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Abstract 

The ability to predict the choices of prospective passengers allows airlines to alleviate the need 
for overbooking flights and subsequently bumping passengers, potentially leading to improved 
customer satisfaction. Past studies have typically focused on identifying the important factors that 
influence choice behaviors and applied discrete choice framework models to model passengers’ 
airline choices. Typical discrete choice models rely on two major assumptions: the existence of a 
utility function that represents the preferences over a choice set and the linearity of the utility 
function with respect to attributes of alternatives and decision makers. These assumptions allow 
the discrete choice models to be easily interpreted, as each unit change of an input attribute can 
be directly translated into change in utility that eventually affects the optimal choice. However, 
these restrictive assumptions might impede the ability of typical discrete choice models to deliver 
operational accurate prediction and forecasts. In this paper, we focus on developing operational 
models that are intended for supporting the actual prediction decisions of airlines. We propose 
two alternative approaches, pairwise preference learning using classification techniques and 
ranking function learning using evolutionary computation. We have empirically compared these 
approaches against the standard discrete choice framework models and report some promising 
results in this paper.  

Keywords: Airline choice prediction, preference learning, ranking function, classification, genetic 
programming  
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Introduction 

Success in a global economy is linked to a company’s ability to offer lower prices, better service, and greater choice 
than its competitors. In addition, a company must understand the buying behavior of its customers and be able to use 
this knowledge to predict how consumers make choices (Hardie et al. 1993, Manski 1997). This paper focuses on 
the airline industry, which has long been noticed for its limited range of choices and poor profitability. We propose 
and compare new approaches to help airlines predict consumer behavior, thus minimizing the need to overbook 
flights and subsequently bump passengers (Chatwin 1999).   

One of the greatest challenges in aviation management is to understand why travelers select one airline over another 
(Peles et al. 2001). The optimal number of overbooking reservations for a given flight can be affected by knowing 
how passengers select an alternative carrier when their first-choice flight is not available (McGill & Van Ryzin 
1993). Selection is influenced by a number of factors (e.g. price, convenience, quality of customer service, etc.), all 
of which must be critically examined in order to implement the appropriate revenue management tools and strategies 
(Proussaloglou & Koppelman 1995). Traditionally airline choices have been modeled by the discrete choice models 
(e.g. logit and probit) using the maximum likelihood estimation method (Suzuki 2006; Swait 2001). In these models, 
the probability of observing a particular alternative as the consumer choice is related to the utility derived from the 
consumer and alterative attributes through a logit or probit function. The utility is typically derived through linear 
combination of consumer and alterative attributes. This method maximizes the joint probability of observing actual 
choice patterns of the consumers included in the dataset. In other words, it minimizes the discrepancies between the 
actual choices and the predicted choices across all samples of observations. While this method produces models that 
can be nicely interpreted to explain consumer choice behaviors, its restrictive assumptions prevent it from fully 
exploiting the data patterns to give highly accurate predictions. The objectives of these studies have been to explain 
consumers’ choice behaviors rather than to support actual prediction and forecasting decisions. 

In this paper framed as a design science work (Hevner et al. 2004), we provide a different perspective to the airline 
choice prediction problem and focus on developing operational models that are intended for supporting the actual 
prediction decisions of airlines. We propose two alternative approaches: (1) pairwise preference learning using 
binary classification techniques and (2) ranking function learning using evolutionary computation, for predicting 
individual choice behavior. The pairwise preference learning approach drops the assumption regarding the existence 
of the utility function that fully represents the consumers’ preferences over the choice set. A pairwise preference 
function is estimated for each pair of alternatives. The choice prediction is obtained by probabilistically 
consolidating the pairwise predictions for all pairs of alternatives involved in a choice set. The ranking function 
maintains the notion that a single function can fully represent the preferences but drops the linearity assumption and 
searches a much larger space of functional forms. We have conducted empirical evaluation using a real-world airline 
choice case study. We investigate the prediction of travelers’ selections over nine major airlines and evaluate the 
performance of these alternatives and the traditional approach. Results from this research will shed light on 
intelligent decision making in airlines. Furthermore, these methods can be readily generalized to other consumer 
choice problems. The insights gained from this study can help businesses make effective decisions on pricing, yield 
management, and marketing strategies.  

Background and Related Work 

The modeling of individual human behavior in choice decisions has played important roles in predicting demand 
and market shares in transportation and marketing studies (Anderson et al. 1992, Ben-Akiva and Lerman 1985). 
Discrete choice models deal with choice decisions where the choice set contains a finite number of alternatives that 
can be explicitly listed. Choice of an airline alternative is a typical application of discrete choice models. In discrete 
choice modeling, two concepts of choice sets are typically considered, the universal choice set and the reduced 
choice set.  The universal choice set contains all potential alternatives in the context of the application, while the 
reduced choice set is the subset of the universal choice set considered by a particular individual for a particular 
choice decision. The reduced choice set could be different across individual choice decisions. This feature makes 
discrete choice modeling distinct from the multi-class classification problem in the data mining literature. It would 
be problematic to formulate a discrete choice problem as a multi-class classification problem. For example, consider 
that a universal choice set of three airlines and the data on a set of travelers’ choice decisions are available as the 
sample observations. One might try to formulate this problem as a ternary classification problem by defining the 
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choice from the three airlines as the class variable and the airline-specific attributes for all three airlines and traveler 
attributes as the features. However, for a particular observation of choice decision with a reduced choice set of only 
two airlines as alternatives, the features corresponding to the attributes of the third airline are not well defined.  

An important theoretical foundation of discrete choice models is the neoclassical economic theory on preferences 
and utility, which is built on a set of axiomatic assumptions on pairwise preferences. A decision maker i is assumed 
to be able to compare two alternatives, a and b, in the (reduced) choice set Ci using a preference operator PRi. If a 
PRi b, the decision maker i either prefers a to b, or is indifferent. We are interested in modeling individual decision 
maker choice behavior and focus on the individual-specific preference relations. The preference operator is 
supposed to have the following properties: 

1. Reflexivity:   a PRi a, ∀ a ∈ Ci. 

2. Transitivity:  a PRi b and b PRi c ⇒ a PRi c, ∀ a, b, c ∈ Ci.    (1) 

3. Completeness:   a PRi b or b PRi a, ∀ a, b ∈ Ci.  

Because the choice set Ci is finite, the existence of an alterative that is preferred or indifferent to all others is 
guaranteed. That is 

   ∃ ai* s.t. ai* PRi a, ∀ a ∈ Ci.      (2) 

The most important result of the utility theory is the existence of a function because of the three properties of the 
preference operator (Varian  1992)  

Ui : C  → R: a → U(a)       (3) 

such that 

a PRi b ⇔ Ui(a) ≥ Ui(b), ∀ a, b ∈ Ci.  

Therefore, the alternative ai* defined in (2) may be identified as  

)(maxarg* aUa i
Ca

i

i∈
= . 

The choice decision problem is then equivalent to assigning a utility value (by certain utility function Ui) to each 
alternative for each decision maker i, and selecting the alternative ai* with the highest utility.  

The concept of utility and the utility theory plays an important role in economics and derivative disciplines. 
Transforming the choice decision problem to the search of a utility function drastically reduces the complexity of the 
problem, especially for problems with large discrete choice sets or even continuous choice sets. However, the 
reflexivity, transitivity, and completeness assumptions present strong limitations for direct application of the 
preference and utility theory to practical discrete choice problems, mainly due to the failure to capture the 
uncertainty aspect of human choice decisions. Most discrete choice modeling literature is based on the random 
utility model (Manski 1977), which makes the neoclassical utility theory applicable in practical contexts by 
modeling utility as a random variable to reflect its uncertainty. The utility for decision maker i regarding alterative a 
is given by  

Uia = Via + εia
 ,  

where Via is the deterministic part of the utility and εia is the stochastic part. With this probabilistic formulation, the 
choice modeling problem is then transformed in most studies to the search of a deterministic utility function that 
takes alterative attributes and/or decision maker attributes as input and assigns a utility to each alternative a for each 
decision maker i that best fits the observed choices and alterative and decision maker attributes.  

The traditional econometric approach to modeling individuals’ choice behaviors is to specify a decision maker’s 
choice probability for each choice alternative by applying a logit-type function on the utility of each alternative to 
the decision maker and calibrating the model parameters by maximizing the log of likelihood function (typically 
using the Newton-type numerical optimization algorithms).  Let Uia be the decision maker i's utility of choosing 
alternative a.  Then, using the standard multinomial logit model (Anderson et al. 1992, Ben-Akiva & Lerman 1985), 
the probability that an individual i chooses an alternative a from the choice set Ci is given by the form: 
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Here Xqia is the qth choice-specific variable (attribute) of alternative a for decision maker i, βq’s are the unknown 
model parameters to be empirically derived, and εia is the stochastic error component.  Using (4) and (5), the 
likelihood function that we seek to maximize can be derived as follows: 
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= ∈

=
n

i Ca
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i
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       (6) 

where yia is a binary variable that is coded 1 if individual i chooses alternative a, and coded 0 otherwise.  Typically, 
however, the model parameters are estimated by maximizing the log of (6), i.e., the log-likelihood function, because 
of the ease of estimation.  Thus, parameter estimates are usually obtained by performing the following maximization 
procedure: 
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.      (7) 

The nice feature of the standard discrete choice models is that the impact of the factors (choice-specific variables) on 
the choice decision can be easily interpreted. Coefficient βq in (7) can be directly interpreted as the amount of utility 
each unit of factor Xq brings to the decision maker. Most previous studies in marketing and transportation performed 
discrete choice modeling for the purpose of understanding the major factors that shape the consumer demand and the 
market structure. Being different from these previous studies, we argue that in addition to the explanatory 
understanding of the impact of factors that affect consumer choices, the ability to predict consumer choices alone 
can also be valuable. Given a highly accurate choice prediction model, analysts apply the model to massive data on 
consumer and choice characteristics to obtain estimates regarding the consumer demand on the alternatives given a 
choice set, and therefore the market share of each alternative. Detailed information on the impact of individual 
factors on choice behavior can also be obtained using a simulation approach. The ever-increasing computational 
capacity has made such analyses practical for real-time operations. We are no longer restricted to only those models 
that can be easily interpreted by human brain. In this study, we attempt to seek alternative approaches that can give a 
more accurate prediction of consumer choices than standard discrete choice models at the cost of sacrificing the 
interpretability of the predictive model. In the rest of the paper, we will focus on the airline choice problem as a case 
study.  

Airline Case Study 

A number of earlier studies have empirically modeled the airline choices of travelers using the multinomial logit 
model or the nested logit model, along with the standard maximum-likelihood estimation procedure (e.g. Morrison 
& Winston 1989; Nako 1992; Proussaloglou & Koppelman 1995; Yoo & Ashford 1996; Peles et al. 2001; Suzuki 
2004, 2006). Upon examining factors that impact passengers’ decision-making, these studies have generally 
concluded that travelers (whether business or leisure) tend to choose the airlines that offer lower airfares, more 
direct services, and frequent departures to the preferred destination.  Some studies also claim that travelers tend to 
choose airlines in which they are “active” participants of a frequent-flyer or other rewards program.  Suzuki (2004) 
examined the potential impact of bumping, flight delays, and baggage mishandling (lost, damaged, delayed, or 
pilfered) on future airline-choice decisions.  The study concluded that service-failure experiences of this type are 
unlikely to have significant impact on passengers’ future airline choices.  

While the aforementioned studies have provided important normative implications about airline managers, as the 
discrete choice modeling literature in general as discussed in the previous section, they focused only on the 
determinants of airline-choice behaviors but not the ability of models to predict the actual choices of passengers. 
Like most econometrics analyses,  these studies typically attempt to find the model that best fits the entire sample 
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observations, and they relied on the interpretation of the resulting model parameters to answer the research 
questions, such as the impact of service-failure experiences on airline choice. Suzuki (2006) was probably the first 
study that separated the sample observations into calibration (training) and forecasting (testing), and then tested the 
accuracy of the standard multinomial-logit model in predicting the actual choices of passengers in the forecasting 
sample (i.e., the sample that was not used to calibrate the models). The results showed that the standard choice 
models can accurately predict up to 39% of the actual choices of the travelers in the forecasting sample. (Note that 
the average number of choice alternatives for each decision maker was about 17, so that the expected accuracy of a 
random selection is about 5.8%.) The results can hardly be generalized, however, since the study performed only 
one random extraction of the forecasting sample.  In other words, the accuracy of logit-type models in forecasting 
the actual choices of air travelers has not been thoroughly examined using empirical data.  Yet, as mentioned earlier, 
this is a critical airline management issue. Airline performance can be substantially improved by accurately 
predicting customers’ airline-choice behaviors. We would like to systematically test the choice prediction accuracy 
of the standard discrete choice models and seek alternative approaches that can deliver higher accuracies. 

Central to our investigation is data collected from the Des Moines (Iowa) International Airport (DSM) service area, 
which is defined by the Iowa Department of Transportation (IADOT) as the 14 Iowa counties within a one-hour ride 
(75 miles) of Des Moines.  The total population of the area is approximately 700,000; the total number of 
households in the service area is about 272,000.  The Des Moines International Airport is the only commercial 
airport with scheduled services in the area. Designed to meet the air travel needs of central Iowa residents, it is 
located in the southern part of the Des Moines metropolitan area.  DSM does not serve as a hub airport for any 
airline. While most travelers in the immediate service area use DSM as the departure airport (trip initiating point), 
many travelers residing at the “edge” (near the borders) of the area use other facilities.  The IADOT (1999) 
estimates that about 31% of the travelers residing in the service area use “out-of-region” airports on a regular basis. 

According to the IADOT and DSM airport management, the out-of-region airports most often used by regional 
travelers are Kansas City International, Minneapolis-St. Paul International, and Omaha International.  Kansas City 
and Omaha are served by Southwest Airlines, a major, low-cost carrier, and Minneapolis is a Northwest Airlines 
hub.  The distances from Des Moines to Kansas City, Minneapolis, and Omaha are approximately 200 miles, 230 
miles, and 150 miles, respectively.  There are other airports within a 250-mile radius of Des Moines, but they offer 
limited services (limited airlines and service frequencies) and, therefore, are not widely used by travelers in the 
service area. 

Since most travelers in our study initiated trips from the aforementioned airports (DSM, Kansas City, Minneapolis, 
and Omaha), we used these facilities to model travelers’ choice behavior.  The major airlines serving these four 
airports are American, America West, Continental, Delta, Northwest, Southwest, TWA (which is now American), 
United, and U.S. Airways.  The summed passenger traffic of these nine airlines accounts for approximately 95%, 
90%, 86%, and 90% of the overall airport traffic in DSM, Kansas City, Minneapolis, and Omaha, respectively.  
Given this condition, we treat these nine major airlines as the universal choice set of the travelers in our study area.  
The actual choice set of a traveler, however, is a subset of these nine airlines, as there is no route in which all the 
nine airlines provide scheduled services. 

To collect the necessary data, passengers in the study area were surveyed in June 2001. The survey was pilot tested 
by using about 20 people, who are mainly businesspeople and graduate students. The final survey was created based 
on their comments and suggestions. Respondents were asked to provide information on the most recent domestic trip 
originating from DSM as well as any trip that originated from any of the aforementioned non-DSM (out-of-region) 
airports.  Included in the survey were questions relative to date of trip, destination, and carrier chosen for each trip. 
A total of 529 responses were obtained.  The total number of collected trip data (complete data) was 635, indicating 
that an average of 1.2 trip data was provided by each respondent (some respondents provided data on both the trip 
from DSM and that from other airport(s)).  Of the collected 635 trip data, 104 were deleted from our sample for the 
following reasons: (1) inadequate data (chose airlines other than the nine major airlines); (2) represented trip 
occasions in which travelers had only one choice of airline (travelers did not “choose” airlines); or (3) trip dates 
were not recent enough for travelers to have accurate memories (more than two years old).  After eliminating these 
“unusable” trip data, the total number of sample data reduced to 531.  The demographics of the survey respondents 
are reported in Table 1.  Table 2 describes the airline attributes. These variables were chosen based on the previous 
studies on airline choice modeling. We have included major factors that have been claimed to significantly affect 
airline choices. 
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Table 2. Airline Attributes 

Attribute Description 

Frequent flyer 
program (FFPijt) 

This is a binary variable indicating the FFP membership of traveler i for airline j at time t.  To 
calculate this variable, we identify, for each traveler i, a set of airlines that satisfies the 
following conditions at trip occasion t: (1) traveler i has been a FFP member of the airline for 
two or more years, and (2) has used the airline at least once during the last two years.  The FFP 
variable of traveler i for airline j at time t is coded 1 if j satisfies both of these conditions 
simultaneously, and is coded 0 otherwise.  Notice that this procedure counts only the airlines for 
which a traveler is an “active” FFP member. 

Airfare 
(FAREijt) 

Since respondents had poor memories of actual airfares (especially for the airlines that were not 
chosen), we use the perceived airfares (a 0/1 variable) to capture the price effect.   For each of 
the nine major airlines, respondents were asked to indicate whether they consider the airline to 
be a “low-fare carrier” (fares are lower than the industry average).  If a traveler considers a 
particular airline to be a low-fare carrier, the airfare variable of this airline for this traveler is 
coded 1, and is coded 0 otherwise. 

Service 
frequency 
(FREQijt) 

Service frequency measures the number of flight services offered by a carrier on a given route, 
and reflects the relative convenience of the carrier’s flight schedules (Proussaloglou 
&Koppelman 1995).  We use the Official Airline Guide (OAG Flight Guide North America, 
Dec. 2000 issue) to obtain this variable.  The OAG Flight Guide lists scheduled airline services 
(including both direct and “legal” connection flights) of virtually all the origin-destination 

Table 1. Demographics of Survey Respondents 
  Average of Total count  
  all travelers of travelers  
Travel frequency (per year) 9.3 -  
Traveler age 43.2 -  
Participating freq. flyer programs 1.4 -  
Business travelers (%) 36.8 -  
Leisure travelers (%) 63.2 -  
     
Freq. flyer program membership    
 American - 151  
 America West - 31  
 Continental - 20  
 Delta - 70  
 Northwest - 105  
 Southwest - 10  
 TWA - 132  
 United - 214  
 US Air - 27  
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routes in the U.S. (see OAG Flight Guide for the definition of legal connection flights).  By 
using this publication, we count, for each airline j, the number of scheduled flights offered per 
week in the origin-destination route flown by traveler i at time t. 

Flight miles 
(MILEijt) 

Flight miles reflect the on-flight trip length (or time) of travelers.  For many trip occasions, 
travelers cannot use non-stop flights because of the unavailability of such services (this is 
particularly true in non-major airports such as DSM).  On these occasions, travelers may fly 
into a hub airport that is actually in a different direction than their final destination.  This type 
of inefficient routing (more trip miles) decreases traveler utility.  We use the Data Bank 1A of 
U.S. Department of Transportation, a 10% sample data of all the U.S. domestic airline tickets, 
to obtain this variable.  Using data from January 2000 to December 2000, we extract all of the 
sample-ticket data in the origin-destination route flown by traveler i at time t, and calculate the 
average flight miles (itinerary miles) for each airline. 

Direct flight 
(DIRECTijt) 

This variable reflects the availability of a carrier’s direct flights in a given route.  We use the 
average number of flight legs (average coupons) to measure this variable (the smaller the 
average flight legs the more direct the services).  Using the Data Bank 1A for the time periods 
between January 2000 and December 2000, we extract all the sample-ticket data in the route 
flown by traveler i at time t, and calculate the average number of flight legs by airline. 

 

Proposed Alternative Approaches 

In this study, we offer a different perspective to the airline choice prediction problem, that is, to support the actual 
prediction decisions of airlines. In order to achieve the highest possible prediction accuracy based on the observed 
data, we drop the two major assumptions of the discrete choice model framework: the existence of the utility 
function that fully represents consumers’ preference in (3) and the linear form of the utility function in (5). Not 
relying on these assumptions, the resulting models cannot be nicely interpreted as the discrete choice models, where 
each unit change of a particular input variable is associated with a constant change in utility of the alternative for the 
decision maker. On the other hand, our proposed approaches are able to better capture the data patterns present in 
the observed data and can be used to derive models that better fit the observed data and provide more accurate 
predictions on previously unseen cases.  

Pairwise Preference Learning 

The random utility models still rely on the three axiomatic assumptions regarding preferences, which justify the 
existence of the deterministic utility function. In practical choice decisions, one or more axiomatic assumptions in 
(1) might not hold (especially the transitivity assumption). Even if all assumptions hold for a particular domain, 
identifying the utility function might be an unnecessarily difficult formulation of the problem. Ultimately, the 
decision maker cares about the optimal choice, not necessarily about how much more utility is associated with this 
choice than alternatives. This detailed utility information is not necessarily relevant for choice decision, and the 
choice data are not suited for inferring such information. Instead of relying on these fundamental assumptions and 
searching for the utility function for the entire choice set, we propose to focus on the modeling of pairwise 
preferences regarding specific pairs of alternatives. For a particular pair of alternatives, a binary choice model is 
estimated, which may have a simpler functional form than a utility function. Furthermore, the unobserved 
heterogeneity among the alternatives can be fully captured by allowing different parameterization or even different 
functional forms for different pairs of alternatives. Especially with choice decision problems that have relatively 
small choice sets, such as the airline choice modeling problem in our context, estimating binary choice models for 
each pair of alternatives is feasible and practical.  

Specifically, in our pairwise preference learning approach, a binary choice function  

   




=
otherwise ,0

  if ,1
),,(

 ba PR
baif i       (8) 
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is estimated from the observed data. The binary choice function takes the attributes of decision maker i and 
attributes of the alternatives a and b as input. Domain knowledge can be leveraged to construct meaningful derived 
attributes for specific application contexts. For example, when alternatives have a common attribute X (e.g. the 
ticket price of the itinerary), one may decide that including a derived attribute Xa – Xb (price difference) might be 
preferred to including Xa and Xb as two separate attributes into the model. Any binary classification algorithms can 
be directly applied to estimate this binary choice function. The choice of the specific algorithm (i.e., logistic 
regression, decision trees, neural network, and support vector machines) will depend on the trade-off between 
predictive performance and understandability of the resulting models.   

Because no restrictive assumptions are imposed on the binary preference operators, the binary choice models 
learned from the data are capable of capturing more accurate patterns regarding preferences on the pair of 
alternatives involved. However, the set of binary choice models might not be compatible with each other, therefore 
producing preference relations that do not satisfy transitivity assumption. Take a three-alternative set C = {a, b, c} 
as an example, for decision maker i three binary choice functions need to be estimated, f(i,a,b), f(i,b,c), and f(i,a,c). 
As these binary choice functions are estimated separately, situations such as the following are likely to occur: f(i,a,b) 
= 1, f(i,b,c) = 1, and f(i,a,c) = 0, corresponding to preference relations a PRi b, b PRi c, and c PRi a. Such 
incompatible preference relations are inconsistent with the transitivity assumption and will lead to failure in 
identifying the optimal choice from a choice set. A reconciliation mechanism that is able to incorporate uncertainty 
is needed. Unlike the random utility theory, where a stochastic term is added to the utility associated with each 
alterative, we assume the binary preference relation itself to be stochastic due to unobserved attributes of the 
decision maker and the alternatives as well as the general uncertainty of human preference. Thus, in our framework, 
we would prefer probabilistic binary classification algorithms such as logistic regression and naïve Bayes classifier 
that are able to output quantities relating to the probability of predicted preference relations: 

g(i, a, b) = P(f(i, a, b) = 1) = P(a PRi b).     (9) 

For a given choice set C = (a1, … aN), the probability for at to be the optimal choice (i.e., at PR a, ∀ a ∈ C ) for 
decision maker i would be determined by  

   ∏
≠∈

=

taaCa
tt aaigCia

,

),,(),,(π  

assuming that the uncertainty of preference for different pairs of alternatives are independent from each other. The 
optimal choice from the choice set C for decision maker i is then identified as  

   ),,(maxarg* Ciaa
Ca

i π
∈

∈        (10) 

Note that when the binary classification algorithm does not produce probability interpretation of the choice 
outcomes, (9) reduces to (8) and (10) becomes a simple majority rule that treats the alternative with the largest 
number of dominated alternatives as the optimal choice.  

Ranking Function Learning Using Evolutionary Computation  

Another approach is to learn a function for ranking the airline choices. This ranking function is a (nonlinear) 
function of the attributes of an airline option and the decision maker, such that the airline option with the highest 
ranking is predicted as the one that will be chosen by the passenger. Observing that evolutionary computation 
techniques, such as genetic programming (GP), have been successfully used to learn ranking functions in other 
domains, such as personalized Web search (Fan et al. 2005), we apply GP in learning a ranking function for the 
airline choice prediction problem. 

Evolutionary computation is a heuristic search approach that simulates natural evolution. Genetic algorithms (GA) 
and GP are two major evolutionary computation techniques and have been widely used in difficult optimization 
problems (Banzhaf et al. 1998). The basic idea is to evolve a population of individuals (candidate solutions) from 
generation to generation toward convergence to the best possible individuals. GA and GP follow essentially the 
same procedure but differ in their representations of individuals. While GA usually represents an individual with a 
fixed-length binary string, GP is much more flexible and is capable of representing an individual with any possible 
(variable-size) computer program. Thus, GP can learn nonlinear functions without fixed pre-defined forms. This 
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allows the linearity assumption for the utility function (5) made by the discrete choice model framework to be 
relaxed such that a much larger space of function forms can be explored. 

We adopt a tree structure in the genetic encoding of a ranking function for airline choices. There are two kinds of 
tree nodes, terminals and functions. Terminals are either attributes or constants. Functions include arithmetic 
operations, + (weighted addition), – (weighted subtraction), × (multiplication), and  ⁄ (division). + and – take three 
parameters. × and  ⁄ take two parameters. Figure 1 illustrates the GP representation of a sample ranking function.  

GP usually employs three major genetic operations: reproduction, crossover, and mutation. Individuals are assessed 
by a goodness measure, referred to as fitness. For airline choice prediction, the fitness value of an individual is the 
accuracy of the corresponding ranking function. A selection mechanism is then used such that fitter individuals get 
better chances to survive and to produce descendants. Crossover exchanges some characteristics across multiple 
(usually two) selected individuals (parents) to generate new ones (children.) It combines the characteristics of 
parents by swapping a selected sub-tree of one parent with a selected sub-tree of the other. Mutation brings in 
innovation by changing some characteristics of a selected individual. It randomly selects a point in a tree and 
replaces the sub-tree starting at that point with a new randomly generated sub-tree.  

We adopt the tournament selection method. When a tournament is held to select a parent, a small number of 
participants are randomly drawn from the current population and the winner, the fittest individual in the tournament, 
is selected. The selection mechanism also takes the size of a candidate solution into account. If two solutions have 
identical fitness values, the smaller solution is preferred. This preference of smaller solutions helps alleviate 
potential overfitting problems (i.e., a ranking function has unnecessarily high complexity and relatively low 
predictive power.) As previous studies have found that incorporating elitist selection tends to increase the 
convergence speed, we also incorporate this mechanism. It can be viewed as a special selection and reproduction 
mechanism, where the best individual reproduces itself. 

 

 

(a) Ranking Function 

FFP / (FARE + 0.75 (DIRECT + 0.71 MILE) (DIRECT − 0.27 FARE)) 

 

(b) GP Representation 

 

Figure 1.  GP Representation of a Sample Ranking Function 

Empirical Evaluation 

We have empirically evaluated the proposed alternative methods using the Iowa dataset. For the pairwise preference 
learning approach, the independent variables we used for estimating the binary choice function f(i, a, b) regarding 
airlines a and b for traveler i include the following: FFPia, FFPib, FAREia, FAREib, MILEia − MILEib, DIRECTia − 
DIRECTib, BUSINESSi. BUSINESSi indicates whether the trip is for business or leisure purpose. Four commonly-
used classification algorithms were used to construct the binary choice models, including the binary logistic 
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regression, decision trees (Quinlan 1986), back-propagation neural networks (Lippmann 1987), and support vector 
machines (Cristianini & Shawe-Taylor 2000). For these classification algorithms, we leveraged the implementation 
in the WEKA package (Witten & Frank 2005).  

The GP program was implemented in Java by extending the GPsys system (developed by Adil Qureshi). The 
parameter values used in the evaluation are listed in Table 3. The selection of parameter values was based on 
previous general guidelines. For example, small mutation rates and large crossover rates have been found to be 
generally effective. 

 

Table 3. Genetic Programming Parameter Values  

Parameter Value 
Population Size 200 
Number of Generations 500 
Crossover Rate 0.8 
Mutation Rate 0.1 
Tournament Size 7 
Max Depth of Tree 20 
Max Depth of Tree at Creation 10 
Max Depth of Sub-tree at Mutation 5 

 

We used 10-fold cross-validation (Kohavi 1995) to estimate the accuracy of each learned prediction model. Cross-
validation randomly divides a training dataset into approximately equal-sized, stratified sub-sets called folds, and 
repeatedly uses each fold for performance testing while the other folds are used for training a model. The average of 
the testing performance measured over the runs is then used as an overall performance estimate. Empirical 
evaluation has shown that 10-fold cross-validation usually results in reasonably accurate estimates (Kohavi 1995). In 
addition, we repeated 10-fold cross-validation 20 times for each method to get more reliable estimates. 

 

Table 4. Cross-validation Performance Comparison 
Method Average 

Accuracy 
Standard 
Deviation 

Multinomial Logit  0.4120 0.0369 
Pairwise Preference Learning   
      Binary Logit 0.5160 0.0647 
      Decision Tree 0.4651 0.0704 
      Neural Network 0.5117 0.0613 
      Support Vector Machines 0.5003 0.0657 
Ranking Function Learning 0.5477 0.0633 

 

Table 4 presents the average accuracy and standard deviation of the cross-validation testing of the traditional 
multinomial logit model and the proposed pairwise preference learning and ranking function methods. Table 5 
presents the improvements of the proposed approaches over the traditional approach. Both proposed approaches 
significantly outperformed the traditional multinomial logit model for our data. Pairwise preference learning using 
decision tree achieved the modest improvement of 5.31%. Pairwise learning with binary logit model, neural 
network, and support vector machines increased prediction accuracy by 8.83%, 9.96%, and 10.39%, respectively. 
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The ranking function learning using genetic programming achieved the best prediction accuracy of 54.77%, a 
13.57% improvement over the multinomial logit model.  

 

Table 5. Improvement of Proposed Methods on Cross-validation Performance 
Improvement Over Multinomial Logit Method 

Mean 95% Interval 
Lower Bound 

95% Interval 
Upper Bound 

Pairwise Preference Learning    
      Binary Logit 0.1039 0.0865 0.1214 
      Decision Tree 0.0531 0.0356 0.0706 
      Neural Network 0.0996 0.0821 0.1171 
      Support Vector Machines 0.0883 0.0708 0.1058 
Ranking Function Learning 0.1357 0.1182 0.1531 

 

We also present the accuracy measures obtained by building model and testing the model using the entire dataset in 
Table 6. We refer to this measure as the within-sample accuracy, which corresponds to the typical goodness-of-fit 
measures in discrete choice model framework and other explanatory-drive data analysis. We observed that the 
multinomial logit model and ranking function method had similar within-sample accuracy and prediction accuracy. 
The pairwise preference learning methods, however, had significantly higher within-sample accuracy than the 
prediction accuracy. Both proposed approached achieved similar fit to the data that is significantly better than that of 
the traditional discrete choice model. 

 

Table 6. Accuracy of the Complete Dataset 

Method Accuracy 
Multinomial Logit  0.4181 

Pairwise Preference Learning  
      Binary Logit 0.5989 

      Decision Tree 0.6328 

      Neural Network 0.6704 

      Support Vector Machines 0.5612 

Ranking Function Learning 0.5725 

 

The performance comparison results confirmed our intuition that by relaxing the restrictive assumptions of the 
traditional discrete choice model framework, our proposed choice prediction approaches were able to provide 
significantly improved choice prediction accuracy. Our proposed methods might not necessarily provide concise 
explanation for the predictions. Nevertheless, the substantial improvement in prediction accuracy could still justify 
their use in practical airline choice decision support systems.  

Conclusions and Future Research 

In this paper, we have presented two new approaches to predicting airline choices of passengers. While past research 
has focused on identifying factors influencing customers’ choice behaviors, we contribute a different perspective, 
developing useful decision support models. In order to achieve high prediction accuracy, we relaxed two important 
assumptions in the standard discrete choice modeling framework. Relaxing the assumption regarding the existence 
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of a utility function that can fully represent the preferences over the choice set, we proposed a pairwise preference 
learning approach. Any binary classification algorithm can be applied under this approach to learn binary preference 
functions over pairs of alternatives. A preference reconciliation procedure is then used to combine preference 
predictions on all pairs of alternatives from a choice set to predict choice. Relaxing the linearity assumption of the 
utility function, we proposed the ranking function learning approach, which employs genetic programming to find a 
nonlinear ranking function that best fit the choice observations. To the best of our knowledge, this represents the 
first effort in designing convincing scientific models in supporting the actual prediction choice of airlines. Our 
empirical evaluation results show that the proposed approaches lead to significantly improved prediction 
performance compared to the standard discrete choice model using multinomial logistic regression. With our airline 
choice dataset, both proposed approaches successfully predicted the actual choices of more than 10% of the travelers 
in the testing set compared to the multinomial logic model. These results show that our proposed approaches have 
tremendous impact in providing design guidelines for the companies in the airline and other industries to implement 
effective marketing strategies and improve customer relationship management. Despite being less intuitive, these 
more accurate choice prediction models can be practically deployed in today’s high-performance marketing 
information systems to support personalized marketing actions on the individual consumer level and market-level 
analysis of market share and demand structure. 

This study opens up several avenues for future research. First, more comprehensive evaluation experiments using 
larger datasets are needed to further validate the findings from this study. Second, while we have focused on airline 
choice prediction, the proposed methods are general and can be applied to customer-product choice prediction 
problems in other industries. Third, future research may also study how multiple approaches can be effectively 
combined to make even better predictions. 
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