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Abstract 

Individuals suffering from locked-in syndrome are completely paralyzed and unable to speak but 
otherwise cognitively intact.  Traditional assistive technology is ineffective for this population of 
users due to the physical nature of input devices.  Brain-computer and biometric interfaces offer 
users with severe motor disabilities a non-muscular input channel for communication and control, 
but require that users be able to harness their appropriate electrophysiological responses for 
effective use of the interface.  There is currently no formalized process for determining a user’s 
aptitude for control of various biometric interfaces without testing on an actual system. This study 
presents how basic information captured about users may be used to predict their control of a 
brain-computer interface that is based on electrical variations in the motor cortex region of the 
brain.  Based on data from 55 able-bodied users, we found that the interaction of age and daily 
average amount of hand-and-arm movement by individuals correlates to their ability in brain-
computer interface control.  This research may be expanded into a more robust model linking 
individual characteristics and control of various biometric interfaces. 

Keywords:  Brain-computer interface, biometric interface, assistive technology, mu rhythm, 
control, locked-in syndrome 

 

Introduction 

The most severe physical disability, locked-in syndrome, is complete paralysis coupled with the inability to 
speak.  Half a million people worldwide are considered locked-in, essentially prisoners in their own bodies 
(National Organization for Rare Disorders (NORD) 2000).  Paralysis and the inability to speak can be caused by 
a variety of conditions including diseases and injuries such as stroke, Amyotrophic Lateral Sclerosis (ALS), 
cerebral palsy, Parkinson’s disease, and head injury.  Even more people have severe motor disabilities that 
prevent the use of conventional assistive technology (AT) devices to aid communication and environmental 
control.  Augmentative communication and environmental control devices can significantly improve quality 
of life by facilitating conversations and providing access to television, radio, and comfort controls such as 
thermostats and light levels in the room.  Unfortunately, traditional input devices such as a mouse, 
keyboard, and switches require small, but consistent, muscle movements.   
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Developments in biometric interfaces, such as brain-computer interfaces (BCIs) and galvanic skin response 
(GSR) systems, provide non-muscular input and rekindle hope for restoring communication and environmental 
control for people with little or no muscle movement but who are otherwise cognitively intact.  For example, by 
using biometric interfaces, people suffering from locked-in syndrome have been able to accomplish tasks ranging 
from producing reliable yes/no responses (Moore et al. 2004a; Wolpaw et al. 2002) to navigating the Internet 
(Moore et al. 2004b).  The effectiveness of biometric interfaces is, however, limited by the ability of users to 
provide distinguishable changes in their electrophysiological input in conjunction with the provided control 
interface.  Various factors affect this ability and range from the person’s current fatigue level to 
physiological makeup.   

Currently, there is a disparity in goals between researchers and assistive technology practitioners 
investigating biometric interfaces; researchers focus more on technology characteristics, and practitioners 
focus more on user characteristics, resulting in available biometric interface technologies often being 
matched to users through trial-and-error.  Unfortunately this approach can waste valuable time and 
resources, as users sometimes have diminishing abilities or suffer from terminal illnesses.  There have been 
efforts to characterize the degree of controllability of a biometric interface by an individual (Randolph et al. 
2005a; Randolph et al. 2005b), but there are no distinct ties between controllability and an individual’s 
characteristics. 

The objective of this research is to investigate whether an individual’s characteristics may be used to 
predict a person’s ability to control a particular biometric interface.  To accomplish this objective, 
individuals were surveyed for measures of their basic physiological characteristics, such as age and amount 
of physical activity.  These characteristics were then correlated to a measure for strength of control of an 
electroencephalogram (EEG)-based BCI.  The following sections provide further background on BCIs and 
describe how individual characteristics may be considered for a model to predict control. 

Brain-Computer Interfaces 

Research in the field of BCIs spans several disciplines including computer science, electrical engineering, 
cognitive psychology, and neuroscience, all working to discover the most appropriate alternatives for users 
with severe physical disabilities.  There are a number of different types of BCIs available that vary 
according to the type of electrophysiological signal recorded, method used for recording, and cognitive 
tasks employed.  Most applications target disabled users who are cognitively intact but have such severely 
limited mobility that system input through physical movement (e.g. using a keyboard, mouse, joystick, 
switches, or eye-gaze devices) is infeasible.  Brain-computer interfaces, therefore, provide non-traditional 
assistance for controlling computers using neural input.  They provide users with capabilities for 
communication and control of environmental, navigational, and prosthetic devices.  As a result, people who 
might not otherwise have an outlet can interact with their friends and family members and take more 
proactive roles in their lives.  Thus, severely disabled users who are able to effectively utilize BCI 
technologies experience a significant improvement in their quality of life (Moore 2003).  Figure 1 
illustrates the continuum of input devices that may be employed when taking the user’s physical abilities 
into consideration.   
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Figure 1. Modified Continuum of Human Physical Abilities (Moore et al. 2005) 

 

Mu-Based BCIs 

In addition to techniques such as magnetoencephalography (MEG), positron emission tomography (PET), 
and functional magnetic resonance imaging (fMRI), there are various types of electrical brain signals 
recorded by EEGs that can serve as the input to BCI systems.  One such brain signal, the mu rhythm, is 
based on continuous electrical variations in the motor cortex region of the brain according to real and 
imagined movement.  Other signals include slow cortical potentials, P300 potentials, and beta rhythms.  
When properly filtered and translated, these signals are output as machine-readable commands to interface 
with an application or control a device.  For example, these signals can be used to move a cursor on the 
screen and make selections.  Mu-based BCIs can take advantage of the difference in signal properties 
between idle and active imagery within the motor cortex region of the brain to produce a control signal.  
The proportional difference in signal properties is measured by an R-squared value and indicates the 
control signal strength or how well the person has control over the particular brain signal (Wolpaw et al. 
1994; Wolpaw et al. 1991).  The Wadsworth Center in Albany, New York (Wolpaw et al. 2000) has 
worked extensively with mu rhythms for BCI control, as well as the Georgia State University (GSU) 
BrainLab (Moore 2003) and the Pfurtscheller team in Graz, Austria (Pfurtscheller et al. 2000).   

Since the mu rhythm is associated with movement, we can understand the ties found between the strength 
of the mu rhythm and a person’s physical ability (Tran et al. 2004).  However, no one has devised a process 
to determine users’ potential for mu-based BCI control according to their varying levels of physical 
activity.  In this case, we could use the R-squared value as a measure of control by an individual with a mu-
based BCI. 

Research Method 

This exploratory study was conducted post-hoc based on data obtained from screening individuals for 
training on a mu-based brain-computer interface system.  The screening took place in a university lab 
setting and was conducted by a team of trained researchers. 

Subjects 

A total of 72 non-trained, able-bodied people underwent screening to begin training on a mu-based BCI 
system and completed a related initial questionnaire; however, only 55 of these people properly completed 
the questionnaire for use in analysis.  Seventeen of the 72 questionnaires had missing data or contained 
answer types that were incompatible with the question being asked or difficult to interpret post-hoc.  For 
example, the question may have asked “how much time per day do you spend…” and the subject may have 
answered “all day” instead of providing a number value.  The average age was 23 but ranged from 17 to 52, 
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and there were 19 males and 36 females involved.  Subjects were recruited via word-of-mouth and through 
university psychology classes.  They were compensated with class credit or payment for their time.  Able-
bodied subjects have been used in similar studies as an indication of ability by individuals with physical 
disabilities, such as those with locked-in syndrome (Wolpaw et al. 1994). 

Experimental Procedure 

All subjects began their screening session by answering a paper-based questionnaire, which included 
demographic information and information related to physical activity.  Then, all subjects underwent a 
procedure to assess which areas of their brains were most active in response to requested imagery and 
actual movement of hands and feet.  Electrical recordings from 64 channels of scalp electrodes were 
analyzed offline to determine the strength and position of the mu signal measured by an R-squared value 
and head mapping.  These values were then used to calibrate the system to best detect the related mu signal 
for use in subsequent training with a mu-based BCI.   

The screening procedure lasted 35 minutes and consisted of 12, two-minute data runs separated by one-
minute breaks.  Each run consisted of 15, four-second trials with four-second intertrial intervals.  During 
the trials, a vertical bar was presented on the left or right edge of the screen or a horizontal bar was 
presented on the top or bottom of the screen and the screen was blank during the intertrial intervals.  When 
a vertical bar was presented, subjects were asked to repeatedly open and close the hand on the same side as 
the bar or imagine doing so.  When a horizontal bar was presented, subjects were asked to repeatedly open 
and close both of their hands if the bar was on the top of the screen and tap their feet if the bar was on the 
bottom of the screen or imagine doing so.  During the intertrial intervals, subjects were asked to do neither 
and remain relaxed and at rest.   

Subject performance was measured according to the difference between the distribution of mu rhythm 
amplitudes when the subject was attempting a trial versus when they were at rest.  The R-squared value was 
calculated as the proportion of total variance due to the difference between states.  The screening 
procedures mirrored those used by the Wadsworth Center (McFarland et al. 2000; Wolpaw et al. 1991). 

Measures 

The researchers administered the questionnaire to subjects at the beginning of the screening session.  In our 
study, we examined four quantitative variables resulting from questions that concerned the subject’s age, 
time spent on typing per day, time spent on activities requiring hand-and-arm movement per day, and time 
spent on activities requiring most of the body per day for each subject.  The difference interpreted between 
the three degrees of movement (i.e., typing, hand-and-arm, and full-body) is that typing is considered to be 
fine movement of the fingers, and this is contrasted with playing computer or video games or a musical 
instrument, which are considered to include larger movements of the hand and arm but still less movement 
than playing a sport that requires most of the body.  Using multiple linear regression, a subject’s 
quantitative answers were then correlated with his or her R-squared value for control signal strength 
resulting from the subsequent screening process.  The R-squared value served as the dependent variable.  
Subjects with an R-squared value greater than 0.2 were then asked to enroll in training. 

Data Analysis 

The multiple linear regression technique is widely used for predicting a dependent or response variable 
based on a number of independent variables or covariates and provides an objective means for assessing 
this predictive power (Hair et al. 1998).  In this study, we apply multiple linear regression to explore the 
predictive nature of an individual’s characteristics on control signal strength.  Our proposed regression 
models take the following general form.  If y is the response variable to covariates x1, x2, …, xk, then the 
multiple linear regression model for y depending on the given k covariates is defined as: 

y = β0+β1x1+β2x2+……+βkxk, 
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where any xi could be represented as xi = xm× xn, constrained to 1≤ i≤ k and 1≤ m≤ k, 1≤ n ≤k, and in that 
case xi is recognized as the interaction covariate between xm and xn. 

In the matrix notation above model could be written as,  y = X β   

To check if each regression coefficient has significant impact on the response y or not, we have to first test 
each coefficient, βj, where j=1,2,...,k, within the model, in order to determine if that individual parameter 
should be dropped from the model.  We do this according to the following tests. 

Hypothesis Tests 

    H0 :  βj = 0   βj can be dropped from the model 

    Ha :  βj ≠ 0   βj cannot be dropped from the model with a specific level of significance 

Testing Each Coefficient 

 We have a test statistic as:  tobserved = 
)ˆ(

ˆ

j

j

se β

β
 

where jβ̂  is the estimated value of the coefficient, βj, and se ( jβ̂ ) is the standard error for  jβ̂ .  Standard 
error is the estimated standard deviation of the statistic from the sample data. The standard error is 
calculated as follows, 

    se ( jβ̂ ) = √(MSRes × Cjj )   

where  MSRes  = Mean Square Residual = (y’y - β̂ X’y) / degrees of freedom  

and Cjj is the diagonal element of (X’X)-1 corresponding to jβ̂ . 

This test statistic tobserved follows a t-distribution with degrees of freedom given by: df = n-k-1.  So, for α 
level of significance, the p-value for this test is found as: 

  p-value = 2×P(tdf  ≥ tobserved)  

The p-value for a test is the probability, computed assuming that the null hypotheses (H0) is true, that the 
test statistic would have a value as extreme or more extreme than that actually observed. The smaller the p-
value, the stronger the evidence against the null hypotheses provided by the data. If the p-value is so small 
that it stays outside the limit of the confidence level on the t-distribution curve, then it is considered to be 
small enough to take the decision.  Now, we would reject the null hypothesis, H0 (i.e., we would drop βj 
from the model), if p-value ≤ α, where α is considered to be the level of statistical significance (i.e., the 
confidence level is (1-α)% ) (Montgomery et al. 2001). 

Results 

We used SAS/STAT Software (SAS Institute 2006) to run four different linear regressions using the data 
from the initial questionnaire.  The following describes the four approaches taken and the results of each.   
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First Approach 

We defined our initial regression model containing the covariates only as: 

y = β0+β1x1+β2x2 +β3x3+β4x4  

where    y = Y_R2   R-squared value for control signal strength 

x1 = IQ_AGE  age 

 x2 = IQ_TYP   typing per day 

 x3 = IQ_MOV  hand-and-arm movement per day 

 x4 = IQ_ACT    full-body activity per day 

and    β0 = Intercept 

Considering the statistical significance level α = 0.05 (i.e., with 95% confidence), we found that only the p-
value for β1, the coefficient for age covariate, was less than 0.05 at a value of 0.0130.  Therefore, the 
coefficient for age was significant at a 5% significance level.  Figure 2 illustrates the positive relationship 
found between age and control signal strength.  Figure 2 indicates that while there is no exact linear 
relationship and the sample data does not have the same number of samples present in the different age 
groups, an overall pattern of a positive linear band is observable.  
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Figure 2. Strength of EEG-based BCI Control Signal Based on 
Age 

 

Second Approach 

We defined our next regression model containing the covariates and the interaction terms of the second 
degree between them as: 

y = β0+β1x1+β2x2 +β3x3+β4x4 + β5x1x2+β6x1x3 +β7x1x4 +β8x2x3 +β9x2x4+β10x3x4 
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where y, x1, x2, x3, x4, and β0 are the same as before and 

x1x2 = int_AGE_TYP  the interaction of age and typing 

 x1x3 =  int_AGE_MOV  the interaction of age and hand-and-arm movement 

 x1x4 =  int_AGE_ACT  the interaction of age and full-body activity 

 x2x3 =  int_TYP_MOV  the interaction of typing and hand-and-arm movement 

 x2x4 =  int_TYP_ACT  the interaction of typing and full-body activity 

 x3x4 =  int_MOV_ACT  the interaction of hand-and-arm movement and full-body activity 

Here, we found that the p-values less than 0.05 were for β0 at a value of 0.0355 and for β6, the coefficient 
for the interaction between age and hand-and-arm movement per day, at a value of 0.0075. Therefore, the 
intercept and the coefficient for the interaction between age and hand-and-arm movement per day were 
significant at a 5% level.  Furthermore, the coefficient for interaction between age and hand-and-arm 
movement per day was less than 0.01 and thus significant at the 1% level, as well. 

Third Approach 

We defined our next regression model containing the covariates and their second degree and third degree 
interaction terms as: 

y = β0+β1x1+β2x2 +β3x3+β4x4 + β5x1x2+β6x1x3 +β7x1x4 +β8x2x3 +β9x2x4+β10x3x4 
           + β11x1x2 x3 +β12x1x2x4 +β13x1x3x4+β14x2x3x4 

where all variables are the same as before and 

x1x2x3 = int_AGE_TYP_MOV  the interaction of age, typing, and hand-and-arm movement 

 x1x2x4 =  int_AGE_TYP_ACT  the interaction of age, typing, and full-body activity 

 x1x3x4 =  int_AGE_MOV_ACT  the interaction of age, hand-and-arm movement, and full-body 
activity 

 x2x3x4 =  int_TYP_MOV_ACT  the interaction of typing, hand-and-arm movement, and full-
body  

activity 

Considering the statistical significance level α = 0.1 (i.e., with 90% confidence), we found that the p-values 
less than 0.1 are for β0 at a value of 0.0359 and for β6, the coefficient for the interaction between age and 
hand-and-arm movement per day, at a value of 0.0862. Therefore, the intercept and the coefficient for the 
interaction between age and hand-and-arm movement per day were at a 10% significance level. 

Fourth Approach 

We defined our final regression model containing the covariates and their second, third, and fourth degree 
interaction terms as: 

y = β0+β1x1+β2x2 +β3x3+β4x4 + β5x1x2+β6x1x3 +β7x1x4 +β8x2x3 +β9x2x4+β10x3x4 
           + β11x1x2 x3 +β12x1x2x4 +β13x1x3x4+β14x2x3x4 

        + β15 x1x2x3x4 

where all variables are the same as before and 
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x1x2x3x4 = int_AGE_TYP_MOV_ACT  the interaction of age, typing, hand-and-arm movement, 
and  

full-body activity 

Considering the statistical significance level α = 0.06 (i.e., with 94% confidence), we found that the p-
values less than 0.06 were for β0 at a value of 0.0253 and for β6, the coefficient for the interaction between 
age and hand-and-arm movement per day, at a value of 0.0582. Therefore, the intercept and the coefficient 
for the interaction between age and hand-and-arm movement per day were at a 6% significance level. 

Fifth Approach 

From the results of the prior approaches, we observed that the interaction term for age and hand-and-arm 
movement had significant effect throughout the different models.  Therefore, we defined a fifth model 
concerning the response variable, the R-squared value for control signal strength, with only the covariate as 
the interaction term for age and hand-and-arm movement:   

y = β0+β1x1x3 

As expected, we found that the p-value for the coefficient concerning the only interaction term in the model 
was 0.0573, which was at a 6% significance level. 

Validation 

A stratified random sampling of 35 subjects taken from the original data set was used to validate the 
correlation between the R-squared strength value and the interaction term for age and hand-and-arm 
movement using the second and the fifth models presented.  To ensure that we had a fair representation of 
ages in our sampling, we chose each different age as strata, and within each stratum we chose a ceiling of 
one-half and then randomly selected half the number of available data.  We found that the significant effect 
of the interaction between age and amount of hand-and-arm movement per day and the R-squared value for 
control signal strength of a mu-based brain signal held with 93% confidence overall for both models. 

Summary 

Using the multiple linear regression technique, we found that a positive interaction between age and 
amount of hand-and-arm movement per day had a significant effect (with 94% confidence) on the strength 
of the EEG-based control signal tested.  The second regression approach, which introduced the interaction 
terms, yielded the best results where the interaction between age and hand-and-arm movement had a 
significant effect on the control signal strength held with 99% confidence.  This was validated using a 
stratified random sample, which showed the same correlation with 93% confidence. 

Discussion and Conclusions 

The results of correlating age and varying levels of physical activity with a measure for strength of brain 
signal control indicate that we can show a significant effect on EEG-based BCI control with high 
confidence based on a survey of individual characteristics.  Interestingly, the resulting positive interaction 
of age and hand-and-arm movement on control signal strength indicates that as individuals become older 
and participate in more activities such as playing musical instruments, they may have greater mu-based 
BCI control.  This information may influence rehabilitation procedures for the aging and lead to more 
efficient screening procedures for helping match locked-in users with appropriate biometric interfaces 
given their history of activity.  This study should help provide a better understanding of individual user 
characteristics as they relate to biometric interface technologies and move the field a step closer to better 
design of brain-computer and biometric interface systems. 
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In the future, researchers should consider the following limitations to this study.  First, the characteristics 
surveyed represent a small subset of individual characteristics; there could be additional characteristics not 
yet considered that also have significant impact on a wider range of biometric interface control.  The 
characteristics considered here were theoretically tied to the particular type of BCI investigated by being 
based on levels of physical activity; however, these characteristics may have less of an impact on control 
when correlated using another type of BCI.  Second, the R-squared value used as a measure of strength of 
brain signal control is just an indication of control of a BCI but may not result in actual control.  Systems 
like the mu-based BCI used in this study still require weeks of training to achieve higher levels of accuracy 
(Wolpaw et al. 1994; Wolpaw et al. 1991).  Additional factors, such as user interface design and 
motivation, may also have a significant impact on performance.  A longitudinal study may be conducted to 
investigate the effects of initial control strength on long-term BCI control.  Finally, repetition of questions 
and an automated survey would ensure greater consistency of answers from subjects for analysis.  Resource 
constraints discourage observations of the actual activity of numerous subjects, and so we must rely on self-
reported data. 

Acknowledgements 

The authors wish to thank Dr. Brendan Allison and Ms. Shelli Heil for their untiring work to collect the 
data used in this study when they were members of the Georgia State University BrainLab. 

References 

Hair, J.F., Jr., Anderson, R.E., Tatham, R.L., and Black, W.C. Multivariate Data Analysis with Readings, 
5th Edition Prentice Hall, Englewood Cliffs, NJ, 1998. 

McFarland, D.J., Miner, L.A., Vaughan, T.M., and Wolpaw, J.R. "Mu and Beta Rhythm Topographies 
During Motor Imagery and Actual Movements," Brain Topography (12:3), 2000 2000, pp 177-186. 

Montgomery, D.C., Peck, E.A., and Vinning, G.G. Introduction to Linear Regression Analysis, (3rd ed.) 
John Wiley, New York, NY, 2001. 

Moore, M.M. "Real-World Applications for Brain–Computer Interface Technology," IEEE Transactions on 
Neural Systems and Rehabilitation Engineering (11:2), June 2003 2003, pp 162-165. 

Moore, M.M., and Dua, U. "A Galvanic Skin Response Interface for People with Severe Motor 
Disabilities," The Sixth International ACM SIGACCESS Conference on Computers and Accessibility 
(ASSETS), Atlanta, GA, 2004a. 

Moore, M.M., Storey, V.C., and Randolph, A.B. "User Profiles for Facilitating Conversations with Locked-
in Users," International Conference for Information Systems (ICIS), Las Vegas, 2005. 

Moore, M.M., Tomori, O., and Yadav, A. "The BrainBrowser: A Brain Computer Interface for Internet 
Navigation," Neuroscience 2004: The 34th Annual Meeting of the Society for Neuroscience, San 
Diego, CA, 2004b. 

National Organization for Rare Disorders (NORD) "Locked In Syndrome," Danbury CT. 
Pfurtscheller, G., Neuper, C., Guger, C., Harkam, W., Ramoser, H., Schlogl, A., Obermaier, B., and 

Pregenzer, M. "Current Trends in Graz Brain-Computer Interface (BCI) Research," IEEE Transactions 
on Rehabilitation Engineering (8:2), June 2000, pp 216-219. 

Randolph, A.B., McCampbell, L.A., Moore, M.M., and Mason, S.G. "Controllability of Galvanic Skin 
Response," The 11th International Conference on Human-Computer Interaction (HCII), Las Vegas, 
NV, 2005a. 

Randolph, A.B., Moore Jackson, M., Mason, S.G., and McCampbell, L.A. "BioGauges for Characterizing 
Biometric Interface Systems," The Third International Meeting of Brain-Computer Interface 
Technology, Rensselaerville,NY, 2005b. 

SAS Institute "SAS/STAT Software: Providing the Foundation for SAS’ Analytic Intelligence," Cary, NC, 
2006. 

Tran, Y., Boord, P., Middleton, J., and Craig, A. "Levels of brain wave activity (8-13 Hz) in persons with 
spinal cord injury," Spinal Cord (42:2), February 2004 2004, pp 73-79. 

Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., and Vaughan, T.M. "Brain-Computer 
Interfaces for Communication and Control," Clinical Neurophysiology (113:6), June 2002 2002, pp 
767-791. 



Human-Computer Interaction 

812 Twenty-Seventh International Conference on Information Systems, Milwaukee 2006  

Wolpaw, J.R., McFarland, D., and T. M. Vaughan "Brain-Computer Interface Research at the Wadsworth 
Center," IEEE Transactions on Rehabilitation Engineering (8:2), June 2000, p 222–226. 

Wolpaw, J.R., and McFarland, D.J. "Multichannel EEG-based Brain-Computer Communication," 
Electroencephalography and Clinical Neurophysiology (90) 1994, pp 444-449. 

Wolpaw, J.R., McFarland, D.J., Neat, G.W., and Forneris, C.A. "An EEG-Based Brain-Computer Interface 
for Cursor Control," Electroencephalography and Clinical Neurophysiology (78:3), March 1991 1991, 
pp 252-259. 

 
  
 
 


	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 2006

	Towards Predicting Control of a Brain-Computer Interface
	Adriane Randolph
	Saurav Karmakar
	Melody Jackson
	Recommended Citation


	Microsoft Word - HCI-09.doc

