequent requirements changes, rapid technological advances, and
time-to-market pressures (Ramesh et al., 2002).

Software development managers looking to improve RE practices must first be able to identify problems
with current RE practices and then determine the most appropriate tactics for resolving those problems. The
perspective applied to the situation determines the problems identified and the resulting recommendations
for improvement. Two perspectives that have strongly influenced software development are plan-driven
versus agile development approaches (Boehm, 2002). Plan-driven approaches stress repeat-ability whereas
agile approaches emphasize response-ability.

Plan-driven approaches, such as the Software Capability Maturity Model (SW-CMM), Bootstrap (Kuvaja
and Bicego, 1994), or SPICE (Rout, 1995), emphasize documentation of project milestones, requirements,
and designs; this approach is appropriate when the requirements are stable and known in advance (Boehm,
2002). The plan-driven approach assumes that improvement occurs by increasing organizational maturity
through documented and repeatable processes (Humphrey, 1989). While some companies have benefited
from implementing SW-CMM, there are also limitations with this approach to software process
improvement: the scope of the assessment is limited by the model; it can be expensive to put into practice;
and best practices may not fit closely the wants and needs of the organization (Iversen et al.,, 2002). In the
context of RE, one study found that SW-CMM-based approaches were able to improve technical RE
problems, but not necessarily organizational RE problems (Beecham et al., 2005b).

Agile approaches, such as extreme programming (Beck, 1999), Crystal Methods (Cockburn, 2000), or
Adaptive Software Development (Highsmith, 2000), emphasize people and prototypes over processes and
documentation (Agile Alliance, 2001; Highsmith and Cockburn, 2001). Agile RE practices are less formal
than plan-driven RE practices, but they still focus on understanding the customer’s business requirements
(Orr, 2004). Because requirements are expected to change, agile development occurs in short, iterative
development cycles, and there is little attempt to predict future requirements. Agile methods also prescribe
close collaboration between customers and the development organization to continually refine and
prioritize requirements.

Although there are strong advocates of both the plan-driven and agile approaches, there have also been
recent attempts to explore combining the two approaches. Boehm (2002) suggests that project
characteristics such as developer skill set, customer availability, and requirements predictability be
evaluated and used to pick the approach that best fits the situation. Furthermore, he suggests combining
plan-driven and agile approaches for projects that have mixed characteristics. Some studies have examined
how agile approaches can comply with the guidelines of the SW-CMM (Paulk, 2001) and its latest version
the Capability Maturity Model Integration (CMMI) (Anderson, 2005; CMMI Product Team, 2002).
Empirical case studies have also begun to appear that show how this combination can occur (Baker, 2005;
Salo and Abrahamsson, 2005). However, the mixed messages about what approach to adopt can be a source
of confusion for software managers. There is therefore a need to explicate the theoretical underpinning of
the two approaches and to understand how they apply to RE practices.

Hence, we explore the repeat-ability and response-ability theories that underpin plan-driven and agile
approaches, and we apply them to RE practices in a software firm, TelSoft (a pseudonym). We emphasize
the two theories for RE from the viewpoint of their implications for action. The objective is to clarify the
underlying assumptions of plan-driven and agile approaches in relation to RE and to explore what types of
problems and recommendations each perspective reveals. To achieve this, we conducted a systematic
assessment of RE practices in TelSoft and used the data to address the following research questions:

1. What assumptions distinguish repeat-ability from response-ability theories of RE?
2. How do repeat-ability and response-ability theories differ in assessing RE practice?
3. How do repeat-ability and response-ability theories apply to improving RE practice?

The argument is organized as follows: First, the repeat-ability and response-ability theories on RE are
presented and contrasted in terms of their underlying assumptions. Next, background information is
provided about TelSoft and the adopted research approach. Then, we evaluate the theories based on data
from TelSoft. The paper concludes with recommendations for software managers and future research.

 Napier et al./ Negotiating Response-ability and Repeat-ability in Requirements Engineering

 Twenty-Seventh International Conference on Information Systems, Milwaukee 2006 837

RE Theories

A manager trying to decide how to improve RE practices may hold one of two divergent theories about
why current practices are problematic and how problems are resolved: repeat-ability and response-ability.
Repeat-ability holds that good requirements practices are plan-driven and follow a set of generic best
practices for how to arrive at an agreed-upon baseline of software requirements. Repeat-ability is an
important principle within the SW-CMM (Paulk, Curtis, Chrissis and Weber, 1993). In fact, the first step in
increasing organizational maturity involves moving from an initial level to a repeatable level by reducing
variations in practices (Humphrey, 1989). In contrast, response-ability holds that good requirements
practices are adaptive and involve close collaboration and interaction between customers and developers to
help develop satisfactory software solutions. Response-ability is an important principle within agile
development approaches (Beck, 1999; Boehm and Turner, 2004; Turk et al.,, 2005). In fact, one of the four
basic principles of the Agile Manifesto is “Responding to change over following a plan” (Agile Alliance,
2001). Table 1 describes these two idealized perspectives in detail and explicates their underlying
assumptions in the context of requirements engineering.

Table 1: Theories of RE – Underlying Assumptions

Assumption Repeat-ability Response-ability

1. Nature of requirements Requirements represent software
capabilities

 Requirements are explicated as
texts in documents

 Requirements are perceptions of
software capabilities

 Requirements are tacitly
embedded in social relationships

2. Requirements capture Requirements are derived through
specification

 Interaction is formal

 Requirements are discovered
through negotiation

 Interaction is informal
3. Requirements usage Requirements are baselined and

predate development
 Requirements are stored with

traceability to source code

 Requirements emerge through
development

 Requirements are expressed
through software solutions

4. Change management Requirements changes are
exceptions and must be managed

 Requirements changes are
expected and must be embraced

5. Improvement approach The goal is to reduce process
variance through best practices

 The goal is to increase customer
satisfaction through collaboration

In the repeat-ability theory, requirements are textual representations of the desired software capabilities.
Requirements knowledge is explicated as objects that are passed between requirements providers and
requirements receivers. Requirements capture is a formal process that occurs before development work
begins; it includes document review, discussion, and sign-off to indicate approval. Once sign-off has been
obtained, a requirements baseline is established. Any changes to the requirements baseline must be
documented and communicated to relevant stakeholders (Paulk et al., 1993). The role of quality assurance
is to verify that the completed software matches the requirements specification. If RE practices are
problematic, this approach looks for missing or inefficient processes. The overall improvement approach in
the repeat-ability paradigm is to institute best practices and reduce process variance (Humphrey, 1989).

In the response-ability theory, requirements exist as shared understandings between stakeholders.
Requirements knowledge is tacit, and the role of documentation is minimized. Customers play a critical
role during software development as expressed in the principle “Customer collaboration over contract
negotiation” (Agile Alliance, 2001). Customers provide immediate feedback on interim versions of the

Alternative Approaches to Information Systems Development

838 Twenty-Seventh International Conference on Information Systems, Milwaukee 2006

software and set priorities for the next iteration. Requirements capture happens informally as part of
ongoing conversations with customers. This incremental approach allows requirements changes to be
incorporated into the next version of the software. If RE practices are problematic, this approach looks for
breakdowns in communication with customers or between developers. The overall improvement approach
is to increase customer satisfaction by enhancing collaboration to quickly adapt to customer requests.

Research Methodology

A partnership between TelSoft and three researchers from a University Innovation Center (UIC) provided
the basis for data collection. Overall, we adopted an action research approach (Baskerville, 1998; Rapoport,
1970; Susman and Evered, 1978) to diagnose RE practices, provide specific recommendations, and
implement improvements. In this section, we provide background information about the research site and
describe the research approach of this study in detail.

TelSoft

TelSoft was founded in 1971 with the mission to be the premier technical services firm in the
telecommunications and utility industries. Approximately 50 people within TelSoft’s software development
division work together to build and customize geographic information systems (GIS) software. TelSoft’s
biggest strength is its people: experienced software engineers with deep knowledge of the GIS application,
systems analysts with strong customer relationships, and managers willing to adapt quickly to customer
requests. However, the company acknowledges recent issues with its RE practices. For example, internal
stakeholders complain that insufficient information is collected during requirements elicitation, thereby
delaying design and development activities. Increasingly, customers identify missing functionality during
acceptance testing of the delivered software. Also, financial pressures require TelSoft to downsize its
workforce, causing it to lose valuable customer and application expertise.

TelSoft’s prior attempt at improvement was initiated in July 2000 guided by SW-CMM (Paulk et al., 1993).
Despite high productivity rates and perceptions of progress, support for the SW-CMM initiative was
withdrawn in August 2001 due primarily to financial pressures. TelSoft decided to commit resource to
imminent development rather than to process improvement. The most visible remains of the improvement
effort were unused and out-dated process documentation combined with mistrust for rigorously following
SW-CMM to improve RE practices.

Industry-Research Collaboration

To address this problematic situation, a collaborative practice research (Mathiassen, 2002) project was
initiated between TelSoft and the authors in October 2004. Collaborative practice research is a form of
action research characterized by strong collaboration between practitioners and researcher. Galliers (1991)
defines action research as an attempt to obtain practical results valued by the involved groups while adding
to the body of knowledge in the discipline. Consistent with the dual problem solving cycle and research
cycle (McKay and Marshall, 2001), the collaboration had two objectives: 1) improving the quality and
productivity of software services at TelSoft through enhanced RE practices and 2) contributing to research
in software requirements management. A memorandum of understanding detailing the project plan, initial
tasks, and collaboration structure documented the agreement between TelSoft and UIC. The collaboration
was designed to address the following tasks:

1. Model and assess TelSoft’s existing practices and tools as they are applied to requirements elicitation,
analysis, documentation, and management.

2. Describe key sources of requirements, the interests of the involved stakeholders, and the different ways
in which new requirements are negotiated and used as the basis to define the scope of development
projects.

3. Describe existing practices and tools used to continuously manage the scope of projects by tracing
project activities and product functionality to the requirements of the project.

 Napier et al./ Negotiating Response-ability and Repeat-ability in Requirements Engineering

 Twenty-Seventh International Conference on Information Systems, Milwaukee 2006 839

4. Identify strengths and weaknesses in current RE practices as well as opportunities for improvement.
Generate new or changed process documentation to assist TelSoft future requirements management
efforts.

5. Implement and assess selected improvements in RE practices.

The IDEAL model was adopted from McFeeley (1996) to improve RE practices. This particular research
article focus on information gathered during the “D” phase or “Diagnosing” (see Figure 1).

Stimulus for
improvement

Set context &
Establish

sponsorship

Establish
infra-

structure

Appraise &
Characterize

current process

Develop recommendations
& Document results

Set strategy &
Priorities

Establish
process action
teams & Action

plans

Define processes & measures
Plan & Execute pilots
Plan. Execute, & Track installation

Document &
Analyze lessons

Revise
organizational

approach

INITIATING

DIAGNO-
SING

ESTABLISH-
MENT

ACTING
LEARNING

Figure 1: IDEAL Model (McFeeley 1996)

The collaboration was managed by a Steering Committee (SC) composed of senior management from
TelSoft and the three university researchers (see Figure 2). The SC meets 2-3 times per year as needed to
oversee the project. More hands-on activities are completed by the Problem-Solving Team (PST) consisting
of middle-level managers at TelSoft and the three researchers. The PST meets as needed to guide the
collaboration and make decisions such as selecting participants for interviews and workshops.

Figure 2: Managing Collaborative Practice Research (Mathiassen 2002)

TelSoft: VP of Software Development,
 3 Managers
UIC: Three authors

TelSoft: CEO, VP of Software Development,
 Division President
UIC: Three authors

Steering Committee

(SC)

Problem Solving Team

(PST)

Alternative Approaches to Information Systems Development

840 Twenty-Seventh International Conference on Information Systems, Milwaukee 2006

Data Collection

Data collection and documentation are essential for successful action research and qualitative research in
general (Avison et al., 1999; Mason, 2002; Miles and Huberman, 1994). Because one of the authors had
previously worked at TelSoft, the research team quickly earned acceptance by and confidence of the TelSoft
employees. In December 2004, the research team initiated a diagnosis of RE practices by examining
TelSoft’s existing documentation of software development processes, procedures, and policies. This was
followed by semi-structured interviews with 22 representatives from three major stakeholder groups:
software development, internal customers, and external customers (see Table 2: Summary of Interview
Sources). In most cases, the interviews were recorded and conducted face-to-face with at least two
researchers present; however, there were some interviews that were conducted via conference calls or with
just the first author present. In all cases, the interviewers took extensive notes during the interview which
were later reviewed, discussed, and analyzed. An interview guide was presented to participants to structure
the interview process and ensure that we collected the desired information about RE practices. These
interview guides were tailored to suit stakeholders internal and external to TelSoft (see Table 3: Interview
Guide for Internal Stakeholders). Interviews were scheduled for one hour. While the interviews served as a
primary data source, we used multiple sources of evidence to corroborate our findings (Mason, 2002; Miles
et al., 1994). These sources included: field observation, field notes, minutes from PST meetings, the
diagnostic report of RE practices at TelSoft, and unlimited access to all TelSoft’s process documentation.

Table 2: Summary of Interview Sources

Group Affiliation Count Role
Internal Customers
(Map Services, Sales)

6 1 Liaison to Software Group
3 Project Managers
2 Sales Representatives

Software Development Group 9 2 Development Managers
2 Project Managers
2 Software Engineers
2 Systems Analysts
1 Quality Assurance Analyst

External Customers
(Far Telco, Local Telco, other)

7 3 Managers, Far Telco
3 Managers, Local Telco
1 Engineer, other customer

Table 3: Interview Guide for Internal Stakeholders

Requirements Documents Requirements Activities

• Which?
• Inputs from whom?
• Contributions?
• Output to whom?

• Which?
• Interactions?
• Collaboration?
• Resources?

Strengths, Weaknesses, and Opportunities Strengths, Weaknesses, and Opportunities

 Napier et al./ Negotiating Response-ability and Repeat-ability in Requirements Engineering

 Twenty-Seventh International Conference on Information Systems, Milwaukee 2006 841

Data Analysis

As suggested by Miles and Huberman (1994, p. 56), data analysis was an ongoing process. After groups of
interviews were conducted, the research team met to reflect upon what was learned and detect patterns
emerging from the data. These ideas were discussed with the PST for feedback and verification and
documented in field notes. Additionally, we created interim reports after completing interviews with each
of the three stakeholder groups. We also conducted workshops with participants from the software
development and internal customers groups to present the problems detected and to validate our
assessment. In these 2-3 hour workshops, participants prioritized the identified problems in terms of
criticality, feasibility, and priority. Feedback from these workshops and all interviews were accumulated
into the comprehensive diagnostic report which was approved by both the PST and SC.

To answer our research questions, an additional level of analysis was conducted. We used an alternative
templates strategy for analyzing the data (Langley, 1999); in this approach, different theories are
independently applied to the same data to evaluate the explanatory power of the theories. This technique
was previously used by Markus (1983) to compare three theories of resistance when studying systems
implementation. Similarly, at TelSoft, we approached a complex managerial issue through alternative
theoretical lenses of repeat-ability and response-ability. We applied each theory to the case data and
assessed the useful of the theories for managerial practice.

The analytical process was guided by the fundamental principle of the hermeneutic circle (Klein and
Myers, 1999); we alternated between focusing on each theory as a whole and on examining closely the
underlying assumptions composing each theory as outlined in Table 1. During the holistic analysis, the
three researchers first adopted the repeat-ability lens. After reviewing selected data sources and reflecting
upon their experiences at TelSoft, they identified key problems and recommendations that would occur
within the repeat-ability paradigm. Once agreement had been reached, the three researchers then repeated
their interpretation of the key problems and recommendations based upon the response-ability lens. This
activity resulted in a rough, first version of what is presented in Table 4.

During the detailed analysis, evidence for each theoretical assumption was systematically gathered from the
data. Several codes were developed for each of the five assumptions of repeat-ability and response-ability.
For example, within the repeat-ability theory, two codes were created relating to the nature of requirements:
(1) indicating that requirements are another representation of the software and (2) indicating requirements
should be documented in textual format. Using Atlas.ti qualitative software, the first author then read
through the entire set of data sources and applied the repeat-ability codes to all mentioning of problems
related to requirements, their capture, their usage, change management, and approaches to improvement.
The process was then done again using the codes from the response-ability theory.

Finally, all three researchers reconsidered the result of the holistic analysis in the light of the systematic
coding of the data. This led to changes in and refinements of Table 4 and also to revision and improvement
of the coding. These analysis activities were iterated until all three authors agreed that each of the two
theories had contributed with a coherent and satisfactory explanation of the data from TelSoft (Langley,
1999) .

Requirements Practices

TelSoft has two primary software products: Map Displayer and Engineering Support Tool (pseudonyms).
The Map Displayer is relatively low-cost software that displays digitized maps, has global positioning
capabilities, and supports limited drawing capabilities. Companies use Map Displayer to save on plotting
and printing costs and to allow field workers access to up-to-date, accurate maps.

The Engineering Support Tool serves as an accounting system for utilities (e.g. location of poles, right of
ways, cables, etc.). There is a great deal of configuration involved in setting up this particular software;
therefore, it is expensive to license and to use. TelSoft has, as a consequence, only a handful of clients that
use the Engineering Support Tool, and this client base is dominated by two long-standing, large customers
whose requests largely dictate the product’s innovation and growth.

Alternative Approaches to Information Systems Development

842 Twenty-Seventh International Conference on Information Systems, Milwaukee 2006

There are two major groups within TelSoft: Software Development and the Map Services group. Software
Development includes systems analysts, project managers, software engineers, quality assurance analysts,
and their managers. Their job is to create new functionality requested by clients and maintain the existing
software products. Map Services uses the Engineering Support Tool software to convert paper maps into
digital format and to translate electronic maps from one format to another. Both of these groups
communicate with TelSoft’s Sales group to learn about end user needs for either updated versions of the
software or new formats for digitized maps.

In this next section, we describe RE practices at TelSoft. The data suggest that TelSoft practices vary greatly
based upon the customer being served; therefore, this section is divided by customer type. First, we
describe how Software Development and Map Services interact to generate requirements. Then, we
describe the RE practices with two of TelSoft’s most established external customers. For each of these
customers, we describe how requirements are captured, documented, stored, and changed.

Requirements Initiated by Internal Customers

The Map Services group is the primary internal customer of Software Development. Because this group is
seen as part of the TelSoft family, the typical rules that apply to external customers regarding documenting
and negotiating requirements are relaxed.

Requirements come from a variety of sources: end users looking for an easier way to do their jobs, Map
Service’s clients changing how digitizing should occur, or unanticipated data conditions found that the
software now needs to handle. Requests for new software functionality are typically shared with Software
Development via email messages or informal face-to-face conversations. Later, the resulting requirements
are documented in bulleted format and logged in the defect tracking database. Because Map Services relies
upon the software as a production tool, the chief concern of production managers is getting software that
meets their requirements as quickly as possible with minimal documentation.

The relationship between the groups is strained in part because requirements are not fully understood and
agreed upon before development work begins. Software Development gets frustrated and feels that Map
Services does not do a good job of explicating their requirements up front. Instead, they communicate what
they think they want at a very high level and then, when software development implements it, they want
something different. This leads to re-work and blown schedules.

From Map Services’ perspective, Software Development does not deliver a quality product to them in a
timely fashion which halts their ability to digitize maps and dramatically affects their bottom-line. Software
Development prioritizes requests from external customers over the ones from internal customers. Not
trusting that the stringent quality assurance guidelines were being followed, the Map Services manager
dedicated a person on his staff just to test the quality of the work being done by Software Development.
Because Software Development does not incur any costs for giving poor service or product to Map
Services, there is little incentive for them to prioritize Map Services’ needs over the needs of external
customers.

Both Software Development and Map Services realize that there are missed opportunities for productivity
and quality enhancement because the internal end users are not always aware of the capabilities of the
Engineering Support Tool and Software Development is not knowledgeable about how the software is
being used. This occurs even though there are a large number of end users from Map Services collocated
with Software Development.

Requirements Initiated by External Customers

Software Development focuses primarily on two external customers that hold the largest number of
licenses for its Map Displayer product and that have invested in enhancing the Engineering Support Tool.
These companies drive changes to the software by specifying which functional and non-functional
requirements they are willing to pay for and what the user-interface should look like. In an effort to keep
these customers happy, TelSoft frequently responds with a “yes” when asked to make changes to their
processes and products. Software Development has assigned a project manager to serve as the main
customer liaison for each of these customers, Far Telco and Local Telco.

 Napier et al./ Negotiating Response-ability and Repeat-ability in Requirements Engineering

 Twenty-Seventh International Conference on Information Systems, Milwaukee 2006 843

The project manager for Far Telco communicates with the customer primarily via email messages and
internet-supported conference calls. Far Telco shares its high level needs and strategic direction with
TelSoft at a yearly face-to-face planning session. More specific and detailed planning occurs for software
releases which are scheduled approximately every 6-8 months. The client documents the business
requirements for new functionality; then, communicates with the project manager to generate system level
and functional requirements. These are documented formally in a functional specification that is written by
TelSoft and must be approved before development work begins. The functional specification serves as the
main communication means used by quality assurance analysts for testing and by software engineers for
understanding what they should code. Once the code has been developed and integration tested, quality
assurance analysts perform certification testing and document any deviations between the functional
specification and the software product. If there are any changes to the requirements after the functional
specification has been approved, a change control document is written to describe required change,
perceived benefits, schedule impacts, and approval.

The project manager for Local Telco communicates with the client using a variety of means – email, phone,
and face-to-face meetings – to understand requirements for new functionality. Local Telco takes a much
more hands-off approach to requirements elicitation. It emails high level requirements to TelSoft that
includes bulleted lists or a few sentences; then, TelSoft interprets those into more detailed system level
requirements and provides these through presentations or in documents for Local Telco’s approval.
Although TelSoft employees like having control over the changes that occur in the software, problems
sometimes occur because Local Telco does not thoroughly review TelSoft’s specification of requirements.
As a result, Local Telco is not always pleased with the delivered software.

Theoretical Interpretations

Given this background about the relationship between TelSoft and three of its primary customers, we now
apply the repeat-ability and response-ability theories and compare and contrast the types of problems and
recommendations each perspective brings to the data. For each theory, we revisit the data collected during
assessment of RE practices at TelSoft, we interpret these data through the lens of each theory, and we
present the result according to the five assumptions: nature of requirements, requirements capture,
requirements usage, change management, and improvement approach.

Repeat-ability Perspective

Nature of Requirements

The repeat-ability theory assumes that requirements be explicated as texts in documents. At TelSoft, the
existing requirements documents did not meet stakeholder needs. The software engineers commented that
some sections of their technical requirements documents were no longer applicable. They also desired more
detailed requirements documentation when working with Local Telco rather than relying on high-level
documentation. They found the templates for the functional specification used for Far Telco to be
sufficient, but there was great variation in the quality of this document depending on author:

“[Sometimes] we have somebody who’s writing the functional spec who doesn’t know
the product and doesn’t know what kind of limitations we have because it is an existing
product. When that knowledge isn’t there, it can make a product or a project more
expensive, more complicated. There is a point also where they want to be able to do
things that aren’t possible within the structure.” (TelSoft software engineer)

The Systems Analysts that write requirements documentation were also concerned that they had sufficient
application knowledge:

“I have no access to the software for which I am writing requirements. Some I have never
seen run. … A major need is to have machine(s) set up and maintained … so I can
confirm current data structures and GUI. This should be dual use: for trouble report
resolution, testing, documentation use; as well as for requirements. It should connect to

Alternative Approaches to Information Systems Development

844 Twenty-Seventh International Conference on Information Systems, Milwaukee 2006

realistic, preferably client provided, data sets which truly show their current models.”
(TelSoft systems analyst)

Requirements Capture

The repeat-ability theory suggests formal interactions when capturing and approving requirements.
Unfortunately, TelSoft’s Sales and Marketing representatives often capture client requirements in
unsystematic, non-documented ways as the basis for later interaction with Software Development and Map
Services. This leads to many interpretations and translations of customer requirements, each introducing
potential new sources of error.

Requirements inspections can be a useful mechanism for clarifying ambiguous statements, documenting
questions, and resolving issues. At TelSoft, review of requirements is often performed in ad-hoc fashion
where reviewers are unprepared and the critique is not systematically fed back into the requirements
process. The project manager for Local Telco expressed pressure to rush the requirements review and “hit
the milestone dates regardless” because even a slip of a few days can upset the client. Several stakeholders
noted that review meetings were ineffective when key experts had not read the proposed requirements
documentation before the meeting. This can occur because of insufficient review time and overloaded
human resources:

“If you have somebody who is working on three projects and has a deadline at the end of
the week and somebody says ‘I need you to review this functional spec in the next 48
hours’, it doesn’t happen. It just kind of falls through the cracks.” (TelSoft software
engineer)

For some enhancements, requirements documentation is electronically distributed rather than discussed
through face-to-face meetings. The quality of the comments received varies considerably indicating that
this is not the most effective method for surfacing issues and building common understanding about
requirements.

Requirements Usage

The repeat-ability theory stresses the value of establishing a requirements baseline before beginning
development activities. Once approved by the customer, this requirements baseline serves as a contract
between the customer and TelSoft regarding the capabilities of the delivered software:

“If the software is delivered and we missed a requirement the client can say ‘Excuse me’
(raps desk as if to point to a specific missed requirement). On the flip side, if client says
‘Oh, but it doesn’t do this.’ We can say, ‘Where does it say that?’ ” (TelSoft development
manager)

Despite knowing the importance of an approved baseline, requirements sign-off at TelSoft happens
inconsistently across customers and informally via email and phone conversations. In the interaction
between Map Services and Software Development, obtaining of sign-off is not enforced. This causes
problems when there are disagreements about delivered functionality.

The repeat-ability theory states that requirements should be stored with traceability to the source code.
TelSoft experienced problems with both the repository chosen to store requirements and the ease of
traceability. One software engineer expressed frustration with the current database used for storing
requirements documentation:

“The problem with these technical documents is that once the project is done, nobody
sees them again. They get lost in this huge Notes database so that all that time you spent
on it … is wasted. The document has no value anymore. If a bug gets called up on
something, nobody knows where to go look for that documentation. If you do, it can take
an inordinate amount of time to find it.” (TelSoft software engineer)

Because the documents are difficult to find and not always kept up-to-date, software engineers rely on the
code as the most credible source of requirements. The source code and requirements documentation can

 Napier et al./ Negotiating Response-ability and Repeat-ability in Requirements Engineering

 Twenty-Seventh International Conference on Information Systems, Milwaukee 2006 845

also get out of sync during the design process. TelSoft’s certification testing frequently detects
discrepancies between the software and the requirements documentation. These discrepancies reflect design
decisions that were discussed with the customer but not appropriately documented.

Change Management

In the repeat-ability theory, requirements changes are exceptions to the basic course of development and
must be actively managed. Each requirements change must be documented with reference to the
requirements baseline and communicated to all relevant stakeholders. TelSoft experienced problems in each
of these areas.

Customer-initiated requirements changes are inconsistently documented. The project managers for external
customers document changes on forms specified by the customer. These forms contain sufficient detail for
TelSoft employees. With Map Services, change requests are usually described via phone call, face-to-face
visit, or brief email. These discussions are then documented using a defect report.

Changes are not systematically communicated to key stakeholders, especially the quality assurance group.
Rather than being told when changes occur, quality assurance analysts have to proactively check the
requirements database for updates. This causes a delay in the quality assurance analysts’ re-work of the
associated test cases.

Improvement Approach

Within the repeat-ability paradigm, improvement focuses on reducing process variance by following best
practices. Accordingly, processes should be defined; deviations from defined process should be minimized;
and a mechanism for refining defined processes should be established.

TelSoft’s current processes and templates do not explicitly support the management of requirements
change. Also, the documented legacy processes are quite different from actual RE practices. Instead of
repeating the same process over and over, TelSoft’s practices for documenting and changing requirements
vary across customers. A common theme is that TelSoft allows external customers to dictate their internal
processes. TelSoft resorts to ad-hoc practices when internal customers do not make those demands.

Finally, TelSoft’s RE practices are not assessed and continuously improved. For instance, there is no
systematic process for tracking errors in requirements and software related to Map Services. While
software deficiencies are known, they are not tracked, root causes are not determined, and appropriate
interventions are not enacted. There is also no mechanism for ongoing process management; therefore,
documented RE processes are not evaluated with an eye toward innovation.

Response-ability Perspective

Nature of Requirements

In the response-ability theory, requirements exist as shared understandings between customers and software
development. Since requirements are embedded in social relationships, tacit knowledge is lost when people
with customer related capabilities and knowledge leave. At TelSoft, high employee turnover began to
impact RE practices as senior-level employees voluntarily quit to pursue other opportunities. In fact, in the
year since we completed our diagnosis, 7 of the 15 TelSoft employees interviewed are no longer with the
company.

Requirements Capture

In the response-ability theory, requirements capture occurs informally and is seen as an ongoing
communication with customers. Because requirements are discovered through negotiation, close, informal
interactions with customers are essential during requirements capture. Here, we focus on specific problems
with interactions during requirements discovery.

Alternative Approaches to Information Systems Development

846 Twenty-Seventh International Conference on Information Systems, Milwaukee 2006

In the relationship between TelSoft and Far Telco, there are insufficient information technology tools in
place to support requirements negotiation. For example, although the companies communicate frequently
via conference calls, TelSoft does not have access to software that would support file sharing during these
calls. Therefore, TelSoft is unable to see files created during the meeting that other participants were
discussing. Also, Far Telco maintains its own database for storing high-level business requirements;
however, TelSoft is not provided access to the most-up-to-date version of this database. Instead, Far Telco
must manually push the requirements to TelSoft. These problems provide obstacles to requirements being
effectively shared between TelSoft and Far Telco.

In the relationship between Local Telco and TelSoft, other communications obstacles are more salient.
Local Telco does not trust TelSoft to deal with them fairly. Local Telco described TelSoft as “throwing code
over the wall” without performing adequate testing. Because Local Telco doubted TelSoft’s integrity during
requirements capture, one manager requested that TelSoft “roll back the covers” on processes, procedures,
and tools.

TelSoft’s weakest relationship is with the users who actually work with their software products daily – even
those that literally work around the corner from Software Development. TelSoft does not become involved
with end users to identify and anticipate changes and to support training. This distant relationship means
that TelSoft misses opportunities to understand customer needs for their products. For example, a manager
at Far Telco described trying to manage and prioritize a list of 60 enhancement requests from the end user.
She would appreciate more assistance from TelSoft in screening and prioritizing these potential
requirements.

Requirements Usage

In the response-ability theory, requirements development is not done upfront and documented in
requirements specifications. Requirements emerge throughout the development process. In this theory,
spending too much time documenting requirements can be problematic:

“It’s always struck me that as much time as we spend writing these extremely detailed
technical specifications, nailing down exactly how we’re going to do every single step of
the implementation, that we’re basically stealing time from ourselves of actually getting
the job done right in terms of testing it – integration testing and so on and so forth.”
(TelSoft software engineer)

Key stakeholders also disagree about the value of other requirements documents. The Sales and Map
Services groups use a specialized requirements template called the Source-to-Target Matrix for capturing
requirements. The intention is to create this document during the bid process to price the project. However,
most clients spent little time specifying requirements upfront, and they tend to primarily present their best
case scenario and clean data sets. This leads to inaccurate estimates and pricing when the exceptions are
encountered and dirty data sets are provided.

Change Management

In the response-ability theory, requirements changes are expected as a result of organizational dynamics
and close collaboration and interaction between customers and developers. Requirements changes are
therefore embraced as an important contribution to help develop satisfactory software solutions.

There is, however, a lot of formality built into the requirements change process, in particular in relation to
Far Telco – in large part because Far Telco is a huge company having to integrate applications from several
vendors. This level of formality causes problems for some Far Telco managers that would prefer to get
changes quickly done without having to do the associated paperwork.

Improvement Approach

Within the response-ability paradigm, improvement focuses on increasing customer satisfaction through
collaboration. TelSoft’s external customers feel that there is room for improving the amount of

 Napier et al./ Negotiating Response-ability and Repeat-ability in Requirements Engineering

 Twenty-Seventh International Conference on Information Systems, Milwaukee 2006 847

collaboration and the strength of the overall relationship. Local Telco representatives are the most
dissatisfied with this relationship:

“We don’t have a partner relationship. A lot of times we kind of feel like there’s
animosity from them toward us. I don’t know how big of a customer we are in their eyes,
but I don’t feel treated like a valued customer.”(Local Telco manager)

Both customers desire more face-to-face time with TelSoft. Far Telco compares TelSoft with other vendors
and notes that TelSoft lacks an onsite presence. They do not visit monthly, talk about future plans for the
software, or provide ongoing training. This leaves TelSoft at a disadvantage when competitors use flashy
sales presentations to impress upper management. There are even indications that Far Telco would be
willing to fund some reasonable amount of travel to the site to have face-to-face interaction during RE.

Alternative Approaches to Information Systems Development

848 Twenty-Seventh International Conference on Information Systems, Milwaukee 2006

Table 4: Problems and Recommendations
(#’s refer to assumptions in Table 1)

 Repeat-ability Response-ability
Problems • Unsystematic early capture of

requirements (1, 2)
• Requirements documentation does not

meet stakeholder needs (1, 3)
• Requirements baselines not established

and managed (2,3,4)
• Requirements not systematically

reviewed (3)
• Requirements documentation not

systematically updated (3, 4)
• RE practices vary across customers (5)
• RE process incompletely defined and

different from practices (5)
• RE practices not assessed and

continuously improved (5)

• High dependency on people with customer
related capabilities and knowledge (1, 2)

• Customer sites are visited infrequently (1,
2)

• Requirements and changes not effectively
shared amongst stakeholders (1, 2, 3, 4)

• Requirements documentation hinders
interaction during development (2, 3, 4)

• Lack of feedback from customers and
quality assurance on software solutions (3,
5)

• Lack of customer involvement in test (3,
5)

• No systematic change management (4)
• Lack of customer relationship

management (5)
Recommendations • Expand RE process to include

systematic early capture of
requirements

• Revise requirements documentation
standards so they meet the needs of all
relevant stakeholders

• Adopt two-phase funding to enforce
establishment of requirements baseline

• Develop systematic process for change
management with traceability between
requirements and source code

• Enhance discipline of the requirements
review process

• Standardize, document, and enforce the
RE process

• Adopt continuous improvement
mindset and establish systematic
process management disciplines

• Increase availability and competence of
people with customer related capabilities
and knowledge

• Establish activities to increase presence at
customer sites

• Establish ongoing communication of
requirements amongst relevant
stakeholders and make up-to-date
documentation readily available

• Document high-level requirements and
establish systematic change management

• Express detailed requirements directly as
software solutions

• Ensure systematic feedback from
customers and quality assurance on
interim software solutions

• Improve test to reflect customer
environments

• Establish a customer relationship
management program

 Napier et al./ Negotiating Response-ability and Repeat-ability in Requirements Engineering

 Twenty-Seventh International Conference on Information Systems, Milwaukee 2006 849

Recommendations for Action

The results of interpreting RE practices at TelSoft based on the two theories are summarized in Table 4. The
table shows that both theories led to relevant, but quite different inventories of problems. The suggested
recommendations for action are also quite different, though both inventories offer recommendations that
potentially could improve RE practices. Because the theories provide potentially relevant, but different
insights into RE at TelSoft, the question remains how to apply these recommendations to managerial
decisions for improving RE practices at TelSoft. To explore this question, we consider how the actual
assessment at TelSoft informed managerial decision-making on improving RE practices.

The comprehensive assessment report was created by the PST and presented to the SC for approval. The
problem areas from the RE assessment were categorized into seven improvement areas: software vision
management, project portfolio management, software configuration management, customer relations
management, requirements management, software quality assurance, and end-user interaction. The PST
found that TelSoft needed to better sense customer needs as well as technological and market opportunities.
TelSoft also needed to be more proactive in its interactions with customers: sharing information about its
software development procedures to increase client confidence in the software product. Finally, TelSoft
needed to adopt a more disciplined approach to core activities related to RE. The PST hence recommended
to the SC that TelSoft adopt an overall improvement strategy to become a more adaptive enterprise by
increasing its sense-and-respond capability (Haeckel, 1995; Haeckel, 1999). The improvement strategy
should be implemented through a number of focused and dedicated projects with assigned resources, clear
success criteria, and specified deliverables. The projects should be established, monitored, and coordinated
through the PST. The SC approved the proposed improvement strategy, and a kick-off seminar was
organized in which the RE assessment results and plans for improvement were presented to all employees
in Software Development.

Management at TelSoft hence decided to adopt an improvement strategy that draws upon both theories.
First, the strategy has a clear focus on enhanced interaction and collaboration between Software
Development and internal and external customers; this is indicated by several improvement areas: customer
relations management, requirements management, software quality assurance, and end-user interaction.
TelSoft appreciated the importance of enhancing the relationships between software developers and internal
and external customers, and on involving customers more actively in collaborative activities throughout the
development process. Second, the improvement strategy has a clear emphasis on increasing discipline in
key parts of the development process: software configuration management, requirements management, and
quality assurance. In each of these areas, management at TelSoft saw a need to adopt more consistent
processes and related tools. Finally, the strategy also focused on improving RE practices beyond the project
level. All projects a TelSoft addressed issues related to the two primary software products: Map Displayer
and Engineering Support Tool. Therefore, management found it important to improve coordination and
consistency across projects.

In summary, the response-ability and the repeat-ability theory both provide important insights into
problems and possible improvements of RE practices at TelSoft, and management’s decision on a strategy
for improvement draws upon both theories. The strategy is, however, not a simple merger of the two
theories, but rather a negotiated compromise of the two theories for improvement. While TelSoft decided to
improve the discipline in key RE activities, they had no desire to adopt statistical control and elaborate
software metrics programs to help reduce variation across practices. Similarly, while TelSoft decided to
improve the social relationships between developers and internal and external customers, they also insisted
that it was important to have clear contractual arrangements with customers, to baseline requirements, and
to systematically manage change request and the dynamics of their software configurations. Haeckel’s
approach to the adaptive enterprise (1995; 1999) was seen as an overall organizational approach that could
help negotiate in detail such a compromise between the two theories.

Alternative Approaches to Information Systems Development

850 Twenty-Seventh International Conference on Information Systems, Milwaukee 2006

Discussion

This research contributes to our knowledge of plan-driven versus agile approaches to software development
in general and RE in particular by explicating the repeat-ability and response-ability theories and applying
them to practices at TelSoft. Based on insights from the case, we argue that a negotiated compromise
between the two theories provides the most useful approach to manage RE improvements. In this section,
we elaborate on this contribution by relating the findings from TelSoft to the research questions and by
discussing implications for research and practice.

Review of Research Questions

Our first research question focused on theory and asked about the key assumptions distinguishing repeat-
ability and response-ability theories of RE. Drawing upon the literature on software process improvement
and the literature on agile software development, we suggest that these theories differ based upon their
assumptions about: nature of requirements, requirements capture, requirements usage, change management,
and improvement approach. These findings are summarized in Table 1. There is an ongoing debate (e.g.
Boehm, 2002; Boehm et al., 2004; Paulk, 2001) over the relationship between the two most influential
contemporary paradigms for how to improve software practices, i.e. software process improvement and
agile software development, and most issues remains unresolved. This is confusing and frustrating for
managers who want to improve practices. The explication of the repeat-ability and response-ability theories
provides clarification on main differences between the two paradigms, and it shows in particular how they
apply to the key discipline of RE.

Our second research question focused on assessment and asked about differences in problem identification
and resulting recommendation when diagnosing RE practices based on the two theories. Table 4
summarizes the findings from the two interpretations of RE practices at TelSoft. The two theories led to
quite different inventories of problems and, as a consequence, also to quite different recommendations for
improvement. In fact, there is little overlap between the two sets of findings. At the same time, both
inventories of problems made sense to managers at TelSoft, and they were found to represent relevant and
important issues related to RE practices. This application of the two theories suggests that they represent
different and relevant perspectives on RE practices.

Our final research question focused on improvement and compared the resulting recommendations from
applying the response-ability versus repeat-ability theories with the decisions made by management at
TelSoft. Interestingly, management’s chosen improvement strategy drew on insights from both theoretical
perspectives and was tailored to the particular needs of TelSoft. When looking from Software Development
towards internal and external customers, it was considered essential for the firm to maintain a highly
responsive and flexible approach to deal proactively with both planned and emergent needs. The customers
appreciated these practices, they saw them as expressions of a real interest in providing a high level of
customer service, and they would like to enhance, rather than reduce these highly adaptive behaviors.
Similarly, when looking at how developers, managers, and analysts worked within Software Development,
it was quite clear, that practices were largely ad-hoc, established processes were not followed, and priorities
were made and adjusted in-flight as a result of reactive responses to emerging demands. While there had
been prior attempts to systematically follow SW-CMM (Paulk et al., 1993) to improve practices at TelSoft,
these initiatives had failed. Also, while one project had experimented with agile software development,
there were no systematic attempts or plans to adopt agile approaches. Instead, management decided to
implement an improvement strategy which represented a negotiated compromise between the response-
ability and repeat-ability theories, drawing upon the strengths of each without committing to extreme
interpretations of either theory. This comparison between recommendations based on the two theories to
the actual improvement strategy adopted at TelSoft suggests that the two theories represent complementary,
rather than alternative perspectives on RE practices.

These responses to the three research questions are based on a particular approach to investigate RE
practices at TelSoft with both strengths and limitations. Concerning reliability (Miles et al., 1994), we

 Napier et al./ Negotiating Response-ability and Repeat-ability in Requirements Engineering

 Twenty-Seventh International Conference on Information Systems, Milwaukee 2006 851

structured the investigation around three specific research questions, explicated our roles within TelSoft,
explicated our theoretical constructs, used multiple sources of evidence, and used the fundamental principle
of the hermeneutic circle (Klein et al., 1999) to converge towards a satisfactory interpretation. The
reliability could, however, have been improved by instituting further checks of the coding scheme and its
application. Concerning internal validity (Miles et al., 1994), we provided thick descriptions of the case and
data, we linked data directly to the two presented theories and to each of the assumptions that characterize
them, and we adopted systematic coding to relate the two theories to our data. The internal validity could
be further improved by having key actors at TelSoft confirm the presentation and by considering rival
explanations for how plan-driven and agile mindsets apply to the data from TelSoft. Finally, concerning
action orientation (Miles et al., 1994), we present findings that are accessible to practitioners and
researchers, the findings have proven useful to actors at TelSoft, and we have made the findings more
useful for actors outside TelSoft by aggregating key viewpoints into two complementary theories of RE.
The action orientation could be further improved by developing specific knowledge on how managers can
negotiate an appropriate balance between repeat-ability and response-ability in other organizations.

Implications for Practice and Research

We began by considering a manager faced with problematic RE practices: what perspectives should this
manager apply to assess current practices and make recommendations for improvement? Our research
shows that applying either a repeat-ability or response-ability theory limits what a manager can know about
RE practices. The two theories speak, to some extent, to different goals. For example, the response-ability
theory emphasizes customer satisfaction whereas the repeat-ability focuses on reducing process variance. In
most practical situations, neither of these goals can be ignored, and insights derived from the theories will
therefore likely clash (e.g. role of documentation in RE practices) when managers prioritize how to actually
improve RE practices. To get a more comprehensive understanding of RE situations in software firms,
managers are therefore advised to apply both theories and negotiate how to best combine them to suit the
particular context in which they operate.

Our research lends further support to efforts that seek to combine plan-driven and agile approaches (Boehm
et al., 2004; Salo et al., 2005). The two theories explicate a common ground on which specific approaches
can be evaluated, compared, and possibly combined with other approaches. Most attempts to compare and
contrast the two paradigms do not apply theory as a basis for comparison or engage in theory-development
to help us understand fundamental differences and identify new opportunities. While the literature on plan-
driven development and process-focused improvement is clearly rooted in broader areas like Total Quality
Management and statistical control, it is interesting to note that the agile software development literature
does not explicitly draw upon theoretical insights on agility. The Agile Manifesto and related methods are
largely an expression of a software-specific grassroots movement that resists traditional approaches to
software development and emphasizes alternative values like: 1) individuals and interactions over
processes and tools; 2) working software over comprehensive documentation; 3) customer collaboration
over contract negotiation; and 4) responding to change over following a plan (Agile Alliance, 2001).
Hence, we suggest that future research on combining plan-driven and agile mindsets should apply
theoretical lenses like repeat-ability and response-ability to investigate alternative approaches to business
software development.

Such future research should build on the extensive literature on organizational agility (e.g. Dove, 2001;
Gunneson, 1997; Haeckel, 1995; Haeckel, 1999) which is currently ignored by the software development
discipline. Organizational agility requires “the ability to manage and apply knowledge effectively, so that
an organization has the potential to thrive in a continuously changing and unpredictable business
environment” (Dove, 2001, p. 9). Gunneson (1997) argues that agility is concerned with economies of
scope, rather than economies of scale. The idea is to serve ever-smaller niche markets and individual
customers without the high cost traditionally associated with customization. While the ability to respond to
events in the environment in this way is the essential and distinguishing feature of the agile organization it
is important to note that issues related to effective planning and appropriate process design are also
emphasized (Dove, 2001; Haeckel, 1995; Haeckel, 1999); lean organizations are usually associated with
the efficient use of resources, whereas agile organizations are related to effectively responding to a

Alternative Approaches to Information Systems Development

852 Twenty-Seventh International Conference on Information Systems, Milwaukee 2006

changing environment (e.g. through implementation of a response-ability theory) while at the same time
being productive (e.g. through implementation of a repeat-ability theory).

As a case in point, the improvement of RE at TelSoft builds upon the principles of Haeckel’s adaptive
enterprise design (1995; 1999). The intention is that such an approach will help create macro-level
improvements within the organization as well as micro-level improvements within individual projects that
can help TelSoft become more productive and respond more effectively to customers. Whether these
attempts to improve RE practices will succeed remains to be seen. But they do set the stage for future
research efforts that can help us develop alternative approaches to business software development. When
market and technology conditions are relatively stable, one would expect an increased emphasis on repeat-
ability on the macro-level and as these conditions change, one would expect increased emphasis on
response-ability. Similarly, on the micro-level one would expect that the preference between the two
theories would depend on the complexity and uncertainty of the development task at hand. The findings
from this study could in this way guide future research efforts to investigate under which macro- and
micro-level conditions different combinations of repeat-ability and response-ability would apply to
development of business software.

Acknowledgements

This research was funded in part by TelSoft, Research Alliance, and a GAANN grant from the U.S.
Department of Education. We thank the participants at TelSoft for their enthusiasm and openness during
this ongoing industry-academia collaboration.

References

Agile Alliance "Manifesto for Agile Software Development", http://www.agilemanifesto.org/, 2001.
Anderson, D. "Stretching Agile to Fit CMMI Level 3 - the Story of Creating MSF for CMMI/Spl

Reg/Process Improvement at Microsoft Corporation", in Agile Conference, July 24-29, 2005, pp. 193-
201.

Avison, D., Lau, F., Myers, M., and Nielsen, P.A. "Action Research", Communications of the ACM, (42:
1), January 1999, pp. 94-97.

Baker, S. "Formalizing Agility: An Agile Organization's Journey toward CMMI Accreditation", in Agile
Conference, July 24-29, 2005, pp. 185-192.

Baskerville, R. "Diversity in Information Systems Action Research Methods", European Journal of
Information Systems, (7: 2), June 1998, pp. 90-107.

Beck, K. Extreme Programming Explained: Embrace Change, Addison-Wesley, Reading, MA, 1999.
Beecham, S., Hall, T., Britton, C., Cottee, M., and Rainer, A. "Using an Expert Panel to Validate a

Requirement Process Improvement Model", The Journal of Systems and Software, (76: 3), June 2005a,
pp. 251.

Beecham, S., Hall, T., and Rainer, A. "Defining a Requirements Process Improvement Model", Software
Quality Journal, (13: 3), September 2005b, pp. 247-279.

Boehm, B.W. "The Economics of Software Maintenance", in Proceedings of the Software Maintenance
Workshop, Washington, DC, 1983, pp. 9-37.

Boehm, B.W. "Get Ready for Agile Methods, with Care", Computer, (35: 1), January 2002, pp. 64-69.
Boehm, B.W., and Turner, R. Balancing Agility and Discipline: A Guide for the Perplexed, Addison-

Wesley, Boston, 2004.
CMMI Product Team "CMMI for Systems Engineering/Software Engineering/Integrated Product and

Process Development/Supplier Sourcing", CMU/SEI-2002-TR-011, Software Engineering Institute,
2002.

Cockburn, A. Writing Effective Use Cases, Addison-Wesley, Reading, MA, 2000.
Dove, R. Response Ability: The Language, Structure, and Culture of the Agile Enterprise, Wiley, New

York, 2001.
Galliers, R. "Choosing Appropriate Information Systems Research Approaches: A Revised Taxonomy", in

Information Systems Research: Contemporary Approaches & Emergent Traditions, H. Nissen, H.
Klein and R. Hirschheim (Eds.), Elsevier, Amsterdam, The Netherlands, 1991.

 Napier et al./ Negotiating Response-ability and Repeat-ability in Requirements Engineering

 Twenty-Seventh International Conference on Information Systems, Milwaukee 2006 853

Gunneson, A.O. Transitioning to Agility -- Creating the 21st Century Enterprise, Addison-Wesley,
Reading, MA, 1997.

Haeckel, S. "Adaptive Enterprise Design: The Sense-and-Respond Model", Planning Review, (23: 3)1995,
pp. 6-13, 42.

Haeckel, S. Adaptive Enterprise: Creating and Leading Sense-and-Respond Organizations, Harvard
Business School Press, Boston, MA, 1999.

Highsmith, J. Adaptive Software Development: A Collaborative Approach to Managing Complex Systems,
Dorset House Publishing, New York, NY, 2000.

Highsmith, J., and Cockburn, A. "Agile Software Development: The Business of Innovation", Computer,
(34: 9), September 2001, pp. 120-127.

Humphrey, W.S. Managing the Software Process, Addison-Wesley, Boston, MA, 1989.
Iversen, J., Nielsen, P.A., and Norbjerg, J. "Problem Diagnosis in SPI", in Improving Software

Organizations: From Principles to Practice, L. Mathiassen, J. Pries-Heje and O. Ngwenyama (Eds.),
Addison-Wesley, New York, 2002.

Klein, H., and Myers, M. "A Set of Principles for Conducting and Evaluating Interpretive Field Studies in
Information Systems", MIS Quarterly, (23: 1), March 1999, pp. 67-94.

Kotonya, G., and Sommerville, I. Requirements Engineering Processes and Techniques, John Wiley &
Sons, 1998.

Kuvaja, P., and Bicego, A. "Bootstrap - a European Assessment Methodology", Software Quality Journal,
(3: 3), September 1994, pp. 117-127.

Langley, A. "Strategies for Theorizing from Process Data", Academy of Management Review, (24: 4),
October 1999, pp. 691-710.

Markus, M.L. "Power, Politics, and MIS Implementation", Communications of the ACM, (26: 6), June
1983, pp. 430-444.

Mason, J. Qualitative Researching, (2nd edition ed.), Sage, London, 2002.
Mathiassen, L. "Collaborative Practice Research", Information Technology & People, (15: 4)2002, pp. 321-

345.
McFeeley, B. "Ideal: A User's Guide for Software Process Improvement", CMU/SEI-96-HB-001, Software

Engineering Institute, Pittsburgh, PA, 1996.
McKay, J., and Marshall, P. "The Dual Imperatives of Action Research", Information Technology &

People, (14: 1)2001, pp. 46-59.
Miles, M.B., and Huberman, A.M. Qualitative Data Analysis: An Expanded Sourcebook, Sage

Publications, Thousand Oaks, 1994.
Orr, K. "Agile Requirements: Opportunity or Oxymoron?" IEEE Software, (21: 3), May-June 2004, pp. 71-

73.
Paulk, M. "Extreme Programming from a CMM Perspective", IEEE Software, (18: 6), November-

December 2001, pp. 19-26.
Paulk, M., Curtis, B., Chrissis, M.B., and Weber, C.V. "Capability Maturity Model for Software, Version

1.1", CMU/SEI-93-TR-24, Software Engineering Institute, Pittsburgh, PA, 1993.
Ramesh, B., Pries-Heje, J., and Baskerville, R. "Internet Software Engineering: A Different Class of

Processes", in Annals of Software Engineering, Kluwer Academic Publishers, 2002, pp. 169-195.
Rapoport, R. "Three Dilemmas in Action Research", Human Relations, (23: 6)1970, pp. 499-513.
Rout, T.P. "Spice: A Framework for Software Process Assessment", Software Process: Improvement and

Practice, (1: 1), August 1995, pp. 57-66.
Salo, O., and Abrahamsson, P. "Integrating Agile Software Development and Software Process

Improvement: A Longitudinal Case Study", in International Symposium on Empirical Software
Engineering, November 17, 2005, pp. 187-196.

Schmidt, R., Lyytinen, K., Keil, M., and Cule, P. "Identifying Software Project Risks: An International
Delphi Study", Journal of Management Information Systems, (17: 4)2001, pp. 5-36.

Sommerville, I., and Sawyer, P. Requirements Engineering: A Good Practice Guide, John Wiley & Sons,
New York, NY, 1997.

Susman, G., and Evered, R. "An Assessment of the Scientific Merits of Action Research", Administrative
Science Quarterly, (23: 4)1978, pp. 582-603.

Turk, D., France, R., and Rumpe, B. "Assumptions Underlying Agile Software-Development Processes",
Journal of Database Management, (16: 4), October-December 2005, pp. 62-87.

Alternative Approaches to Information Systems Development

854 Twenty-Seventh International Conference on Information Systems, Milwaukee 2006

	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 2006

	Negotiating Response-ability and Repeat-ability in Requirements Engineering
	Nannette Napier
	Lars Mathiassen
	Roy Johnson
	Recommended Citation

	Microsoft Word - ISDEV-01.doc

