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Abstract 

IS design today is driven primarily by technical and functional requirements, and the economic 
implications for design are not yet well understood. This study argues that system design and 
architecture must reflect assessments of economic trade-offs besides satisfying 
technical/functional requirements. Modeling the economic performance structure behind IS design 
can highlight these trade-offs and help economically assess design alternatives. This study 
examines economics-driven design in the context of the Data Warehouse (DW). The DW 
environment is treated as a dynamic capability, providing the capacity for managing data 
resources and turning them into useful information products. These products contribute value 
when used for exploitative and/or explorative business processes. Recognizing possible 
uncertainties in usage, DW capacities are evaluated as real-option investments toward the 
development of a framework for modeling cost-utility effects of DW design decisions. This 
framework is used to evaluate important design scenarios along the layers of a DW stack 
architecture and optimize design outcomes accordingly. 

Keywords:  Data management, data warehousing, design, real-options, dynamic capabilities 
 

Introduction 

To what extent does the design of an information system (IS) affect economic performance? Can maximizing 
performance direct design? These questions highlight an important gap – an insufficient economic underpinning of 
the IS design. This study suggests that IS design can be enhanced by rigorously and explicitly linking design 
decisions to their economic consequences, arguing that these decisions influence the utility of information products 
and their production costs.  This is achieved by identifying design characteristics that drive economic trade-offs and 
constraints and modeling their effects toward assessing design alternatives and optimizing design outcomes. The 
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economics-driven design is examined in the context of a Data Warehouse (DW) – an IS-environment that manages 
large data resources that support data-driven business processes.  DW environments involve high implementation 
and maintenance costs that have been investigated and quantified. Conversely, the business-value contribution of 
data repositories has rarely been assessed, and firms often debate whether the benefits justify the costs. The study 
links this cost-benefit trade-off to DW design. It argues that understanding the utility/cost structure of the DW 
design can improve design outcomes and better assess investment decisions. 

To further this, we explore factors that drive utility and costs in DW environments. We conceptualize the DW as a 
dynamic capability for managing critical data resources. These resources support established business processes, 
referred to as exploitative usage, and can simultaneously promote explorative use. This ambidextrous usage of the 
DW permits examining design alternatives as real-option investments – “lean” design that targets exploitative usage 
with relatively certain value contributions, versus investments in slack capacity to accommodate exploration with 
potentially high but often uncertain gains. We examine the possible utility/cost implications of this interplay 
between investing in excess capacity versus exploitative optimization along the layers of a typical DW stack 
architecture: data usage, data delivery, data resources, and system infrastructure. This layered-model provides the 
foundation for quantifying economic effects – utility gained from using information products versus their 
manufacturing costs. It allows modeling the effects of design characteristics and highlights possible vertical 
dependencies across the architectural layers. These models are first described in a high-level analytical form and 
then developed for some illustrative design scenarios to demonstrate their use as tools for DW design. 

A key contribution of this study is exposing the economic structure behind the DW architecture and the related 
design decisions. This perspective complements existing DW design methodologies; while satisfying the 
technical/functional requirements is clearly necessary, enhancing it with a rigorous economic analysis can benefit 
the design from a business perspective. In the rest of this paper, following a literature review, we lay the theoretical 
foundations for the economics-driven design of a DW environment by examining DW design as an optimization 
problem, proposing a stack architecture for it, and framing capacity decisions in such environments as real-options 
investments. We then model the utility/cost effect of key DW design characteristics and demonstrate related 
decision scenarios. Finally, we highlight limitations and propose directions for further research. 

Relevant Background 

We examine the link between economic performance and design decisions in the context of a DW. Conceptualizing 
the DW as a dynamic capability, we explore relevant modeling methods. These help define the underlying 
utility/cost structure for DW design and develop an economics-driven design framework. 

Data-Warehousing Environments 

A DW is an IS/IT environment that manages large-scale data repositories and supports decision-making (Kimball et 
al., 2000). DW environments support a large variety of usages, such as transforming corporate strategies (Cooper et 
al., 2000), segmenting customers (Lee et. al., 2004), optimizing supply chains (Shin, 2003), improving operational 
efficiency (Srivastava and Chen, 1999), and delivering on-line data products (West, 2000). Their popularity can be 
attributed to benefits such as covering a broad range of business perspectives by integrating multiple data sources, 
allowing reuse and leveraging investments in data-collection, and shortening the implementation cycles for new 
information products (Srivastava et al., 1999; Counihan et al., 2002). These benefits are supported by the rapid 
advances in technologies for data storage, processing (e.g., ETL [Extraction, Transformation and Loading] engines), 
and delivery (e.g., reporting and business-intelligence tools). However, implementing the DW is challenging both 
technically, due to the many components and configuration characteristics involved (Shankaranarayanan and Even, 
2004), and organizationally, due to the substantial managerial support, user participation, and financial resources 
needed (Wixom and Watson, 2001). This study links the potential costs and benefits of the DW to design decisions.   

Data Warehouse as a Dynamic Capability 

DW environments help transform data resources into information products. The value of information products 
materializes through usage (Shapiro and Varian, 1999) and integration into business processes (Sambamurthy et al., 
2003; Melville et al., 2004). Important for understanding DW usage is the differentiation between exploitative 
versus explorative business processes (e.g., Tushman and Anderson, 1986; Henderson and Clark, 1990). March 
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(1991) suggests that exploration includes search, variation, risk-taking, experimentation, play, flexibility, discovery, 
and innovation, while exploitation includes refinement, choice, production, efficiency, implementation, and 
execution. Exploitation promotes continuous learning and knowledge accumulation, optimizes cost-efficiency 
through repetitiveness and refinement, and provides systematic returns. However, an over-investment in exploitation 
might cause stagnation, inertia, and low adaptability to changes. Exploration helps address external changes such as 
new technologies, demand shifts, and emerging competition. While important to the firm’s continuous growth, 
exploration is highly uncertain and might yield insignificant returns. This interplay between managing both 
exploitative and explorative activities and allocating organizational resources accordingly may introduce 
organizational challenges. Stemming from the Resource-Based View of the firm is the notion of dynamic 
capabilities (e.g., Conner and Prahalad, 1996, Teece at al., 1997) – organizational processes that shift, alter, and 
recombine resources to match organizational changes. Resource reallocation is influenced by environmental 
dynamics: relative stability typically promotes exploitation, while high volatility increases exploration. 
Organizational ambidexterity (e.g., Benner and Tushman, 2003) describes the organizational ability to 
simultaneously maintain strategies, structures, and processes to support both exploration and exploitation.  

We view the DW environment as a dynamic capability. The DW supports collecting, processing, and integrating 
multiple data resources. By enabling flexible access to these resources, it allows data consumers to efficiently and 
effectively recombine them into new utility-contributing information products. The DW is ambidextrous as it 
supports exploitative business processes (e.g., status reporting, corporate accounting), and simultaneously allows ad 
hoc explorative usage (e.g., ad hoc inquires, data-mining, and business analysis). We suggest that conceptualizing 
the DW as a dynamic capability has important implications for its design, as the design must account for the need to 
use its information products in both explorative and exploitative contexts. We examine the value contribution of 
both usage types, and evaluate the effect of the differences in uncertainty and risks on DW architecture, data 
contents, performance, capacity, and technology infrastructure choices.  

Modeling the Effect of Design on Economic-Performance 

Data management literature has discussed design largely from technical/functional perspectives such as 
architecturally separating data and applications, translating requirements into data models (e.g., ER diagrams), 
metadata configuration, and DW architectures (e.g., Kimball et al., 2000; Elmasri and Navathe, 2006). Although 
these perspectives clearly reflect business benefits, they do not explicitly link design to economic contributions. 
Such a link is addressed to some extent by utility functions (Ahituv, 1980), which can map design choices to 
economic outcomes. The utility concept has been used in IS/IT research to model and optimize data processes and 
products (e.g., Ballou et al., 1998; Even et al., 2005), and direct data-mining (e.g., Kleinberg et al., 1998). Utility-
driven models have been proposed for the optimal design of products (e.g., Kohli and Sukumar, 1990), services 
(e.g., Eriksen and Berger, 1987), and production lines (e.g., Cooper and Slagmulder, 2004).  

DW design decisions and related investments must deal with uncertainties stemming from non-systematic 
explorative usage and/or cost volatility. Such decision scenarios, which deal with irrecoverable investments under 
uncertain outcomes, can benefit from real-options modeling. Kogut and Kulatilaka (2001) frame the establishment 
of organizational capabilities as a real-option investment problem, and Sambamurthy et al. (2003) view investments 
in IT resources as a process of building “digital options”. Some studies have applied real-options for modeling 
investments in IS-resources (e.g., Benaroch and Kauffman, 1999, Schwartz and Zozaya-Gorostiza, 2003), and others 
have applied it to conceptualize design (e.g., Sullivan et al., 1999, Baldwin and Clark, 2000). We next describe a 
framework that applies a real-option perspective for utility/cost mapping and assessing alternatives for determining 
an optimal DW design.  

 

Toward an Economics-Driven Design of the Data Warehouse Environment 

We view design as a goal-driven activity targeting the creation of new artifacts (Simon, 1996; Hevner et al., 2004). 
This section develops the theoretical foundations for an economics-driven design framework and sets the stage for 
understanding the economic motivations behind design decisions in a DW environment. Organizations may have 
multiple DW environments. In this study we address the design of a single DW environment, assuming that the 
others may serve as data sources or data consumers. The theoretical model (Figure 1) views the goal of design as 
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maximizing the economic performance. The maximization criterion is the net benefit – the difference between 
overall utility (attributed to data usage) and overall cost (attributed to implementation and maintenance). The 
decision variables are the design characteristics. These are the subject of design decisions, which are assumed to 
affect both utility and cost. The utility/cost effect of design decisions is assumed to be moderated by implementation 
and usage factors such as the existing IT environment, complementary resources (e.g., human skills, business-
process setup), data consumption patterns, or other information resources, possibly competing with or 
complementing the DW data. The design characteristics, their value domains, and the possible constraints and 
dependencies among them define a design space (Baldwin and Clark, 2000). The design process is interpreted as 
evaluating alternatives within this space and determining optimality with respect to the design objective (here, 
maximize the net benefit). We assume a multi-phase design process, where each stage may have a different design 
scope (i.e., a subset of characteristics to be evaluated). Following evaluation, the designer may choose to change the 
configuration of some characteristics at the current stage, while deferring the decision on others to a later stage. The 
term “designer” refers to a managerial entity with the authority to approve/reject design decisions. The DW design 
process, however, may involve a few contributors with different managerial and/or technical skills. 

 

 

 

 

 

 

 

 

 

 

 

Following the decision-calculus methodology (Little, 1970), we parameterize the utility/cost effects, highlighting 
trade-offs for an optimal design. A high-level analytical formulation of this model is: 

(1)   ( ) ( ) ( ) ( ) ( )∑∑ ==
−=−=

J

j j
I

i i XCXUXCXUXP
11

  

where   X –   A vector of design characteristics 

P(X) –   Net benefit, the difference between overall utility and overall cost 

{Ui(X)}, U(x) –  Utility attributed to I data usages indexed by [i], and the overall utility 

{Cj(X)}, C(X) –  Cost attributed to J cost factors indexed by [j], and the overall cost 

This formulation can be viewed as the objective function for optimization – setting the design characteristics X to 
maximize the expected net benefit E[P]. Developing this formulation into a useful design tool requires further 
analysis of utility/cost contributions and design decisions that influence them. Mutual dependencies and moderation 
effects are possible and can affect the utility/cost mappings {Ui(X)} and {Cj(X)}. Before expanding these factors in 
the context of DW design, we present some concepts that guide our model development: the stack architecture view 
of the DW capacity versus utilization considerations, and real-options framing of the related investment decisions. 

Stack architecture, in which system components (e.g., hardware, software, and networking) are organized into 
layers, is common in IS design (Messerschmitt and Szyperski, 2003). Each layer provides services to the layer 
“above”, and relies on services from the layer “below”, such that inter-dependencies between components are 
reduced and implementation flexibility is improved. At a high level, data management systems employ a typical 
layered architecture: system-infrastructure, data resources, and data delivery (Figure 2.) The design of data 
resources is largely independent of the infrastructural platforms that manage them (i.e., computational resources and 
database servers), allowing better data transferability between platforms. Similarly, the design of data-delivery 

 

Figure 1. The Effect of Design Decisions on Economic-Performance 
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components (e.g., data retrieval, formatting, and presentation) is largely independent of the design of data resources, 
and delivery mechanisms can be altered while minimally affecting the underlying data resources and vice-versa. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 illustrates the utilities and costs in the stack architecture. The architectural layers provide a logical 
foundation for modeling the cost structure along (a) System cost (CS), attributed to investments in system 
infrastructure, (b) Data cost (CD), attributed to investments in data resources, and (c) Delivery cost (CR), reflecting 
investments in data retrieval and delivery mechanisms. The system outputs are information products, and their 
Utility (U) is attributed to their actual or potential use. Data resources and the systems that manage them do not have 
stand-alone value but are attributed with value when information products are used. Hence, system layers are not 
associated with utility but only with costs. However, as later discussed, the design characteristics of the system 
layers do influence the creation of information products and, consequently, their utility.  

As layering implies a high degree of design independence, we assume that the high-level cost categories (CS, CD, 
CR) and the utility (U) can be reasonably treated as independent. However, some dependency exists across layers, 
conceptualized as an interaction between capacity (A) – the set of resources, services and capabilities available for 
use, versus utilization (Z) – their actual use. This interaction exists along all inter-layer interfaces and imposes 
design constraints – the utilization in one layer cannot exceed the capacity provided by the layer below (ZS≤AS, 
ZD≤AD, and ZR≤AR.)  The following section further develops both capacity and utilization in DW environments and 
links them explicitly to design characteristics, cost, and utility. Capacity decisions are typically affected by planning 
horizon and usage uncertainty – a designer may provide slack capacity (or flexibility to increase capacity) to 
accommodate future growth. Capacity decisions involve trade-offs – minimally designing for the specific needs at a 
minimal cost, versus investment in slack capacity to support future utility-gain opportunities.  

We posit that capacity configuration choices are real-option investment decisions. To demonstrate this, we first 
apply a simplified two-stage design-process model: decisions are made at stage 1 to support future usage, which is 
yet uncertain. As more information about actual usage is revealed, these decisions can be altered at stage 2 
accordingly, possibly with some delay penalty. This model represents utility as a binomial variable: U with a 
probability of p, or 0 with a probability of 1-p. Costs in this model are assumed deterministic and unchanging 
between stages. Utility and cost may have fixed and variable components, which are aggregated into a single net 
present value (NPV) measurement. Two possible usage modes are considered: (a) Exploitative: data consumption 
within relatively-predictable business processes. Exploitation is assumed to contribute Ua utility with high certainty 
(i.e., probability of pa≈1).  Generating the information products to support exploitative usage (IPRa) requires system 
capacity Aa/S costing Ca/S, data capacity Aa/D costing Ca/D, and delivery capacity Aa/R costing Ca/R. Assuming 
Ua≥Ca/S+Ca/D+Ca/R, exploitative usage yields a positive net benefit and, hence, the system that supports it will be 
implemented. (b) Explorative: the utility-contribution Ub of explorative business processes is uncertain (i.e., pb<1). 
Explorative business processes rely on a set of information products IPRb (in addition to IPRa); hence, slack 
capacities are necessary (Ab/S, Ab/D, and Ab/R) at additional costs (Cb/S, Cb/D, and Cb/R). Since Ub=0 is practically 
possible, explorative usage might not be beneficial and requires further evaluation. 

Explorative usages are typically ad hoc, and timely provision of data is critical. Delays may damage utility due to 
opportunity loss or failure to address immediate needs. Utility, therefore, is expected to decline with time delay t. 

 

Figure 2. Stack Architecture of Data Management Systems 
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We assume an exponential decline Ube-τt with sensitivity parameter τ≥0 (higher sensitivity implies steeper decline). 
The time to implement delivery mechanisms for explorative usage (once the required data resources are available) is 
tb/R. An additional time tb/D is needed to prepare these data resources and tb/S to implement the system for managing 
them. Exploitative usages, though sensitive to time delays, can be planned for, as the system for supporting 
exploitative-usage is (certainly) implemented in stage 1. Hence, we assume a negligible time delay effect for 
exploitative use (ta/S, ta/D, and ta/R). In real life, however, DW implementations (for both usages) might be sensitive to 
timeliness due to operational failures, but these effects are not addressed in this study. 

Table 1. Parameters Involved in the Real-Option Framing of DW Design  

 Exploitative Usage (IPRa) Explorative Usage (IPRb) 
Utility Ua with probability pa≈1 

Negligible implementation-time sensitivity  
Ube- τ t with probability pb, 0  otherwise 

t – implementation-time 
τ – implementation-time sensitivity-parameter 

System 
Infrastructure 

Ca/S, ta/S – System cost and implementation 
time 

Cb/S, tb/S – System cost and implementation time 

Data 
Resources 

Ca/D, ta/D – Data cost and implementation 
time 

Cb/D, tb/D – Data cost and implementation time 

Data Delivery Ca/R, ta/R – Delivery cost and 
implementation time 

Cb/R, tb/R – Delivery cost and implementation 
time 

Capacity and 
Utilization 

No incentive to implement slack capacity: 
Aa/S=Za/S, Aa/D=Za/D, Aa/R=Za/R 

Possible incentive to implement slack capacity: 
Ab/S≥Zb/S, Ab/D≥Zb/D, Ab/R≥Zb/R 

   

Given the parameters (Table 1), the following decision alternatives can be considered: 

(a) Minimal implementation (M): supporting exploitative usage only (IPRa) at current stage and deferring the 
decision to implement additional data resources and capacity for explorative usage (IPRb) to a later stage. Assuming 
that the uncertainty with explorative usage will be resolved at a later stage, the additional resources and capacity will 
be implemented only if positive utility is expected. However, deferring implementation will cause time delays and 
will cause utility reduction. Applying (1), the anticipated net benefit PM is: 

(2) ( ) ( ) ( )( )RbDbSbtttbbRaDaSaaM CCCeUpCCCUP
RbDbSb ////// ///

++−+++−= ++−τ   

 (b) Full implementation (F): supporting both explorative and exploitative usage with data (IPRa and IPRb) and 
implementing system capacity accordingly. Applying (1), the anticipated net benefit PF is: 

(3) ( ) ( )RbDbSbbbRaDaSaaF CCCUpCCCUP ////// ++−+++−=   

This alternative can be interpreted as a real-option investment – the availability of additional resources allows faster 
implementation and avoids utility loss. The real-option gross-benefit (i.e., prior to subtracting cost-differentials) is 

( )( )RbDbSb tttbbF eUpROGB
///

1 ++−−= τ . The cost differential (in favor of M) in this case is the portion of the 

initial cost that cannot be recovered if usage is low: ( )( )RbDbSbbF CCCpROCD ///1 ++−= . Full 
implementation is superior to minimal implementation if ROGBF>ROCDF. This will depend, of course, on the 
actual utility and cost parameters: if the expected utility from explorative use is relatively high, the delay penalty is 
significant, and/or the costs associated with explorative use are relatively low, then the investment in full 
implementation may be beneficial. 

(c) Partial implementation (P): the designer may consider fully supporting only the exploitative use (IPRa) at the 
current stage  but implement some slack capacity toward supporting additional usage in the future. For example, the 
designer may choose (a) investing in additional system capacity now, while deferring implementation of additional 
data resources and delivery capacity to a later stage, or (b) investing in additional system capacity and data resources 
now, while deferring the decision on additional delivery capacity. Considering the former case (the latter can be 
similarly evaluated) and applying (1), the anticipated net benefit PP is: 
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(4) ( ) ( ) ( )( ) SbRbDbttbbRaDaSaaP CCCeUpCCCUP
RbDb ////// //

−+−+++−= +−τ  

This alternative can also be interpreted as a real-option investment – the added capacity allows faster 
implementation and, hence, prevents utility loss (although to a lesser extent than full implementation). Relative to 

minimal implementation, the real-option gross benefit is ( )( )SbRbDb tttbbP eeUpROGB
///

1 ατ −+− −= . The cost 

differential is attributed to costs that cannot be recovered with low usage: ( ) SbbP CpROCD /1−= . This 
alternative is superior to minimal implementation if ROGBP>ROCDP, i.e., if the relative utility loss due to delays in 
implementation is anticipated to be higher than the cost penalty. Many DW environments adhere to this scenario – 
some slack capacity enhancements to an existing infrastructure are relatively cheap (e.g., adding disk-storage space, 
upgrading computation power), but the implementation time might still be significant. However, in some cases 
adding capacity may require infrastructure upgrades (e.g., replacing database-servers) with significant costs. In these 
cases, or when there is no significant utility loss due to delay, minimal implementation may be more beneficial.  

When ROGBF-ROCDF>ROGBP-ROCDP, full implementation will outperform the partial since the relative utility 
loss due to delays in implementing data/delivery-capacities is higher than the penalty cost. In some DW scenarios, 
data cost may be relatively low (e.g., acquisition from intra-organizational sources) and, hence, early inclusion of 
data may be beneficial. In other cases, the data cost is high (e.g., purchased from external sources), but once 
purchased, if the needed system capacity is already available, the data can be added quickly. The time delay penalty 
may not be severe, and deferring the data-capacity implementation decision may be beneficial.  

None of these real-option evaluations involve exploitative use. Since the probability pa was assumed to be nearly 1, 
there is no incentive to implement higher capacity than required and, hence, capacity will be utilized to the 
maximum: Aa/S=Za/S, Aa/D=Za/D, and Aa/R=Za/R. Conversely, with explorative use there may some incentive to invest 
in slack capacity that may not be fully utilized, hence Ab/S≥Zb/S, Ab/D≥Zb/D, and Ab/R≥Zb/R

. In general, we can argue that 
higher utility/cost certainty lowers the need for slack capacity and capacity-utilization margin. 

In the preceding discussion we modeled certain design aspects of a DW using real-options. Treating the capacities in 
each stack layer as design options allows us to examine DW design efficiency in the light of its explorative versus 
exploitative usages. If supporting only exploitative use, the cost of this design is minimal and predetermined strictly 
by known functional/technical requirements. As explorative use can yield larger benefits but with some uncertainty, 
the designers may choose to plan for extra capacity, knowing that it will certainly increase the cost and 
understanding that corresponding benefits are not guaranteed. Balancing the support for explorative and exploitative 
usages during the design process is critical. Understanding the economics and the real-option considerations 
involved can create a radically different design of the DW that can be economically justified. 

Design Decisions in a Data-Warehousing Environment and Their Utility/cost Effect  

This section models the utility gained from DW usage and evaluates sample design scenarios in each architectural 
layer: selection of data-delivery platforms, acquisition of data resources, and data-storage infrastructure setup. 
Figure 3 presents a high-level DW architecture, mapping key components to the stack architecture. It highlights (a) 
system boundaries: data processes typically follow three high-level stages – collection, storage/maintenance, and 
usage (Lee and Strong, 2003). We treat the DW (within system boundaries) as the storage/maintenance stage, while 
data collection (by the sources from which data is acquired) and data usage by consumers are treated as exogenous. 
We assume that DW designers make design decisions within system boundaries only. However, they may choose 
the sources for acquiring data and the data components acquired from each, as well as the extent to which usages 
will be supported, thus impacting these exogenous stages. (b) Organizational boundaries: data collection and 
consumption can be internal and/or external to the organization. As later illustrated, this differentiation affects the 
design scope and factors that define utility/cost formulation – e.g., data uniqueness, supply/demand uncertainty, 
competition, pricing structure, potential for quality hazards, and the ease of system/data integration.  
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We evaluate design decisions using parameterized models representing cost/utility effects, dependencies, and trade-
offs. The models are presented along the DW layers in a “top-down” order, starting with the usage of information 
products. This order reflects the capacity/utilization interplay discussed – the utilization requirements of a layer are 
bounded by the capacity of the layer below and, hence, affect its design requirements. For example, the choice of 
certain data-delivery mechanisms will require careful integration and design of data resources, and a decision to 
acquire certain data resources will depend on available infrastructure (e.g., storage space and data-processing 
capacity). The illustrative design scenarios evaluated address a limited set of design characteristics within a layer, 
often using simplified analytical formulations to allow a parsimonious presentation. Additional design 
characteristics, layer interdependencies, and enhanced analytical formulations should be further explored.  

Data Usage 

The DW output is a set of information products used by internal and/or external consumers. A typical information 
product combines underlying dataset(s) and presentation format(s) that fit the consumer’s data-gauging capabilities 
(e.g., GUI-based reports and data-visualization tools for humans, structured text-files for computer systems). Each 
information product (total of I) is represented by a vector Xi of design characteristics that affects its utility Ui(Xi). 
The characteristic vector Xi is assumed to have G components {Xi,g}g=1..G.  In this study, we initially assume a one-to-
one mapping between utility and information product (can be later generalized – a single information product may 
serve multiple usages and a usage may require multiple information products). The information product utility Ui is 
a random variable representing the consumer’s willingness to pay (Ahituv, 1980.) It is shaped by possible 
interactions between information product characteristics (subject to design), and exogenous characteristics such as 
the usage-task (e.g., explorative versus exploitative), the business environment (e.g., stable versus turbulent), and 
competing and/or complementary resources (e.g., other information products, human knowledge). Exogenous 
characteristics, which we refer to as usage context, are treated as moderators and affect the formulation of Ui. We 
adopt the production function for modeling Ui – mapping both the relevant decision variables and possible controls 
to an assumed parameterized form, such that the parameters can be later estimated or assessed empirically. We adopt 
the Cobb-Douglas input-output mapping, as it is commonly used for empirical validation. This formulation 
represents multiple inputs, assuming possibly different output sensitivity to each: 

 

Figure 3. The Data Warehouse Architecture 
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(5)    ∏ =
=

G

g giii
giXUU
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* ,χ

 

where  Ui –   Utility contribution of information product [i] 

U*
i –   A constant utility component 

Xi,g –  Component g (out of G) of the characteristic vector Xi 

χi,g –  Utility-sensitivity parameter to Xi,g 

We further assume that the characteristics {Xi,g} are represented either as a binary decision (1-inclusion, 0-exclusion) 
or continuous variables within a finite range that can be normalized to [0,1]. The utility is assumed to be non 
decreasing with inputs, hence, χi,g≥0.  The utility effect (Figure 4) is convex with χi,g>1, linear with χi,g=1, concave 
with χi,g<1, and fixed with χi,g=0 (here, for a binary variable 00=1). Under these assumptions, U*

i represents the 
maximal utility when all the input characteristics equal 1.  

 

 

 

 

 

 

 

 

 

 

 

 

We consider some information product design characteristics that typically affect utility in a DW environment and 
classify them into three categories – dataset, presentation, and time. 

Dataset – information products are generated by retrieving data from DW datasets. DW repositories commonly use 
a “Star Schema” model – a large fact table containing numeric measurements of business activities (e.g., quantity, 
sale- mount), linked to smaller “dimension” tables containing business entities that describe the transactions (e.g., 
customers, products, locations). We consider the design of a large fact table that supports multiple information 
products and hence, significantly affects utility/cost trade-offs (note: the model applies to the design of smaller 
datasets, but the related utility/cost trade-offs may be less significant). Fact tables consolidate data from multiple 
sources and in this study we initially assume a single fact table per information product. An information product is 
assumed to offer a higher utility contribution with richer content and better data quality. Its richness and quality are 
determined by the design of the dataset (here, the fact table) from which the information product is derived (Even et 
al., 2005). Content richness is enhanced by covering a broader business scope, including more historical data, and/or 
increasing granularity. We represent historical depth by TSi – the time span coverage of information product [i], 
rescaled to [0,1] by taking the ratio between the included time span TSp

i (actual decision variable) and the maximal 
time span TSm available (TSi=TSp

i/TSm). The granularity is reflected by record density, the number of records per 
time unit RDi. It is rescaled to [0,1] by taking the ratio between the record density implemented RDp

i (actual decision 
variable) and the maximal record density RDm possible (RDi=RDp

i/RDm). The business scope breadth is reflected in 
the set of attributes that the information product includes. Assuming M possible attributes, the binary decision 
variable ATi,m indicates inclusion (=1) or exclusion (=0) of attribute [m] in information product [i]. In some cases, 
the utility is sensitive to the inclusion or exclusion of a certain attribute (i.e., if an attribute is needed but excluded, 
the utility is 0,) while in others the utility is indifferent to inclusion/exclusion. Data quality is typically viewed as 
being multi-dimensional, where some dimensions are objective and impartial to the data content, while others are 
subjective and context dependent (Wang and Strong, 1996). The suggested framework considers the former type, 

 

Figure 4. Possible Utility Effects of Design Characteristics 
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and in this study we model the accuracy (ACi) – a commonly discussed impartial data quality dimension (e.g., 
Ballou et al., 1998), typically measured as a [0,1] ratio. Other quality dimensions (such as completeness or 
timeliness) can be added to the model in future extensions, using a similar utility formulation approach (or 
alternately, multiple dimensions can be combined into an "overall" quality measure on the [0,1] scale). With these 
assumptions, we propose the following model for the utility effect of dataset characteristics: 

(6)    ( )∏ =
∝

M

m miiiii
miiii ATACRDTSU

1 ,
,ηδβα  

where  TSi –   Time span coverage measure 

RDi -  Record density measure 

ACi –   Accuracy level  

{ATi,m} -  Inclusion (=1) of attribute [m], versus exclusion (=0) 

αi, βi , δi, {ηi,m} – Utility-sensitivity parameters to TSi, RDi, ACi, and {ATi,m}, respectively 

Presentation – the utility contribution of the information product depends on presentation capabilities (Nelson et al., 
2005), e.g., fixed presentation (e.g., a text-file structure) versus flexible (e.g., interactive visualization), or 
aggregated (e.g., average and sum statistics) versus detailed. We represent presentation by a set of binary variables – 
the delivery layer offers a variety of presentation capabilities and the designer may choose to include certain 
capabilities in the information product and exclude others. Depending on usage context, utility may be sensitive to 
inclusion/exclusion of certain presentation capabilities (i.e., 0 utility with exclusion), and indifferent to others: 

(7)   ∏ =
∝

N

n nii
niPCU

1 ,
,γ  

where  {PCi,n} -  Inclusion (=1) of presentation capability [n], versus exclusion (=0) 

{γi,n}  -   Utility-sensitivity parameters to {PCi,n} 

Time – Delay in providing information products can damage utility. We differentiate between one-time delays 
attributed to designing the information product and establishing the data and system resources for it, versus recurring 
delays due to production failures. In this study we address the former, assuming high-quality implementation that 
eliminates recurring time delays (in reality, production delays can be significant and must be examined). The time 
delay TM can be “infinite”, and we assume decline in utility as it grows. For consistency (non-decreasing effect, 
[0,1] range), we apply an exponential transformation: 

(8)   ( ) iiTM
i eU

τ−∝  

where  TMi -  Time delay  

τi -   Utility-sensitivity parameter to TMi 

Combining (6), (7), and (8), the overall utility can be represented by the Cobb-Douglas formulation: 

(9)   ( )( )( ) iinimiiii TMN

n ni
M

m miiiiii ePCATACRDTSUU
τγηδβα −

== ∏∏=
1 ,1 ,

* ,,   

This model maps a set of information product design characteristics to utility. The sensitivity parameters are 
assumed to be fixed, although in reality they may change over time and, hence, need on-going re-estimation. 
Assuming independent data usages, the overall utility U is modeled as a sum: 

(10)   ( )( )( )∑ ∏∏=
−

==
=

I

i
TMN

n ni
M

m miiiii
iinimiiii ePCATACRDTSUU

1 1 ,1 ,
* ,,

τγηδβα   

This utility model is one side of the objective function in (1) for the design-optimization problem, the other being 
the cost. We further demonstrate the use of this model by analyzing the cost-structure and optimizing the net benefit 
for different design scenarios. 
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Design Scenario 1 – Delivery Cost and the Selection of Delivery Platform 

The data-delivery layer provides the capacity for producing information products and delivering them to consumers. 
Information product implementation typically includes specification of content (the underlying data), presentation, 
and delivery configuration (e.g., recipients, delivery mechanisms, and schedule). The design scope evaluated is the 
choice of delivery platform for designing and distributing information products – a reporting or business-intelligence 
tool, which can be developed in-house or purchased (e.g., Business-Objects and MicroStrategy). The platform 
choice affects the delivery cost (CR). We choose one among R possible platforms (indexed by [r]), each associated 
with an overall purchase and setup cost of CR

r. Two delivery-factors (among others) influence utility/cost trade-offs: 
(a) the implementation time (tR

r): an advanced platform will require a longer implementation time, higher learning 
efforts, and consequently a longer delay in information product delivery. This implementation time imposes an 
upper bound on the timeliness of information products and defines a set of design constraints per [r]: { }R

ri tTM ≥ . 
(b) The interplay between presentation-capacity and presentation-utilization: N possible presentation capabilities are 
considered and AR

r,n indicates whether platform [r] supports capability [n] (=1) or not (=0). A presentation 
capability [n] is needed if demanded by at least one information product (i.e., PCi,n=1). We define the utilization of 

presentation capability [n] as ( )∏ =
−−

I

i niPC
1 ,11  - i.e., 1 if demanded at least by one information product 

(PCi,n=1,) and 0 otherwise. The result is a set of presentation-capacity constraints ( )∏ =
−−≥

I

i ni
R

nr PCA
1 ,, 11 . 

Using (1), the selection of a delivery platform is framed as a design-optimization problem - select a delivery 
platform (from a set of R possible platforms, indexed [r]), to maximize net benefit (PR):  

(11)  ( )( )∑ ∏=
−

=
−=−=
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n ni
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r
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r

R
r CePCUCUP iini

1 1 ,
,

τγ  

s.t.  R
ri tTM ≥ per [r]  

{AR
r,n }, {PCi,n } are 0/1 integers, per [i], [r], and [n] 

( )∏ =
−−≥

I

i ni
R

nr PCA
1 ,, 11  , per [r] and [n] 

where  PR
r, UR

r, CR
r  –   Overall net benefit, utility and delivery cost, respectively 

Ui
Max

  -  The maximal utility of information product [i], considering the effect of other 

characteristics in (9), i.e., ( )∏ =
=

M

m miiiii
Max
i

miiii ATACRDTSUU
1 ,

* ,ηδβα  

Cr ,{TD
r}–   Implementation cost and time, respectively 

{AR
r,n} -    Support for presentation capability [n] (=1), vs. no support (=0) 

tR
r -    The implementation time of the delivery platform 

TMi, τi, {PCj,n}, {γi,n}  -  see (7) and (8) 

 

Illustrative Example 1: A bank evaluates implementing a DW of historical transactions, considering two possible 
usage types: a) Financial reporting – recurring reports, used internally for accounting and performance tracking. 
These reports introduce simple presentation requirements – displaying data in a tabular format, with some charts 
(e.g., bar, pie), and summary statistics (e.g., sum, average). Their estimated utility (Ua) has a timeliness-sensitivity 
of τa, and this usage is treated as exploitative. b) Business-analysis tools for advanced analysis of banking activities, 
such as customer/product segmentation, trend detection, and development of new credit and loan policies. These 
tools require fancy reporting capabilities, such as interactive tables and charts and advanced statistics (e.g., 
regression and time-series analysis), and sophisticated delivery configurations to support possible external use (e.g., 
allowing customers to analyze their own activities). Such tools have never been offered before, and hence are 
considered explorative. Their maximal utility contribution is estimated as Ub with timeliness sensitivity of τb, and a 
success-probability of Pb<1. A comprehensive usage analysis is suggested to assess whether the explorative usage 
will be successful. This analysis will require a time-period of t*, and will cost C*. 
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The DW designer considers two delivery platforms. The first (indexed by “1”) is an inexpensive reporting tool that 
can be implemented immediately at a cost of C1 and can only support exploitative usage. The second (indexed by 
“2”) is an advanced reporting system that offers a full range of capabilities. This is pricier (C2>>C1) and involves 
longer implementation (t2>>t1). The designer may postpone the decision until after the usage analysis is performed. 
Given these parameters (Table 2), what should the designer choose? Should part of the implementation be deferred?   

Table 2. Example 1 – Parameters 

 Exploitative  Explorative  Basic Advanced  
Basic capabilities  1 1 1 1 
Advanced capabilities  0 1 0 1 
Maximal Utility Ua Ub 
Probability  ~1 Pb 
Timeliness Sensitivity Parameter τa τb 
Usage-analysis Time  N/A t* 
Usage-analysis Cost  N/A C* 

  

Cost C1 C2 
Implementation Time ~0 t2 

  

Using (11), the designer evaluates the following alternatives: 

1) Supporting exploitative usage only – the cheapest alternative, with an expected net benefit of 1CUP a −=  

2) Supporting both usages now – the expected net benefit is 2
2 CeUpUP t

bba
b −+= −τ . Compared to the 

exploitative-use-only alternative, the real-option gross-benefit is 2
2

t
bb

beUpROGB τ−=  at a cost-differential of 

122 CCROCD −= . This alternative will be preferred over the first if ROGB2>ROCD2. 

3) Deferring the decision on explorative usage and support only exploitative now, at a net benefit 
of ( )( ) *

2
*

1
2 CCeUpCUP tt

bba
b −−+−= +−τ . Compared to the exploitative-use-only alternative, the real-option 

gross-benefit in this case is ( )2*
3

tt
bb

beUpROGB +−= τ . This benefit is attributed to the potential of adding utility 

from explorative-usage at a cost-differential of *
23 CCpROCD b += . This alternative is preferred over the first if 

ROGB3>ROCD3. Due to the added time delay (t*), ROGB3 is lower than ROGB2, but ROCD3 could either be lower 
or higher than ROCD2. Overall, this alternative is preferred over the second if ROGB3-ROCD3>ROGB2-ROCD2. 

4) Deferring the decision on both usages – The advanced delivery platform will be chosen if the additional analysis 
reveals successful explorative usage, and the basic platform will be chosen otherwise. The net benefit in this case is 

( ) ( )( ) *
2

*
1

* 21 CCeUpCpeUP tt
bbb

t
a

bb −−+−−= +−− ττ . Compared to the exploitative-use-only alternative, the 

real-option gross-benefit is ( ) ( ) a
ttt

bb UeeUpROGB bb **
4 12 ττ −+− −−= - while some utility is added by potential 

explorative-usage, some exploitative-utility is damaged by the time delay (t*) effect. The cost differential is 

1
*

24 CpCCpROCD bb −+= , and this alternative is preferred over the first if ROGB4>ROCD4, over the second 
if ROGB4-ROCD4>ROGB2-ROCD2, and over the third if ROGB4-ROCD4>ROGB3-ROCD3.  

These alternatives highlight important trade-offs in selecting delivery platforms and explain common design errors – 
designers often choose quick-and-simple reporting solutions that later fail to support new usages. Further, expensive 
and advanced reporting capabilities may be unnecessary for most utility-generating usages. The evaluation also 
highlights the possible benefit of postponing investments in reporting tools until after assessing actual usage, and 
avoiding “rushed” decisions at the current stage. Delivery costs and utility damages due to poor design decisions are 
very expensive in a DW environment. Being aware of alternatives and using quantitative assessment are critical.  
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Design Scenario 2 – Data Cost and the Selection of Data Sources 

The data resources layer contains datasets that generate information products. In a typical DW architecture (Figure 
3), this layer contains a centralized repository of historical data, collected from (possibly) multiple data sources, 
internal and/or external to the organization. The scope of this design scenario is the selection of data sources for data 
acquisition. Given K available sources (indexed by [k]), the binary decision variables {Sk} represent the decision to 
acquire data from a source (Sk=1), or exclude it (Sk=0). A factor that affects the inclusion and, hence, the data cost 
(CD), is the accuracy level of a source (0≤εk≤1), which can be higher or lower than the targeted accuracy level of the 
dataset (AC). We assume that the accuracy level of information products is influenced primarily by the accuracy of 
the dataset, hence, for all information products, ACi=AC. 

Data cost is also affected by the attributes available in each source. The set of parameters {ωk,m} indicate whether 
attribute [m] is available in source [k] (ωk,m=1) or not (ωk,m=0). Some attributes may be unique to a source, while 
others are present in multiple sources. The set of decision variables {Wk,m} indicates whether attribute [m] from 
source [k] is included in the dataset (Wk,m=1) or not (Wk,m=0). This is possible only if the source [k] is selected 
(Sk=1) and contains attribute [m] (ωk,m=1) and, hence, the set of constraints {Wk,m≤Skωk,m} per [k] and [m]. A source 
will be used for data acquisition (Sk=1) only if it contributes at least one attribute (Wk,m=1), hence, the set of 

constraints ( ){ }∏ =
−−=

M

m mkk WS
1 ,11  per [k]. However, if multiple sources offer attribute [m], we assume that 

this attribute will be acquired from at most one source, hence, the set of constraints { }1
1 , ≤∑ =

K

k mkW  per [m]. 

An information product cannot be implemented if an attribute it needs is not in the dataset. For the M possible 
attributes we specify an attribute-capacity {Am} that indicates whether the attribute is included in the dataset (Am=1), 

or not (Am=0). The utilization of attribute [m] is ( )∏ =
−−

I

i miAT
1 ,11 , i.e., 1 if attribute [m] is used at least by one 

information product (ATi,m=1), and 0 otherwise. Hence, the set of data-attribute constraints: 

( ){ }∏ =
−−≥

I

i mim ATA
1 ,11  per [m]. The attribute [m] can be included in the dataset (Am=1) only if it is acquired 

from at least one source (Wk,m=1) resulting in a set of constraints ( ){ }∏ =
−−=

K

k mkm WA
1 ,11  per [m]. Combining 

the constraints for Am, we get: ( ) ( ){ }∏∏ ==
−−≥−−

I

i mi
K

k mk ATW
1 ,1 , 1111 per [m]. 

We assume a fixed setup cost per utilized data source CD/S
k=cD/S

kSk (e.g., for design efforts and establishing 
connectivity), and a variable acquisition cost (CD/A

k), attributed to on-going data imports (e.g., payment to data 
vendor).We assume that this variable cost increases with each attribute imported. If the source accuracy εk is below 
the target accuracy AC, quality improvement efforts are needed and these will further increase the acquisition cost. 
We assume that the cost effect of accuracy is proportional to (max{AC/εk, 1})λ, where λ is the cost-sensitivity 
parameter for accuracy improvement. We further assume no cost effect if the provided accuracy (εk) is higher than 
the targeted (AC). The suggested cost model for source [k] is: 

(12)   { }( ) ( )( )∑ =
+=+=
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,
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where  CD
k, – Data cost, summing setup cost (CD/S

k) and acquisition cost (CD/A
k) 

{Sk}- Source inclusion (=1) versus exclusion (=0) 

{Wk,m}- Inclusion (=1) of attribute [m], versus exclusion (=0) 

cD/S
k - Setup cost if source included (Sk=1) 

AC - Targeted dataset accuracy 

{εk} - Given source-accuracy 

λ -  Cost-sensitivity parameter to the accuracy ratio (AC/εk) 

cD/A
k,m - Incremental acquisition cost of attribute [m], if included (Wk,m=1) 
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Following (1), we can formulate the data source selection as a design-optimization problem – select the target 
accuracy level (AC), the data sources {Sk}, and the attributes to import from each data source {Wk,m}, to maximize net 
benefit (PD). The result is a mixed-integer, non-linear optimization model: 

(13) ( )
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=
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s.t.  {ATi,m}, { Wk,m }, and {Sk } are 0/1 integers, per [i], [k], and [m]  

{Wk,m ≤ Sk ωk,m} per [k] and [m] 
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where  PD, UD, CD–  Overall net benefit, utility and data cost, respectively 

Ui
Max

  -  The maximal utility of information product [i], considering the effect of other design 

characteristics in (9), i.e., ( )( ) iiniii TMN

n niiii
Max
i ePCRDTSUU

τγβα −

=∏=
1 ,

* ,  

{ωk,m}-  Availability (=1) of attribute [m], versus no availability (=0) 

Other parameters – see (6) and (12) 

 

Illustrative Example 2: Using “loyalty cards”, a retail-chain can link sale transactions with individual customers. It 
considers a DW that integrates sale-transaction data with customer data. Elementary customer details (e.g., name, 
address, and phone) are currently maintained by the firm’s customer-relationship-management (CRM) system. 
These details are insufficient for the two possible DW usages that the firm evaluates: a) Promotion management – 
customizing promotions based on segmentation and consumption-behavior analysis. This exploitative usage requires 
additional demographics (e.g., marital status, number of children, education). Its anticipated utility (Ua) has an 
accuracy-sensitivity parameter δa. b) Advanced consumption analysis for strategic decisions – e.g., analyzing 
revenue potential for new locations, developing new promotion policies, or identifying changes in consumption 
patterns. The corresponding data resource has revenue-generating potential if sold to manufacturers or to firms that 
analyze market behavior. These explorative usages need additional demographics, beyond what exploitative usage 
requires (e.g., neighborhood ranking, credit status, and value of property owned). The anticipated utility is Ub, with 
accuracy sensitivity parameter δb. This utility is uncertain with a success probability of Pb<1, and failure-probability 
(0 utility) of 1-Pb.  

The DW designer evaluates two possible sources for the additional demographics. The first is enhancing the current 
CRM system requiring a setup investment of C1 (e.g., redesign to support requested changes) and additional data 
acquisition costs: C1,B for collecting basic demographics (assumed relatively low), and C1,A for advanced 
demographics (relatively high). This solution is managed entirely in-house; hence, data-integration failures are less 
likely and the anticipated accuracy level ε1 is relatively high. The second possible source is a data vendor 
specializing in collecting and selling customer demographics. The cost of setting up the connectivity to this data 
source (C2) is assumed to be lower than setting up the internal source (C1>C2). The acquisition cost of basic 
demographics (C2,B) is assumed to be higher than in-house collection (C1,B<C2,B), but the acquisition cost of 
advanced demographics (C2,A) is assumed to be lower (C1,A>C2,A.). Since this data source is not managed in-house, 
the anticipated accuracy is lower (ε2<ε1). 
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Table 3. Example 2 – Parameters 

Customer Information Exploitative Explorative Internal Source External Source 
Basic demographics  1 1 C1,B C2,B 
Advanced demographics  0 1 C1,A C2,A 

Maximal Utility Ua Ub 
Probability  ~1 Pb 

Accuracy Sensitivity Parameter δa δb 

  

Setup Cost C1 C2 
Accuracy Level ε1 ε2 

Cost Sensitivity Parameter to Accuracy Ratio λ 
  

Adapting (13) to the parameters for this scenario (Table 3), the design-optimization model is to select the target 
accuracy level (AC), the data sources {S1, S2}, and the demographic information to be imported from each data 
source {W1,B, W1,A, W2,B, W2,A} so as to maximize the net benefit (PD): 

(14)
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s.t.  {AT}, {S}, {W} are 0/1 integers  

W1,B≤S1, W1,A≤S1, W2,B≤S2, and W2,A≤S2 

S1=1-(1-W1,B)(1-W1,A), and S2=1-(1-W2,B)(1-W2,A) 

W1,B+W2,B,≤1, and W1,A+W2,A≤1 

(1-ATa,B)(1-ATb,B)≥(1-W1,B)(1-W2,B), and (1-ATa,A)(1-ATb,A)≥(1-W1,A)(1-W2,A)  
Solving this yields different outcomes, depending on actual parameter values:  

Supporting exploitative usage only – this occurs when the costs of acquiring advanced demographics (from either 
source) and/or quality improvement exceeds any benefit from explorative usage.  The basic demographics will be 
obtained either from the internal or external source, depending on the actual cost and accuracy level (the internal 
source was assumed to have higher accuracy and lower data acquisition cost, but higher setup cost.) The 
corresponding net benefit is: 

(15)  { }( )( ) { }( )( ){ }BBa
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,222,111
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The optimal accuracy-level can be obtained for each data source. For instance, considering the internal source, 
assuming initially that the given accuracy (ε1) is lower than the targeted (AC), the net benefit is: 
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If this solution is not within the [ε1,1] range, and/or if the second derivative of (16) is positive (i.e., indicating a 
minimum, not maximum), the optimal solution is either (a) above 1, suggesting that the maximum possible accuracy 
should be approached (i.e., AC=1), or (b) below ε1, in which case the accuracy level of AC=ε1 is already guaranteed 
by the data source at no added cost. After obtaining the optimal accuracy per data source, (16) can be used to select 
the source that maximizes net benefit.  

Supporting both exploitative and explorative usage when under at least one configuration the expected benefit from 
explorative usage exceeds the advanced demographics cost. Depending on parameter-values, the firm may acquire 
all demographics from the same source (internal or external), or acquire the basic from the internal source and 
advanced from the external. We can evaluate real-option gross benefit (ROGB) and cost differential (ROCD) 
accordingly, e.g., assuming (a) internal source for exploitative-usage alone, at accuracy level of ACa>ε1 

( )( )( )Baaa
aD CACCACUP a

,111
/ λδ ε+−= , versus (b) internal source for basics and external for advanced, at 

accuracy ACb>ε1,ε2 ( ) ( )( )( )AbBbbbbba
bD CACCCACCACUpACUP ba

,222,111
/ λλδδ εε +++−+= . Here, 

( ) baa
bbbbba ACUpACACUROGB δδδ ++= , ( ) AbBab CACCCACACROCD ,222,11

λλλλλ εε −− ++−= , and 
the latter option is preferred if ROGB>ROCD. 

Avoiding implementation altogether - if acquisition and accuracy-improvement costs exceed all possible benefits.  

Supporting explorative usage only is unlikely in the current model – the data resources that support explorative 
usage can also support exploitative usage at no additional cost. However, a slightly different model may yield such 
an outcome – for example, if exploitative usage requires a very high accuracy (lower-bound constraint on accuracy 
level), while explorative usage has substantially lower accuracy requirements. 

The data-resource model and design scenarios highlight the importance of data source evaluation. DW designers 
typically prefer internal, well-structured, and easily accessible sources. While this may guarantee faster 
implementation, the limited scope can damage usability and, hence, utility. Alternately, too many sources can 
increase complexity and cost, resulting in sub-optimal benefits. This model encourages adopting an economic 
perspective for assessing data quality in a DW.  There is a shift toward viewing DW quality from usage and 
business-value perspectives (e.g., Wixom and Watson, 1998; Nelson et al., 2005). When both utility and cost are 
considered, maximizing data quality can be economically sub-optimal if quality-improvement costs offset utility. 
These trade-offs emphasize modeling the effects of source selection and quality improvement decisions more 
explicitly. This model is a step in this direction and can be extended to address complex scenarios. 

Design Scenario 3 – System Cost and the Selection of Database Server 

The system cost (CS) includes purchasing, setting up, and maintaining the DW system infrastructure (Figure 3), 
which provides the hardware, software, and network resources needed for establishing data repositories. Two key 
capacity aspects affect CS: a) Storage-capacity: DW environments manage large datasets and require large storage 
capacity. Implementing storage capacity involves the purchase of database management systems server software 
(e.g., Oracle, MS-SQL), the hardware to support it (e.g., server, disk space,) and labor. b) Processing-capacity: the 
DW-repository is populated and refreshed with new data using ETL processes – Extracting data from different 
sources into the DW environment, Transforming data into the required format, and Loading it into the DW 
repository. Processing capacity is typically established by incorporating ETL-engines – software, either developed 
in-house or purchased (e.g., Informatica, MS-DTS), for configuring, scheduling and executing the ETL processes. 

We model the storage capacity and the related DBMS choices. We consider a single large tabular dataset (e.g., a fact 
table) that affects storage capacity. The design scope is the time span coverage (TS) – a [0,1] ratio, which determines 
the number of records and thus storage.  A tabular dataset implies a linearly increasing volume with the number of 
records. Assuming an approximately fixed number of records per time-unit, the dataset volume will be linearly 
proportional to TS. The time span coverage sets a capacity constraint for each information product: TSi≤TS. The 
utility of each information product [i] is assumed to increase with TSi. For maximal net benefit, each information 
product will utilize the maximum-available time span, hence, at the optimal point, TSi=TS, for all [i]. 

We now consider L possible DBMS-configurations (indexed by l). Each has a fixed cost CS/F
l (e.g., DBMS-software, 

hardware) and variable cost that increases (assumed linearly) with data volume (e.g., owing to storage space). Hence 
with the time span CS/V

lTS (CS/V
l represents the variable cost required for covering the entire time span available). We 
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also assume an upper limit on storage capacity per configuration AS
l, as certain DBMS-configurations cannot 

manage high data volumes. Hence, if θ is the data volume for covering the entire time span, the storage constraints 
are {θ(TS)≤AS

l}. 

Following (1), the DBMS configuration can be framed as a design-optimization model – select a configuration 
(indexed by l) and time span coverage TS such that the net benefit (PS) is maximized:  

(19)   TSCCTSUCUP VS
l

I

i
FS

l
Max
i

S
l

S
l

S
l

i /
1

/ −−=−= ∑ =
α  

s.t.   0≤TS≤ min (1, AS
l /θ) per l 

where   PS
l
 , US

l , CS
l -  Overall net benefit, utility and system cost, respectively 

Ui
Max

  - Maximal utility of information product [i], considering the other characteristics 

in (9), i.e., ( )( )( ) iinimiii TMN

n ni
M

m miiii
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i ePCATACRDUU

τγηδβ −

== ∏∏=
1 ,1 ,

* ,,  

TS -  Time span coverage 

αi, -   Utility-sensitivity parameter to the time span coverage  

CS/F
l  -   Fixed setup cost 

CS/V
l -   Variable cost of covering the entire time span available 

{AS
l}-   Data-volume capacity  

θ -   Data-volume required for entire time span coverage 

 

Illustrative Example 3: A large hospital evaluates a DW for analyzing treatment history (e.g., treatments, 
medications, and labs.) Possible DW usages are: (a) exploitative – the DW can support on-going reporting and 
monitoring needs such as inventory tracking, resource utilization, and treatment-history for specific patients. The 
anticipated utility from these usages (Ua) has a relatively low time span sensitivity parameter (αa). (b) Explorative – 
the DW can potentially support advanced analyses such as detecting shifts in resource utilization, identifying 
patterns of reactions to drugs, and segmenting treatment history along demographic and socio-economic attributes. 
The anticipated utility is Ub with success probability of (Pb<1) and failure probability (0 utility) of 1-Pb, and a 
relatively high time span sensitivity parameter (αb.). 

Covering the entire time span (TS=1) requires a large data volume (θ). Hence, the designer considers including only 
a portion of the available time span. L possible database configurations (indexed by l) are considered for 
implementing the DW, each having a different fixed cost (CF

l), variable cost for covering the entire time span (CV
l), 

and data-volume capacity (Al). Based on these parameters (Table 4), which system configuration (l) should be 
chosen, and what should be the dataset time span coverage (TS)? 

 

Table 4. Example 3 – Parameters 

 Exploitative  Explorative  DBMS-configuration l 
Maximal Utility Ua Ub  

Probability  ~1 Pb  
Time Span Sensitivity Parameter αa αb  

Maximal Data-Volume Requirement Θ 
Data-Volume Capacity Al 

Fixed Cost CF
l 

Maximal Variable Cost CV
l 
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For optimality, we evaluate (19) along all L configurations:  

(20) TSCCTSUpTSUP V
l

F
lbbal

ba −−+= αα , s.t., 0≤TS≤ min (1, AS
l /θ) 

Setting the first derivative to 0, we can obtain a candidate optimal-solution:  

(21) 011 =−+=∂∂ −− V
lbbbaal CTSUpTSUTSP ba αα αα  

If this solution is outside the [0, min (1, AS
l /θ)] range, and/or if the second derivative of (20) is positive (indicating a 

minimum, not maximum), the optimal solution is either (a) above the range, hence, we select the lower of the entire 
time span (TS=1) and the capacity/size ratio (TS= AS

l /θ,) or (b) below the range, hence, the constraint enforces 
TS=0. The latter option implies that the evaluated configuration cannot yield a positive net benefit and hence, should 
not be considered. After obtaining the optimal time span and the net benefit as per configuration (20), we choose the 
one that maximizes net benefit.  

Unlike the two previous examples, where under certain circumstances explorative usage was not implemented, here 
it will always be supported to some extent, assuming that at least one configuration yields positive net benefit. 
However, real-option considerations may arise with a change to the model – e.g., a lower-bound constraint on the 
time span coverage for explorative use (i.e., TSb≥TS*). Under this constraint, we may have one configuration 
(indexed l/a) that optimizes exploitative usage only with time span coverage of TSa<TS* and offers a net benefit of 

a
V

al
F

alaaal TSCCTSUP a
/// −−= α , and another configuration (indexed l/b) that optimizes both usages, with time 

span coverage of TSb≥TS*, and a net benefit of b
V

bl
F

blbbbbabl TSCCTSUpTSUP ba
/// −−+= αα . Supporting all 

usages has a real-option gross-benefit of ( ) baa
bbbaba TSUpTSTSUROGB ααα +−=  and a corresponding cost 

differential of ( )a
V

al
F

alb
V

bl
F

bl TSCCTSCCROCD //// +−+= . This is chosen if ROGB≥ROCD. 

Storage capacity is a key design-decision in DW environments (as is processing capacity, not evaluated here). 
Implementing a large capacity is expensive – DBMS software that supports high-volume storage is expensive to 
license and requires extensive labor. Alternately, a cheaper DBMS might limit storage capacity and, hence, the 
ability to enhance the DW to support new information products and usages. Similarly, time span coverage can 
significantly impact utility, storage capacity, and investments in DBMS. Extending the model for quantifying the 
effects of time span choices will offer the DW designer a useful design tool. Record density and field-structure also 
affect the dataset volume and consequently the storage capacity and should be examined. 

Conclusions and Directions for Future Research 

This study contributes to design research by developing an economics-driven framework and evaluating related 
constructs for a critical task, the design of a DW. It explores the link between design decisions and economic 
benefits and suggests that modeling the effects of design decisions on economic performance can enhance design 
processes. The innovative approach proposed here is founded on this notion. The need to support both exploitative 
and explorative usages in a DW environment has important design implications – usages may substantially differ in 
data-utilization patterns and levels of uncertainty, and these differences can influence and direct design decisions. 
Similarly, design decisions influence and can be influenced by costs – higher capacity, faster performance, and 
sophisticated capabilities require larger investments. Modeling the effect of design decisions on utility and costs can 
assess trade-offs and identify economically optimal designs.  

The DW environment is modeled as a layered stack. We treat capacity in each layer as a real-option investment 
decision. The utility gained by data usage (topmost layer) is often uncertain. Adding capacity to the layers below 
allows timely and often cheaper support to new types of usages and, hence, enhances opportunities for utility 
contribution. Our real-option model addresses common DW design trade-offs – investing in expensive slack 
capacity for explorative usage with a potential for utility gains at a substantial risk, versus optimizing capacity for 
exploitative usages with more certain returns. The design scenarios demonstrate this, highlighting that real-option 
considerations exist along all DW-layers. 

Although the economic-aspects of IS have been recently discussed, their impact on IS design is not apparent. 
Examining IS/IT design from an economic perspective offers substantial benefits. We view this framework as a 
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significant first step in this direction. The evaluated decisions models address specific design scopes and limit the 
number of design characteristics within each. In practice, DW environments involve a complex set of design 
decisions with many inter-dependencies, constraints, and economic effects. Our preliminary models simplify the 
formulation of utility/cost effects and must be enhanced. Turning these into useful design tools will require not only 
analytical enhancements but also quantitative parameter assessments. A common approach for parameter  
assessment is decision-calculus (Little, 1970), with a long history of successful applications. Using this, parameters 
can be solicited from managers or estimated empirically. A plethora of successful modeling and parameter-
estimation methodologies have been described in literature (e.g., Little, 1970; Eriksen and Berger, 1987; Hanna et 
al., 2005). These can help extend the models that we suggest here into useful design tools.  
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