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PRICE CYCLESIN ONLINE ADVERTISING AUCTIONS

Xiaoguan (Michael) Zhang Juan Feng
Sloan School of Management Warrington College of Business
Massachusetts Institute of Technology University of Florida
Cambridge, MA U.SA. Gainesville, FL U.SA.
zxq@mit.edu juan.feng@cba.ufl.edu
Abstract

Paid placement in search engines has become one of the most successful and rapidly growing sectors of the
online advertising industry. The innovative use of auctionsto sell keyword-related advertisement positionsis
per haps the most important factor driving the success of this market. There has been no systematic analysis,
however, of the advertisers' strategiesto bid for ranksin a dynamic environment, where each bidder’ sbid can
be updated and observed by the competitorsin real time. We capture this dynamic setting using a Markov
process and identify the Markov perfect equilibrium. We find that in such a dynamic environment, bidders
bidding strategiesfollow acyclical pattern (Edgeworth cycle) similar to that conjectured by Edgeworth (1925)
in a totally different context. A new data set that contains a detailed bidding history of all advertisers for
sample keywords in a leading search engine makes it possible for us to study the real-world behavior of
bidders. We propose an empirical framework based on maximum likelihood estimation of latent Markov state
switching to confirm the theory. We also discuss the theoretical and practical significance of finding such
cyclesin an online market place.

Keywords. Online advertising, search engine, keyword auction, price war, Markov perfect equilibrium,
Edgeworth cycle, Markov switching regression

I ntroduction

Online advertising spending has steadily grown over the last few years, from 1999’ s $3.5 billion to 2004’ s$8.4 billion.> Among
the different types of online advertising, sponsored search, where positionsin asearch engine’ sresult page are sold to advertisers
through auctions, has grown most rapidly and is widely credited for the revitalization of the search engine business.? Keyword
search market will grow from $2.6 billion in 2004 to $5.5 billion in 2009, according to Jupiter Research.

In contrast to the traditional CPM (Cost-Per-1000-iMpression) model, the industry standard in these keyword auctions is
performance-based payment models,® and different search engines adopt various auction mechanisms. For example, Y ahoo!, the
biggest online keyword auction broker, allocates positions to advertisers purely based on their bidding amount. Advertisers pay
their own bid, asin afirst price auction. Yahoo! now also alows bidders to choose a “proxy bidding” option, where each
advertiser pays only one cent above the next highest bidder’ s bid, which effectively constitutes a second price auction. Google,
the other industry leader, adopts adifferent mechanism, where the ad positions are determined by bidder’ sbids and click-through
ratesjointly.

Sources: Elliott and Scevak (2004); Internet Advertising Bureau (http://www.iab.net/r esour ces/ad_revenue.asp).
2Source: Economist.com, “ Searching for Relevance,” July 17, 2003 (http://www.economist.com/displaystory.cfm?story id=1932434).

®Also referred to as CPC (cost-per-click) or PPC (pay-per-click). The search engine gets paid only if an advertisement generates a click-
through.
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Thesekeyword auctions havethefollowing distinctive characteristics compared to thetraditional auctionsstudiedintheliterature:

* Itisatype of auction for multiple heterogeneous objects, where each bidder’ s valuations for these objects are commonly
ranked; that is, al bidders value a higher position more than alower one, but each bidder has private values for each of the
positions.

e Theadvertisersarebidding for the“ options’ of future services. That is, the advertisersagreeto pay the search engineex ante
for the click-throughs from the users. The actual payment is determined by the bid, other bidders' bids, and the frequency
of clicks.

» Theseauctionsare held in adynamic environment in continuoustime. That is, any bidder may join or exit the auction at any
time, and both advertisers' bids and their rankings can be updated in real time.

* Incontrast to traditional auctions, where bidders only know their competitors' valuation through a probability distribution
function, in keyword auctions, bidders can learn the competitors' bids (thus can derive their valuations for each position if
thelearning periodissufficiently long), either from apublic database,* or through repeated experimentsin updating their own
bids.

In practice, there does not seem to exist a straightforward strategy for advertisers to follow. In a survey conducted by Jupiter
Research, it is estimated that “the overwhelming majority of marketers have misguided bidding strategies, if they have a strategy
at all” (Stein 2004). Thisissurprising, given the vast amount of advertisers competing in such auctions.> The same survey also
found that marketers without a strategy were less successful in their campaigns.

Then do most of the bidders really act irrationally in these auctions? What is the optimal bidding strategy for a rational
advertiser? What kind of bidding price and rank outcome isimplied by such an optimal strategy?

This paper triesto answer these questions. Instead of modeling a static game where each bidder can only bid once according to
their expectations, we adopt a more realistic, dynamic approach, allowing bidders to update their bids as well astheir rankings.
Moreover, different from a classical sequentia game, where each player’s strategy is based on the whole history, our model
incorporates a Markovian setting, where each bidder only reacts to the state variables that are directly payoff-relevant—asin a
typical Markov process. In this model, bidders learn their competitors' valuations after a sufficiently long period of time. We
identify the Markov Perfect Nash Equilibrium (MPE) bidding strategy, and find that such a bidding strategy does not produce
astable outcome in prices and ranks. Instead, a“price war” period is observed in which each bidder increases his bid by only
the smallest increment above his’her competitor for abetter position. A “ceasefire” period followswhen onebidder can nolonger
afford the costly price war and drops hisbid to alower level, then the other bidders drop their bids accordingly and a new round
of price war begins.

The cyclical pattern of bids described here is similar to the Edgeworth cycle in the literature modeling duopolistic price
competition, where two duopolists with identical marginal cost undercut each other’ s pricein an aternating manner. Thisisin
contrast to astandard Bertrand competition argument in which case each competitor setsthe price equal to the marginal cost. The
Edgeworth cycle was formally demonstrated with the concept of Markov perfect equilibrium in a class of sequential-move
duopoly models by Maskin and Tirole (1988a, 1988b). Building on the Maskin and Tirole model, Noel (2003) identifies the
existence of Edgeworth cycleintheretail gasoline market in 19 Canadian cities. Different from these models, our paper extends
tomodel playerswith different types. Inour model, biddershavedifferent private valuationsfor the positions, but their valuations
for these positions areranked in the sameway. Moreover, the competition between biddersdrivesthe priceup.® Wearealso able
to derive some unique properties under this asymmetric player game setting.

There are various papers studying how search engines should auction off the advertisement positions. Feng et a. (2006) examine
the performances of various ranking mechanisms used by different search engines using computational techniques, and find that,
depending on the correlation between advertisers' willingnessto pay and their relevance (quality), both Google’' sand Overture's
ranking mechanisms can out-perform each other under specific conditions. Feng (2005), using an optima mechanism design
approach, studies how to optimally sell aset of objects where bidders valuations for these objects are ranked in the same order.
It is shown that the order to fill the positions can be different under different market situations, and the optimal mechanism

“In Overture, anice interface actually shows the bids submitted by all the bidders.
°A popular keyword like “flower” or “car” in Yahoo! attracts hundreds of advertisers to compete.
®In contrast to the typical Edgeworth cycle, where firms undercut prices.
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includes a reserve price for each position, with the winners paying at least as high as the next highest bidder’s bid. This
framework can be applied to keyword auctions. Weber and Zheng (2005) model explicitly how advertisers’ performance (quality)
shouldimpact the search engine’ sselling mechanism. They find that the optimal search engine design should put non-zero weight
on advertisers monetary payment, in addition to their advertisements' performance. They a so show that thereisno pure-strategy
equilibriumin advertisers’ bidding behavior. Liu et a. (2005) study adifferent weighting mechanism. Instead of weighting their
performanceand bidding price uniformly acrossall advertisers, they find that the optimal mechanism should givedifferent weights
to advertisementswith different performance. Limand Tang (2005) focus on the bidding behaviorsin keyword auctionsin atwo-
firm environment, where the bidding prices can only take three discrete values. They characterizes the conditions under which
both advertisers will submit high or low bids. Borgers et al. (2005) study bidders' behavior in Yahoo!’s top three listings,
assuming the click-through rate for the three positions areidentical. They identify the existence of multiple equilibriain users
bidding strategies, and demonstrate this with Y ahoo!’ s auction data.

In al of these settings, however, bidders are only allowed to bid once according to their expectations about their competitors
valuation. Once the bids are submitted, they cannot be changed no matter which ranks the bidders are allocated. As mentioned
in Salmon and lachini (2003) and Zhan et a. (2005), such models often result in bidders' ex post loss: when bidders submit their
bids, they do not know for sure which rank they will win, thusthey bid for an “average position” and it is possible that they pay
more than what they end up winning. Our paper overcomes this problem because bidders are allowed to update their bidsif they
end up paying more than necessary for a certain position (thisis one reason for the existence of the price cyclesin our model).
To our knowledge, this paper is also the first empirical work to study the price cyclesin this exciting auction market.

The paper proceeds asfollows. We set up the model in the next section, where we show that the traditional approachin auction
theory can shed littlelight inthismarket. Instead, wefind that MPE isagood theoretical concept to describe therational behavior
of bidders. Inequilibrium, the best strategy isto wage a price war and compete for the best position, and when a certain threshold
value is reached, one of the bidders should drop his bid down to alower level, and the other bidder will follow thisdrop. This
model predicts cyclical behavior in bidding for a position in search engine placement auctions. We then describe a dataset
characterizing the real world strategies played by the advertisers. We develop an empirical framework based on maximum
likelihood estimation of latent Markov state switching, and report the results. Finally, we present our conclusions.

The Mod€
Setup

Consider nrisk-neutral advertiserscompeting for n positionsinasearch engine’ sresult page, each position hasdifferent expected
click-through rate (CTR). Assumethat CTRissolely determined by the position of theadvertisement,” and the higher the position
of an advertisement, the more valuableitis, thus > 5 Vi <j.?

Denote6; asbidder i’ s per-click valuation associ ated with the search engine—the maximum amount heiswilling to pay toreceive
oneclick fromthe ad. Wetake asplayer i’stype.® Inredlity, 0, isdetermined by two factors: the unit profit of the good and
the conversion rate. The unit profit of the good is afunction of the unit price, unit cost, and frequency of repeat purchase. The
conversion rateisdetermined by the design of thewebsite and the attractiveness of the product. Both factorsareindependent from
the advertisement’ s position or the CTR.

We concentrate on studying Y ahoo!’ sranking mechanism, in which advertisers' ranksare determined purely by theranksof their
bids b,, and each bidder pays the amount of his own bids. Denote the reservation price (the minimum price that is required by
the search engine to enter this market) asr, and the minimum increment in bid ase.

"Ex ante, each advertiser cannot do much about the writing of the advertisements so as to affect his or others’ bidding behavior, thus we can
safely make this assumption.

®Thisis acommon assumption in the literature (Breese et al. 1998), and is frequently confirmed by industry reports.
®Harsanyi (1967) argues that all uncertainty faced by a player can be summarized as a single variable, called his type, and that the prior
distribution over the vector of typesiscommon to al the players. Vickrey (1961) also implicitly assumed that the joint distribution of values

was commonly known to all bidders.
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Main Model

In keyword auctions at Internet search engines, current information technologies not only enable bidders to observe their
competitors' bidding prices (or infer their prices from some quick experiments by varying their own bids), but also allow them
to update their bidsin real time. To capture the dynamic feature of this game, consider the competition between n bidders that
takes placein discretetimeininfinitely many periods, with discount factor 6¢(0,1). For simplicity, following Maskinand Tirole
(19884), we assume bidders adjust their bidsin an alternating manner. In each periodt, only one bidder is allowed to update his
bid, which means each bidder commits to his bidding price for n-1 periods. This assumption is used to ensure that each bidder
is committed to a particular bidding price in the short run. He can not change this price for afinite (can be brief) period, during
which other bidders might act. This short-run commitment ensures that when other bidders respond to a particular bidder, this
bidder will not already have changed his bid.

Most static auction model s assume bidders make simultaneous bids without update. Some sequential -auction model s (Jeitschko
1998) allow biddersto learn and bid multipletimes, but usually ina*“ super game” framework, where bidders’ strategiesare based
on the entire history. This assumption may not always be appropriate, however. For example, in reality, people may not have
the ability to precisely calculate their strategies, especially when the history islong or the strategy is complicated. Moreover, it
isnatural to assumethat “recent actions have astronger bearing on current and future payoffs than those of the more distant past”
(Maskinand Tirole 1988a). For thisreason, weimpose the Markov assumption: in each period, abidder’ sstrategy dependsonly
on the variablesthat directly enter his payoff function (the bids set by other biddersin the last n-1 periods). Another advantage
of adopting Markov strategiesis for simplicity, asbidders' strategies depend on as little as possible while still being consistent
with rationality.

We focus on the perfect equilibrium of this game, which means, starting from any period, the bidder who is about to act selects
the bid that maximizes his inter-temporal profit given the subsequent strategies of other bidders and of hisown. For simplicity,
in this paper we establish the MPE in the setting of two bidders. We are interested in the stationary properties of this model,
rendering theinitial conditionsirrelevant. Thisway, each bidder’ s action only depends on the other bidders’ bidsin thelast n-1
periods, thus we can drop the time stamp t from the analysis. Let b; represents the state that bidder i faces when heis about to
act.

Define R=(R1,R2) asan M PE strategy profile, which representsthe dynamic reaction functions forming the perfect equilibrium.
R representsaMarkov perfect equilibrium if and only if for each bidder i, bi = Ri(b-i) maximizesbidder i’ sinter-temporal profit
at any time, given b-i and each bidder i bidding according to Ri. Before we get into more details, the following assumptions are
needed:

1. Theclick-though rate 7 isconstant acrossall periods. That is, the expected number of click-throughs a certain position can
generate is the samein each period.

2. Thereisaminimum (reserve) price r to win any one of the positions. In this model, each participating bidder’s value is
greater thanr.

3. If two or more bidders bid the same amount, they are allocated to two or more consecutive positions with the same
probability.

4. Thebidding spaceisdiscrete, that is, firms cannot set pricesin units smaller than, for example, one cent. Let € denote this
smallest unit.

Bidder i’ s current period payoff function can be described as

(91' — b;':]?'l ifb; > b—;
ﬂ(b'if b_;) = (91' — bl')TQ ifb; < b_;

0.5{93' — b@)(?—l + TQ} if b,i = b_f
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Following Maskin and Tirole (1988b), define a pair of value functions for advertiser 1 in this dynamic programming problem
(advertiser 2's valuation function can be defined in the same way). Let

H(bg} = I‘l}ﬁ..x[?’l’(bl._ bg) + 5“”1(51 }] (1)

represent bidder 1’ svaluation if (a) heisabout to move, (b) the other bidders' current priceisb,, (c) both bidders play according
to R = (R,,R,) thereafter. Where W,(b,) is defined as

Wi(b1) = Ei,[m(b1, b2) + Vi (b2)] (2)

which represents bidder 1’ svaluation if (a) he played b, last period, and (b) both bidders play optimally accordingto R=(R;,R,)
thereafter. Thus, R=(R,R,) isMPE if R,(b,) = b, isthe solution for equation (1), where the expectation in equation (2) is taken
with respect to the distribution of b,2, and the symmetric condition holdsfor advertiser 2. Solving for the equilibrium strategies,
we have

Proposition 1. For a sufficiently fine grid (e is sufficiently small), there exist threshold values l:_)I , b, ,and
B_i , and two probabilities o(5)€[0,1] and ()€ 0,1], such that bidder i’s optimal strategy can be expressed

as
b_i+e if r<b_;<b_;
b_; +€ with probability o(d
P yo(d) i bib
b_; with probability 1 — o(4d)
bi=Rib)={ b ifb,<bi<bi<b

b_; + € with probability pu(d _

p(9) b —b
r with probability 1 — pu(9)
r E-fb_i > Ei

\

where r isthe minimum required reserve price, and ¢ is the smallest increment.

All proofsareavailableinthetechnical appendix availableat http://nullvoid.mit.edu/keywor d/. Proposition 1 describeshidders
equilibrium bidding strategy, which is characterized by b, b, b, , s and m. What equilibrium outcome does this strategy
imply?

Corollary 1 In general, the equilibrium bidding prices follow a cyclical pattern, with interchanging “ price
war” phasesand “ ceasefire” phases.

This cyclical price pattern can be easily inferred from bidders' equilibrium bidding strategies described in proposition 1.
Beginning with the smallest possible pricer, the bidderswill wage aprice war (outbidding each other by e) until the pricemin{ b,,
b,} isreached. Without loss of generality, suppose 6, > 6,, then bidder 1 will jumptobid b, , whichisthe highest bid that bidder
2 can afford to get rank 1. Now bidder 2 can no longer afford the costly competition, and will be better off remaining at the
second position. He can choose any price lower than b, and remain in the second position, but to minimize the cost, he has to
bidr. Consequently bidder 1 should follow thisdroptobid r + ¢, where heremains at thefirst position and pays much less. Then
anew round of price war begins, and so on. Note that on the equilibrium path, only the bidder with the higher valuation (bidder
1) has the option to jump up to bid b, to force the price war phase to end early, and it is always bidder 2 who will first drop to
bid r and restart the cycle.

Comparing to the Edgeworth cycle in Maskin and Tirole (1988b), the equilibrium in this paper has a different structure: there
are two possible threshold values that could make the bidding price jump: b (jump down) and b_; (jump up).
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dsRolein Price Cycles

First consider the upper bound bid of a bidder (6I ). Intuitively, in the auction for ranking, the bidder who does not win the first

position hasanatural option with non-zero expected payoff: winning the second position (z, > 0). Taking thisinto consideration,
bidders need not bid their full valuations for the first position. Thus,

Corollary 2 Bidder i won't pay more than his valuation per click for the top position, that is, b < &

This can be easily shown through Eq. (10) in the appendix.

The early-jumping behavior (jump bid at b_; ) is aresult of bidder’s heterogeneity. Intuitively, when bidders have identical

valuations, their gain fromjump bidding islimited: first of al, they haveto bid high enough (their own maximum bid for thefirst
position ) to stop the other bidder from competing in the price war, which is costly; second, given they both know the price at
which their competitor will jump, and they both have the ability to stop their competitor from jumping, they both have incentive
to jump bidding one period earlier than their competitors, which will eventually drive b_; down to the extent that both are better
off sharing the first position with their competitor in the price war. When two bidders' valuations are different, however, the
lower-valued bidder (bidder 2) cannot afford to jump up to force the cycle to end. It is also straightforward that when the two
advertisers' per-click valuations are sufficiently different (6, >> 6,), bidder 1 has incentive to jump bidding earlier, or even be

willing to continue bidding 52 to dominate position 1. In summary,

Proposition 2. Bidder i’s maximum bid for position 1, by , isincreasing in 4.

Proposition 3. The price at which bidder i prefersto jump, b_, , isdecreasingin 4.

Thethreshold b_; cantaketwo extremevalues: when b_; = b, — ¢, thereisnojumping; when b_; =r, thejumping starts from

the beginning—essentially no Edgeworth cycle pattern will be observed, since the bidder who jumps always occupies the first
position. The following three corollaries discuss these cases.

Corollary 3 When 61 = 83, and § is close to 1, bidder i’s equilibrium strateqy can be simplified

as.

b_; +e¢ if m<b_; <b;
b_;, +¢ with probability p(6 _
b = Rifb_.) = ) i b =b 4)
T with probability 1 — pu(§)
T E-f b_.!‘ > B'g

.

This degenerates to the Edgeworth cycle described in Maskin and Tirole (1988b), where there is no jump bidding. It follows
naturally from Proposition 3. More specifically, ¢ needs to satisfy the following condition:

(1 — b2)(1 + 8)11 + 8°V )
< (91 — Eg + 26)(T1 + 5T2) + 52(91 —Eg)(]_ +5)T1 + 5471

where 52 is specified in Eq. (11). Thiscondition is easier to meet when § — 1. Note that we only need to check the price
52 — 2¢in the right hand side of Eqg. (5), because if Eq. (5) is satisfied, Eq. (13) is satisfied for all the prices between (r,
62 —2¢).

Corollary 4 If siscloseto 0, there is no jumping in the price war phase.
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Thisisintuitive: when discloseto 0, only the current period matters for the bidder. Thus bidder 1 should not incur a current
period loss by jump-bidding.

Corollary5 If thetwo advertisers' valuationsare sufficiently different, the higher-valued bidder will dominate
thefirst position. Thisway, no Edgeworth cycle pattern exists in equilibrium.

Toillustrate, one sufficient condition for theabsence of the pricecyclescanbe: (¢4 —02)m = (61 — r)72. For example, consider
r=0.05, 6,=30and &,=1, with r; =1 and z, = 0.7, then bidder 1 getsalarger current payoff by alwayshbidding 1 and remaining
in the first position than engaging in the price war with bidder 2, since: ¥ p € [r,1), (30 —p) *0.7 < (30 — 1) * 1.

7S Rolein Price Cycles

Proposition 4. Bidder i’s maximum bid for position 1, b , isdecreasing in r,.

Corollary 6 If the CTRs of both positionsare sufficiently close (r; iscloseto z,), no Edgeworth cycle pattern
will be observed.

Intuitively, the rankings do not matter when the two positions are worth the same for the bidders (they attract the same number
of click-throughs). Both bidders have no incentive to compete for the first position. To illustrate, one sufficient condition for

thisto happeniswhen (6; — r — )7y < (6; — r) 7o, or equivalently, % <1+ 91,_6,,,_6. The RHS of thisconditionisdecreasing
in 4. If both 8, and 6, satisfy this condition, then both bidders don’t care about the first position, and they will both bid r and be
allocated the first position with equal probabilities; if only 6, satisfies this condition, then bidder 1 and 2 will bidr + e and r

respectively, and bidder 1 will dominate the first position. In either case, no Edgeworth cycle will be observed.

Morethan Two Bidders

When there are more than two bidders (say, three), intuitively the cyclical pattern in the bidding prices still preserves, butin a
much more complex way. For example, one scenario can be, when bidder valuationsare not significantly different, they may first
start from the minimum price r and outbidding each other by . Thisway they occupy the first three positionsin order, until the
lowest valued bidder cannot afford the pricewar, dropsto bid r, and getsthe bottom position. Onone hand, if thefirst two highest
bidders valuation is close, they will continue the pairwise competition for the first position, as we discussed in proposition 1,
although with different threshold values. When the price war becomestoo costly, the second highest bidder will droptobidr +
and get the second position. Then the highest bidder followsthe drop to bid r + 2¢ and getsthefirst position. Then anew price
war phase begins. On the other hand, if the highest bidder’s valuation is large enough, it is also possible that he dominates the
first position, while the two other bidders compete for the second position. Overall, the price war can happen among all three
bidders, or betweentwo bidders. However, theformal demonstration of the bidding strategy with morethan two biddersisbeyond
the scope of this paper.

Data

To examine the interesting equilibrium outcome of keyword auctions, and to learn how strategic the bidders in this market are,
we obtained Overture' s paid placement auictions data between June 2002 and June 2003, and chose one keyword for this study.*
Each time someone submitted a new bid, the system would make a record on the bidder’s ID, the date/time, and the bid value.
A total of 1,613 records have been included in the sample dataset. There were atotal of 49 bidders who submitted at least one
bid during this period. Among these bidders, seven submitted more than 100 bids. These most-active bidders were primarily
competing for the first position.

Al keywords display asimilar pattern. Following the theoretical framework that studies competition for one keyword, we only consider the
time series of one keyword herein our empirical analysis. The dataset, however, enables us to build much richer models to compare across
keywords. Thiswould be an interesting direction for future research.
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Our empirical objectives are two fold. First, we would like to confirm the cyclical pattern of bids predicted in the theoretical
model. A second objective of our study isto characterize the cycles so that we can learn something about the behavior of the
bidders. Given the existing auction mechanism, it is very interesting to see how strategic the biddersare. Thiswill also provide
alot of managerial insights for the practitioners (the publishers, the advertisers).

Figure 1 shows the bidding history of the first 600 bids. From the figure, we can easily identify the price cycles going through
the price-war phase and the cease-fire phase.

From the raw data, we reconstruct the complete history of the bids and rankings.

Figure2 givestherank history of thefirst 100 bids submitted by the three most active bidders. Each instance of two lines crossing
each other represents achange in ranking. Notably, most competition appears between people competing for the first rank.

A Markov Switching Model

Given the theoretical constructs of the Markov perfect equilibrium, the best empirical strategy is to use a Markov switching
regression to characterize the cycles. Markov switching regression was proposed by Goldfeld and Quandt (1973) to characterize
changes in the parameters of an autoregressive process. From the shocking cyclical trgjectory of the bids shown in the figures
inthe previous section, it isvery tempting for usto assign one of two states (W for price-war state; Sfor cease-fire state) for each
observation of the bids and directly estimate the parameters with a discrete choice model. The use of the Markov switching
regression, however, gives us afew preferable advantages over other potential empirical strategies. First, seria correlation can
beincorporated into the model; the parameters of an autoregression are viewed as the outcome of atwo-state first-order Markov
process. Second, when the price trgjectory is not as regular as displayed by our data, Markov switching regression can help us
to identify the latent states.™ Thiseliminates the need to subjectively assign dummy variable valuesfor the states, making it less
dependent on human interference. Third, from the estimation process, we can easily derive the Markov transition matrix, the
parameter estimates can be directly used to validate our theory.

Formally, consider atwo-state ergodic Markov chain asshownin Figure 3, with state space (S = {w, s}, where s, = wrepresents
the price war phase, s = srepresents the cease fire phase, andt =1, ..., T. The process isaMarkov chain with the stationary
transition probability matrix A = (4;), where

Ay =Pr(s=jls.=1), i,je{w,s}

The smoothing technique we use in this paper was first proposed in Cosslett and Lee (1985). Hamilton (1989) further developed this
technique. Itissimilar to aKaman filter, which uses atime path to infer about an unobserved state variable. The nonlinear filter introduced
by Hamilton draws inference about a discrete-valued unobserved state vector.
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Thisgives us atotal of four transition probabilities: A, Aws As »and A, , and we also have A; =1 -1, for e{w, s} andj = .

The ergodic probabilitiesfor the ergodic chain isdenoted =. Thisvector n isdefined asthe eigenvector of A associated with the
unit eigenvalue; that is, the vector of ergodic probabilities © satisfies: Ar = n. The eigenvector = is normalized so that its
elements sum to unity: 1'm = 1. For the two-state Markov chain studied here, we can easily derive

;l”ﬂ‘ ( 1— )\"5)/(2 - lww - l.s‘s)
= =
7Ls ( 1 - }\4\\'“')/(2 - )'*h'h' - }‘«ss)

After defining the latent states, we can write the following model:

Oy + Xy P + € ifsi=w
Y = w MBW wi f t : [:15...,T, (6)
O.r._g + X.’HBS + S_ﬂ ff SI =5

where isthe bid submitted at timet, and Xy, (sr € {w,s}) isavector of explanatory variables. The error terms €s: are assumed

to be independent of X, , aso, we assume €, ~ N(0,62) and € ~ N(0,62). Notice that for each period, the regime

st
variable (Markov state s) is unobservable.

Following Hamilton (1989), we devel op aprocedureto estimate model (6), and conduct the maximum likelihood estimation with
EM algorithm (the detailed estimation procedure is relegated to the appendix and is available upon request).

Hamilton (1990) has shown that the maximum likelihood estimates for the transition probabilities can be cal culated once we get
the latent states
- YX , Prob(s, = j,si—1 = i|Y7:98)

Aii= <
Y }:,;‘;2 Prob(s,—1 =i|Y7:8)

)

where Y;isavector containing all observations obtained through date t, and é denotes the full vector of maximum likelihood

estimates. The meaning of this equation is that the estimated transition probability 71” is the number of times state i has been

followed by state | divided by the number of times the processwasin statei. We estimate the transition probabilities based on
the smoothed probabilities.

Equipped with the estimates of the transition probabilities, we can derive very intuitive parameters to characterize the cycles.
The expected duration of atypical price war (or cease fire) can be calculated with®

E(duration of phase i) = k; klﬁ;l (1-Xi5) = ]_;?L” | (8)

wherei e {w, s} arethe transition probabilities.

Estimation and Results

Following equation (6), we consider the next model:

2For details, please refer to Gallager (1996, Chapter 4).
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Buwo + Buwivig—1 + Bwaris + Buatisz—1+ 8w if s =w
Bso + Bs1Yig—1 + Bsariy + Bsarip—1 + &y if sp=s

wherey, , isthe bid submitted by bidder i at timet, and r; , is the achieved rank™ after submission at timet.

The estimation procedure detailed in the last section will help usto calculate the latent state for each of the bids, along with the
estimated probabilities, we can also get parameter estimates for Bw =(Byo, Bwi; Pw2, Bw3), and Bs =(Bs0, Bs1, Bs2, Bs3).

The Markov switching regression based on Hamilton's algorithm turns out to be highly significant with the estimates reported
in Table 1.

All parameters have expected signs. It is estimated that in regime 1, the bid is positively correlated with the previous bid when
other things hold equal. The higher the previous rank is, the less likely he will be bidding higher, and the higher the new rank
is, the higher hewill be bidding. In regime 2, the higher the previous bid, the lower the new bid will be when other things hold
equal. The higher the previousrank is, the more likely hewill be bidding higher (the bidder in the second positionismorelikely
to reduce the bid and enter the cease-fire phase), and the higher the new rank is, the higher he will be bidding (after all, each
bidder is seeking the best position to introduce the cease-fire phase).

So far, we have validated the existence of the cycles, and the parameter estimates clearly show the distinctive properties of the
two regimes. Our next objective isto characterize the cycles by applying the results of Markov chain theory.

From the MLE procedure, we are able to use the smoothed probabilities to obtain the latent state of each bid. By examining the
change of states, using equation (7), we can calculate the transition matrix as shown in Table 2.

Table1l. Markov Switching Estimates (t-statistic in Parentheses)
Regime 1 (War) Regime 2 (Cease Fire)
[% 0.16037 0.42510
0 (7.16) (29.15)
(Constant)
A 0.81296 -0.15285
B, (43.17) (-4.97)
(Previous Bid)
[% -0.03223 -0.01823
2 (-53.32) (-12.51)
(New Rank)
A 0.02775 -0.02238
Bs (30.29) (-17.91)
(Previous Rank)

R2=0.91, Log-Likelihood = -1930.42

Table2. Transition Matrix
- w S
ij
w 0.9540 0.0460
S 0.7889 0.2111

3Note that a“high” rank hasa“low” numerical value—the highest rank is associated with arank r = 1.
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Table 3. Summary of Changein Bidsin the Two Phases

AVir = Vig = Yig—1 mean std median
War Phase 0.06 0.061 0.02
Cease fire Phase -0.28 0.129 -0.21

We can also obtain the limiting unconditional probabilities.

A (1= Rss) /(2= Ay — Ass) 0.945
T= = =

As (1= Rpne) /(2 = Koo — Ass) 0.055

So in the long run, about 94.5 percent of states are in the price war phase, and about 5.5 percent of states are in the cease fire
phase.

By (8), we aso know

1
1— 7'\-ww

E(duration of regime w) = =21.74,
and

=1.27.

E(duration of regime s) = I

1
- Kss
We infer that atypical cycle lasts about 23 periods.

Table 3 gives further evidence about the bidding behavior in the two phases. Using the smoothed probabilities cal culated from
the Markov switching regression, we confirm that the behavior is consistent with the story of two phases. In the war phase, a
typical bidder bids 2 cents higher than his previousbid, and in the cease fire phase, atypical bidder reducesthe bid about 20 cents
down from hislast bid.

Conclusion

Selling advertisements with keyword auctions is one of the most successful online business models and has attracted a lot of
discussion. Much of the existing literature has focused on the strategy of the service providers. Little attention, however, has
been given to the advertisers who rely critically on the market and aggregately contribute to the success of this business model.
This paper provides aframework to study the dynamic bidding behavior in online keyword auctions, where bidders compete for
the placement of their advertisements. Different from most of the existing papersin theliterature, we allow for both the bids and
the ranks to be updated dynamically.

We adopt aMarkovian framework in studying bidders' bidding behavior, thus bidders only focus on the actions directly related
totheir payoff. Thisrelaxesthe strict assumption in asuper game where each bidder acts according to the entire bidding history.
The concept of Markov perfect equilibrium (MPE) has been used to describe the cyclical bidding behavior of bidders. Our model
is sophisticated enough to depict the dynamic nature of the advertisers decision process, and at the same time simple enough to
betractable. Wefollow closely Maskin and Tirole (1988a, 1988b) in deriving our results but our analysisis different from theirs
inimportant ways. While Maskin and Tirole consider adynamic Bertrand price-setting game with two identical firmsproducing
homogeneous goods under constant costs, we are examining an auction game wherefirms competing for nonhomogeneous goods
with indeterminate expected costs.
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Our empirical analysis confirmsthat the price competition in thekeyword auction market is consistent withthe MPE. Thisresult
iscontrary to the assertion that the mgjority of biddersdo not follow astrategy. Our analysis suggests that bidders are following
the eguilibrium strategy in this market, and the competition has reached the steady state.

Edgeworth cyclesarerarely observedin practice. Thisisactually not asurprise. A few necessary conditions haveto be satisfied
first.

1. Low costinlearning competitors price changesin order to respond quickly

2. Low menu cost: the price tags should be easily changed

3. Relatively homogeneous competitors: no player is significantly different from the rest of players
4. Thereisno (or nonessential) branding effect

Indeed, the Canadian retail gasoline market studied by Noel (2003, 2004) isarare example of an offline business satisfying these
conditions. In the keyword auction market, these conditions are easily satisfied.

Thiswork leaves a number of questions unexplored. First, we only looked at the bidding history of one keyword. It would be
interesting to compare across keywords to see how different keywords can have different cyclical patterns. Second, it would be
interesting to examine whether other equilibrium outcomes can be observed in this market; again, datafrom more keywords are
needed. Third, acloser look at individual-level behavior of the bidders would reveal alot of new information. Fourth, since
Y ahoo! enabled thefeature of proxy bidding, many advertisershave started to usethisfeature; some othershaveal so started using
third-party tools to implement more complicated bidding rules. The impact of these new features should be further studied.
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