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Abstract

Data, a core component of information systems, haslong been recognized asacritical resourceto firms. Data
is the backbone of business processes; it enables efficient operations, supports managerial decision-making,
and generates revenues asa commodity. This study identifies a significant gap between the technical and the
business per spectives of data management. While functionality and technical efficiency are well addressed,
the consideration of economic per spectives, such as value-contribution and profitability, is not evident. This
study suggests that introducing economic per spectives can better inform the design and the administration of
data management systemsby accounting for theinter play between business benefits and i mplementation costs.
To address the identified gap, the paper proposes a quantitative microeconomic framework for data
management that links value and cost to the impartial/technological characteristics of data and the related
information system. Suchamapping allowscost/benefit assessment and deter mination of optimal configuration
of system and data characteristics to maximize value and profits. The framework is demonstrated through
development of a model for tabular datasets, and the optimal design of dataset characteristics (such astime-
span, desired quality-level, and the set of attributesto beincluded). The application of the model isillustrated
using numerical examples.

Keywords. Data management, information value, information economy, database, design, data quality,
microeconomic modeling, utility, information product design

I ntroduction

Data has been recognized as acritical resource, essential at all business levels from day-to-day operations to strategic decision-
making (Redman 1996). The amount of data managed by organizationsisincreasing; datawarehouses in the magnitude of peta
(10™) bytes have been recently reported. Data management efforts are directed toward the design and management of data
activities (such as acquisition, processing, storage, and delivery), and corporate investments in data management technologies
and servicesare steadily growing (Wixom and Watson 2001). Current datamanagement activitiesand design methodologiesare
geared toward functionality and technical efficiency but, astheinvestmentsin these grow, concerns about the economic benefits
of data assets al'so increase. For information-intensive firms (e.g., Reuters, AC-Nielsen, and S& P), the value gained from data
productsisthecritical successfactor, and datain such firmsisperceived asastrategic asset (Glazer 1993). Thereisno significant
research evidence for understanding the corporate gains from investments in data repositories and the related management
activities. Thereisan emerging need to examine how such assets ought to be managed from the business-benefit viewpoint. This
study bringstogether the economic and technical perspectivesininformation systems/information technology (1S/1T) management
ingeneral. Specifically, it examinesdatamanagement, an IS/IT field in which the gap between the two perspectivesis apparent.

Thisstudy contributesto abetter understanding of the business val ue and the profitability of data, theimpact of economic factors

on data management activities, and their implications for design and administration. The remainder of this paper is organized
asfollows. The next section provides the relevant background. The subsequent section proposes a microeconomic framework
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for modeling the effect of data and system characteristics on both value and cost. This framework allows assessment of
profitability, which can be maximized through an optimal design configuration. The framework in its general form targets a
broad-range of system components and configuration factors. In this study, however, it is applied to the development of a
guantitative model for the tabular dataset, the most common data-storage structure in data management systems. We then
demonstrate the use of the model for profit maximization by configuring key tabular dataset characteristics: the time span, the
data quality level, and the field structure, essentially addressing the design of tabular datasets in data repositories. Finaly,
concluding remarks are offered and directions for future research proposed.

Relevant Background

This section reviews relevant data management aspects and introduces research concepts that can influence a more rigorous
economic thinking in this field. Data management has been the subject of substantial academic research and practitioner
discussions. Itisconsidered acomplex task: dataisintegrated from multiple sources, processed and stored in repositories, and
delivered by front-end tools or via exchange protocols. The collection of processes and systems forms a complex multistage
architecture that can be viewed as a data manufacturing process (DMP). The output of the DMP is an information product (1P),
acommodity that can be used internally, sold to other firms, or embedded within product offerings. The DMP/IP management
isassisted by metadata, an abstraction of design and administration choices that represents different aspects of functionality and
characteristics, such asinfrastructure, model, process, contents, representation, and administration (Shankaranarayanan and Even
2004). The DMP/IP view is predominant in today’ s data quality management (DQM) field, underlying the adaptation of total
quality management principles (Wang 1998), and the devel opment of quality improvement methodologies (Ballou et al. 1998;
Redman 1996; Shankaranarayanan et al. 2003). Thevalue gained by DQM isoften discussed qualitatively (Redman 1996; Wang
1998), with the exception of the quantitative DMP optimization discussed by Ballou et al. (1998). Their model maps quality
attributesto value and cost, an approach that underlies optimization modelsfor quality trade-offs (Ballou and Pazer 1995, 2003),
and influences the framework developed in this paper. Another key data management principle that influences this study isthe
separation of data and program. Datasets are held in independent database management systems (DBMSS) that can be accessed
by multipleapplications. L eading datamanagement technol ogies(e.g., RDBMS, flat-fil es, spreadsheets, and statistical packages)
use atabular-dataset model, based on two-dimensional structures that abstract business entities, and/or the relationships among
them. This research focuses on key tabular-dataset characteristics that are further discussed in the next section.

While the technical aspects of data management are well-addressed, discussion of its economic aspects is surprisingly rare
although information value (1V) and economics have attracted significant research attention within the broader context of 1S/1T
(Banker and Kauffman 2004), and have been an important focal point for field practitioners (Wixom and Watson 2001). A few
key concepts have emerged from this stream. While firms are viewed as profit-maximizing entities, the profit contribution of
|S/IT isoften not apparent and difficult to proveempirically (Davern and Kauffman 2000). Organizations gain economic benefits
from IS/IT through strategic alignment with business goals (Henderson and Venkatraman 1993). IS/IT value is shown to
materialize through contextual use (Devarag] and Kohli 2003) and successful integration into business processes, together with
complementary resources (Davern and Kauffman 2000). 1V is often viewed as the payoff margin between perfect information
versus imperfectionsthat result in inferior outcome and lower willingness-to-pay (Banker and Kauffman 2004). |1V isargued to
be asymmetric: shared information may have different value to different actors (Lee et al. 2000; Rgju and Roy 2000). Among
the IV determinants (IS characteristics, managerial actions, payoffs, and uncertainties), only the IS characteristics (particularly
quality) are shown to have monotonic relationships with value (Hilton 1981). Conversely, volume does not; increasing it might
have negative effects when interactions among utilities (Arya et a. 1997) or uncertainties (Sulganik and Zilcha 1996) exist.

Concepts of information val ue and economics can inform better data management from the business viewpoint. First, while data
management focuses on technical and functional aspects, there is a need to measure performance within business context and
choose the dependent variable (DV) accordingly (e.g., profitability). Profit maximization implies both value increase and cost
reduction. While datamanagement costs are reasonably well understood, the value gained islargely unknown and needs further
study. Second, data is attributed with value only within contextual use, hence the need to link valuation of data with business
usage. Third, although driven by use, value is influenced by impartial 1S characteristics. |V models often treat information
abstractly, rather than address specific technological characteristics. The utility function approach aimsto addressthischallenge.
Such functions map | S attributesinto tangible val ue within specific usage, and attempt to maximize val ue through optimal design
(Ahituv 1981). Utility functionsare not commonly used in datamanagement, although they are shown to be significant for DQM
and DMP optimization (Ballou and Pazer 1995, 2003; Ballou et al. 1998). Microeconomic frameworks for value-driven data
mining have embedded utility functionsto help direct data search that yiel ds patterns with the potential to generate concrete and
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Figure 1. Profit Maximization Model for Data M anagement

profitable action (Kleinberg et al. 1998). These concepts—profitability asthe DV, contextual value attribution, and the mapping
of impartial/technological 1S/IT characteristics to value and cost—guide the development of the microeconomic framework
described next.

A Profit-M aximization Framework for the DM P/IP

The quantitative microeconomic framework, which stems from the DMP/IP view, assumes maximizing profit—the difference
between the value gained by using IPs (the DMP output) and the cost of implementing the DMP—as the key goa of data
management. It isassumed that both value and cost are affected by impartial characteristics of the DMP and/or the IP that are
captured inthe metadataabstraction. Theeffect of these characteristicson valueisassumed to be moderated by contextual usages
and their effect on cost by implementation factors (Figure 1). The model highlightsthree pathsto increase profit: (1) increasing
IP usage, (2) reducing DMP implementation costs, and (3) optimizing DMP/IP configuration. This microeconomic model
coincideswiththeview of design asaprocessof searching for optimality among feasi ble solutions (Churchman 1971). Thisstudy
positsthat models, such asthe one described here, promote val ue-driven and profit-maximizing design and, hence, contribute to
better data management. Value and profit optimization models are common in marketing and operations management research,
particularly in the field of product design. Such models underlie the optimal design and configuration of products (e.g., Kohli
and Sukumar 1990) and services (e.g., Easton and Pullman 2001; Eriksen and Berger 1987). They are also used for cost-benefit
optimization of production lines (e.g., Cooper and Slagmulder 2004; Yigit et al. 2002).

To develop the model, this paper first describes the general formulation of the key constructs by taking a deterministic approach.
Thisisthen extended for tabular datasets.’

Metadata Vector (X): The metadata vector X represents the set of input characteristicsthat are subject to optimal configuration.
M etadata characteristics can be broadly classified as design or maintenance, a categorization that reflects different optimization
options at different stages of the system implementation cycle. Design characteristics reflect the long-term decisions that are
typical in early stages (e.g., infrastructural and architectura choices), while maintenance characteristics reflect the short-term,
ongoing decisions that are made when the system is operational (e.g., performance monitoring and troubleshooting). Data
management systems introduce alarge set of configuration decisions. To minimize complexity, it isimportant to limit the input

!Alternative datamodels (e.g., object-oriented, object-relational, and XML ) are gaining popularity in 1Simplementation and future extensions
to this study should look into extending the framework to address those.
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set to include only those characteristics that significantly affect value and/or cost and, hence, profitability. In the specific case
of the tabular dataset, the following key design characteristics significantly affect the value and the cost.

Field Structure ({Y}mer w): [N the tabular dataset model, entity attributes are represented by fields or columns. Attributes are
not necessarily of equal importance from the business perspective. An optimal field-structure design hasto consider trade-offs:
asmall set forms a parsimonious abstraction of the entity, simplifies data acquisition and processing, decreases size, and results
in lower storage and administration costs. An over-simplified set, on the other hand, might fail to capture important descriptors,
and thus prevent the integration of the dataset within business processes and reduce the potential for gaining value. While some
fields may be mandatory for all possible uses, or needed for maintenance purposes (e.g., time indicators or index fields), others
may be optional and their inclusion or exclusion is subject to design decisions. We assume M optional fields, each represented
by avariableY,,, abinary integer: Y,,= limpliesadecisiontoincludethefield [ m] inthe dataset, whileY,,= Oimpliesexclusion.

TimeSpan (T): Entity instancesinatabular dataset arerepresented asrecords, or rows, withidentical field structure. The number
of records (N) introduces profitability trade-offs: alarger N oftenimplieshigher costs (e.g., upgradesto storage space, hardware,
and applications). On the other hand, a larger N offers a broader and more granular business perspective and allows more
elaborateanalysis. To addressthistrade-off, databases are often segmented by record age: the morerecent dataismadeavailable
to end-users via an active dataset, optimized for fast performance, while older data is discarded or archived. The time span
covered by the active dataset, determined by an age cut-off, dictatesthe expected N and hence becomes animportant design factor.
The time span is represented as a nonnegative, continuous variable, T= 0. Nisassumed to be linear with T: N(T) = RT where
Risthe record density per time period.

Quality Level (Q): Data quality (DQ) is commonly evaluated along a set of attributes (e.g., accuracy and completeness), and
measured as aratio within the range of 0 (bad) and 1 (good) (Pipino et a. 2002). DQ can be measured impartially, based on the
dataset structure and/or contents (e.g., reflecting undamaged data), or contextually, within a specific business usage (e.g.,
reflecting task-relevant data). DQM literature has discussed a plethora of DQ solutions, from error detection and correction, to
comprehensive process designh methodol ogies (Redman 1996; Wang 1998). In the proposed model, the quality level isviewed
asadesign target (conversely, in other decision scenarios, it can be viewed asreflecting the actual status). Designing the system
that guarantees the high quality of the generated dataset(s) increases the potential to gain value, but might imply investmentsin
costly DQ solutions. The model proposed here optimizesthetargeted level of one DQ attribute, measured impartially. A dataset
record is assumed to be either of good quality with likelihood Q, or of poor quality with likelihood of (1-Q,). The overall dataset
quality Qisanumber between 0 and 1, defined as the proportion of good-quality records. It can be shownthat Q = Q,, assuming
that record quality levels are independent and identically distributed variables.

Value: Data (or IP) valueis attributed within contextual business use and reflects the consumer’ s willingness-to-pay, henceis
measured monetarily. Impartial DMP/IP characteristics can affect the value, some directly (e.g., dataset richness, promptness
of delivery, or accuracy), and othersindirectly (e.g., hardware and process configurations). The characteristic-to-value mapping
isrepresented as a set of utility functions, one per usage scenario. The contextual moderation effect is reflected in the specific
functional form. The overall value is sum-additive:

U(X): Zi:l..l Ui(x) @)

where X = The metadata vector of impartial characteristics
U, = Utility within contextual usages, indexed by [i]
| = Thetotal number of contextual usages
U = Theoverdl vaue

A tabular dataset can serve multiple purposes. Considering time (T) and quality (Q) first, the value within a use scenario is
assumed to be capped and maximized with the longest possible time range (T = «) and optimal quality (Q = 1). The value
degrades with lower quality level and is assumed to have an exponentially diminishing return with age.? It is hence represented
as

2Such assumptionsreflect aprimarily internally (within an organization) focused usage. With external use, increasing volumesand improving
quality above certain levels can create new usage opportunities and the resulting demand curves are more likely to follow an S-shape. These
are to be explored in future extensions.
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U,(T,Q)=k (1-e"JQ? @

The value of usage scenario [i]

where U, (T, Q)
k The value cap of usage scenario [i],a Q=1and T > «

7 A positive exponential slope factor of usage scenario [i]. The greater the value of «;, the less dependent
the usage scenario is on older data.
B = A positive quality sensitivity factor of usage scenario [i]. The greater the value of £, the more sensitive

the user scenario isto loss of quality.

The overall value for al use scenariosis therefore given by

U (T ’ Q) = Zi:l..l i (1_ e bﬂi )

Adding structure characteristics (X = [T, Q, {Y.}]), each use scenario may require a different field subset. Some fields are
mandatory for a certain scenario, some are not mandatory but may reduce value if excluded, and yet others do not affect the
scenario at al. We define

n™ as the sensitivity factor of usage[i] to optional field [m], 0 < 5™ < 1. The higher the 5™, the more necessary the field. ™
= limpliesamandatory field for usage[i]. ™= 0impliesthat usage scenario [i] isindependent of the inclusion of field [m].

s"=1-n" (1—Ym) istheeffect of field [m] on usage scenario[i]. With sensitivity factor ™= 0O, theeffectisalways1. With

sengitivity factor ™= 1, theeffectis 1if thefield isincluded and O if not. WithO< "< 1, theeffectis1if thefieldisincluded,
and 1- »™if not.

S = Hm:l..M s"= Hm:l..M (1— n"@-y, )) isthe structure effect on usage[i]. Excluding amandatory field implies S = 0.

Excluding apartially important field (0< n< 1) reduces S but not to 0. Fields of which the scenario isindependent do not affect
the overall value (sinces™ = 1).

Adding field structure considerations to (3), the overall valueis given by

UTQIN=Y  kl-eRis =Y k- R ., a-n"a-Y,) @

k. is now interpreted as the maximum potential value of scenario [i], given full time span covered (T > <), optimal quality level
(Q = 1) and al the value-contributing fields included.

Cost: The DMP implementation comes at a cost, which is driven by technical and managerial decisions such as infrastructural
choi ces, programming efforts, investment in quality improvement solutions, and administrative overhead. Similar toutility, DMP
characteristics affect the cost directly or indirectly. Cost factors can be represented as a parameterized function that trandates
the effect of impartial characteristic to monetary output.

C(X): ijl..J Ci(x) ®)
where X = The metadata vector of impartial characteristics
C = Costfactor, indexed by [j]
J = Thetota number of cost factors
C = Theoverdl cost

For tabular datasets, considering T and Q first, cost is assumed to have three components.
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C(T,Q)sz +C (T)"‘Cq(T’Q) (6)
where G = A fixed component, which can be related, for example, to hardware or networking.
C(T) = Alinear component with aper-record cost ¢, which can be related to data acquisition or to investment in
disk-storage space. Thelinear cost is, hence, given by
C,(T)=¢,N(T)=c,RT @)
C(T.Q = Variable quality cost. Often, the older the data is, the more expensive it isto maintain its quality. The
quality cost per record is therefore assumed to be
R _ o _ P
CX(t.Q)=c,Q, (1+a)=c,Q’°(L+ &) (®)
where t = The age of the record.
Q, (=Q) = Quality level of asingle record.
Cq = Cost of maintaining arecord of age 0 at a maximum quality level.
6 = Cost sensitivity tothequality, > 1. Thegreater §is, the greater istheincreasein cost as perfect
quality is approached.
17 = Cost sensitivity to age, assuming linear increase. 6> 0, where equality to zero reflects no age

effect on quality cost per record.

Therecord density isR. Therefore, the overall quality cost and the overall cost are

C,(T.Q)=[  _RC¥r.Q)dr=[ c,RQ’(1+0r)dr=c,RQ°(T+050T%) ¢

C(T.Q)=C, +C,(T)+C,(T.Q)=c, +¢RT +¢,RQ’(T +0.54T2) (10

Adding field structure characteristics may affect each cost component.

Fixed cost (C,): Thefixed cost is assumed to have afixed component ¢’. Each optional field, if included, adds an incremental
cost ¢ (e.g., design and programming efforts related to adding the field). The fixed cost is hence given by

c,(YP=ct+> cf*Y, (11)

Linear Cost (C): The per-record cost ¢, is assumed to have a fixed component ¢, (potentially attributed to mandatory fields).
Each optional field, if included, adds an incremental cost ¢™. Thelinear cost, as derived from (7), is hence given by

CTN=(L+Y ¢V, RT (12)

Quality Cost (C,): Similarly, the per-record quality cost c,, is assumed to have afixed component cq°, and each optional field,
if included, adds an incremental quality cost per record c,". The quality cost, as derived from (10), is, hence, given by

C,TQ )=+ . cr+v, RQ’(T +0.56T2) (19

The overall cost sums the three cost factors
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CTQ{MD=(cC+>  erev )+ "y, RT

(14)
0 m * )
w2+ ey, JRQO(T +0.56T2)
Profit: The profit is defined as the difference between overall value and overal cost.
P(X)=U(X)-C(X)=2_ Ui(X)-2 ,Ci(X) (15)
where X = A vector of metadata characteristics.
{U:(X)} = Valueattributed to | contextual usages, indexed by [i].
{C(X)} = Cost attributed to J cost factors, indexed by [j].
P(X) = Contribution of datato profit.

P(X) isthe objective function for the optimization problem: configure the characteristics of the DMP/IP (the vector X) such that
theoverall profitismaximized. Optimal configuration issubject to constraintssuch astarget businessgoals, legal and contractual
obligations, capped implementation budget and time, scarcity of required resources, or interdependency among metadata
components. With tabular datasets, considering T and Q first, profit is given by

PT.Q)=>_ Kk (1— g’ bﬁi - (cf +GRT +c, RQ‘S(T + O.SHTZ)) (16)

st. T>0,0>0,Q<1
Adding field structure characteristics yields

P(T’Q’{Y}): Zi =L i (1_ e bﬁ le—l M (1_ 77im 1_Y ) -

[0+ erev e+ e RS+ cm*y, JRQY(T +056T2))

st T>0,Q0>00<1Y,>0,Y, <land,,integer, foreachm=1..M

(17)

While the profitability has apparent trade-offswith T, Q, and {Y,}, the effect of other parameters can be inferred from the profit
model. We expect profitability to

* Increase with | and {k}: more usages and higher per-use value increase profitability.

* Increase with « and decrease with g. higher time sensitivity implies near optimality with less time coverage, higher quality
sensitivity impliee higher decline as quality degrades.

» Decreasewith ™ profitability islikely to reduce with higher sensitivity to field exclusion.

» Decreasewithc, ¢, and ¢, higher cost factors decrease profitability.

* Decreasewith sand 6. higher quality cost sensitivity to Q or to T decreases profitability.

Future Extensions. Data management systems are complex and in reality profitability can be affected by alarge set of other
characteristics (e.g., infrastructure, process, and delivery). The usability of such aframework depends on identifying alimited
subset of influential characteristics and modeling their effect on value and cost. The general formulation assumes determinism
for simplicity, although in reality data management systems are far from being deterministic. Alternative formulations can
consider stochastic behavior and transform the optimization problem (15) into maximization of expectation over time (denoted

Ell).
P(X)=E(X)]-ElcX)=Y,, El(x)]-3 , Ele,(x)] (18)

Another underlying assumption to bereconsidered isthe sum-additive modeling of utility and cost factors. Thisassumption, while
simplifying the model analytically, suggeststhat such factors are independent of each other, which often does not reflect real-life
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practices. Value enhancement or neutralizing relationships may exist among utilities and costs, in which case the whole is not
necessarily an additive-sum of the parts. Such scenarios of interdependency ought to be further explored, and the framework
should be enhanced to model them properly.

Other model enhancements to consider are, for example

Different constraintson Tand Q (T™" < T< T™, Q™" < Q < Q™), dictated by business needs.

Uneven distribution of records along time, which implies a different N(T) formulation.

Quiality levels per record that are not i.i.d., which implies a different Q formulation.

Different functional forms (e.g., step or s-shaped) for mapping T, Q, and {Y,} to cost and value: information overload, for
example, might imply value degradation as volume and field structure complexity increase. Larger T and Q, and/or richer
field structure may introduce new usage opportunities, but require significant hardware and software upgrade.

Optimal Configuration of Tabular-Dataset Characteristics

This section demonstrates the use of the profit-maximization framework for optimal design of dataset characteristics. The
optimization model isnonlinear and mixescontinuousand integer input variables. Still, within certain assumptions, aclosed-form
solution can be obtained. More often, however, optimization requires numerical approximation, using dedicated software.’

Optimizing the Time Span (T) and the Quality Level (Q)

With certain relaxations, closed-form solutions can be obtained for optimizing T and Q. Three cases are demonstrated:
(1) optimizing T alone, (2) optimizing Q alone, and (3) optimizing T and Q simultaneously.

Case 1: Optimizing the time span alone, given Q. A first derivative of (16) yields
oP(T,Q)/dT =D ake ™ Q" —¢R-c,RQ’ - c,RQIT (19)
The optimal time span can be obtained from oP(T,Q)/JT=0, or
> ake Q" =¢R+c,RQ’ +¢,RQAT (20)

Since the left-hand side is monotonically decreasing with T and the right-hand side is monotonically increasing with T, there is
asingle T°" solution. Taking a second derivative

I?P/oT2 ==Y a’ike Q% —c,RQ%0 1)

The second derivativeis negative. Hence, T isapoint of maximal profitability. A closed-form solution can be obtained from
(20) for asingle utility (I = 1) and assuming &= 0.

ake™ " Q” = ¢ R+c,RQ’ (22)

This optimum represents the time point above which the margina cost (C,R+ C, RQ5) exceeds the margina value
(Otke’“TQﬂ ). The optimal time can now be obtained from (22).

*Microsoft-Excel/Solver was used for the numeric illustrations in this study.
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1 ok
T ==Ln 23
o { RQ™ (C| +¢,Q° )} “
The maximum profitability is given by
R ok
P(T" . Q)=k F_lc +c.Qf)* Lnle* -C 24
( Q) Q o ( 1 qQ ) { RQ—ﬁ (CI + CqQJ)} f ( )

Case 2: Optimizing Q alone, given T. A first derivative of (16) yields
P(T,Q)IQ=Y Ak (L-e" R -5, RQ*HT +0.50T?) 29
The optimal quality level be obtained from oP(T,Q)/ XQ = 0, or
3 | Bkl-e TR = 6, RQTHT +0.50T2) 29)

Such eguation may have more than one solution, depending on the actual parameter values. A solution below 0 impliesthat the
system is infeasible; when a solution is above 1, the constraint Q < 1 applies, and Q = 1 is the candidate choice. The second
derivative yields

?P(T,Q)/3Q% =Y A(B —Dk [L-e T Q72 - 5(6 -1)c,RQ°2(T +0.56T2) (2n)

With 6> 1, the second derivative is negative if 0 <4 < 1 and the optimal solution, if feasible (0 < Q < 1), indicates maximal
profitability. If g > 1, the second derivativeis not guaranteed to be negative. Hence, thereisaneed to obtain its value with the
actual parameters. A closed-form solution can be obtained from (26) for asingle utility (I = 1):

Pr(L- e QP = &, RQ*(T +0.56T2) 289

This optimum represents marginal cost (&q RQ‘* (T +0.56T 2 )) exceeding the marginal value (,Hk(l— e’ )Qﬂ ‘1) . The
optimum can be now obtained from (28):

1
QOPT — ﬂk(l_ e” ) s (29)
&, R(T +0.54T2)
If 0< Q%" < 1, the maximal profitability is given by
P(T,Q)=k{1-e Q%" - (cf +GRT +¢,RQ™’(T + 0.5€T2)) (30)

Otherwise, Q°"" < 0 implies unfeasibility and if Q°" > 1, Q%" = 1 isoptimal and profitability is

P(T1)=k{l-e)-c, (¢ +c,)RT - 0.56c,RT? 3
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Case3: First derivativesby T and by Q aregiven by (19) and (25) respectively. Solving &P/JT = 0 and oP/aQ = 0 simultaneously
yields candidate solutions, which can be checked for optimality. With the simplifying assumptionsof | = 1, ¢, = 0Oand 6= 0,

9P(T,Q)/IT = oke“"Q” —c,RQ’ and IP(T,Q)/9Q = SKk(L-e ™ Q- &, RQ™IT ()
Solving P/JT = 0and P/IAQ = 0
oke ™ Q” =C RQ’ and Sk(1- e Q’ = &C,RQ’T (33)

Dividing the second equation by the first yields

(eaTOPT . 1) = STO°T (34)

R >

Since ¢ > 0, the equation has a positive T°" solution (in addition to T = 0). Substituting JT in the second equation yields a
candidate Q°"", which should be checked for feasibility (0< Q < 1).

1
OPT __ Ock(l—e_'ﬂ) h (35)
= [CORie“T —1i]

For checking optimality, the Hessian matrix and its determinant should be looked at.

0°P/9oT? 09%P/0T9o
H[P(T,Q)]{ Q}

0°P/0QdT  0%P/0Q’

(36)
P e—aTQﬁ _ aﬂk(l— el )Qﬁfl _ &q RQ(H
—opk(l-e T QP - &,RQTT B(B-LK(L- e QP E - 5(6 - L)c,RQET
D =02P/dT2*9°P/3Q* — (9°P/9ToQ) (37)

The following conditions can be evaluated to determine optimality:

+ If D> 0and second derivatives are positive at (T°T, Q°""), the point is a relative minimum.
+ If D> 0and second derivatives are negative at (T°", Q°"), the point is a relative maximum.
* |f D<0,thepointisasaddle point and if D = 0, higher order tests must be used.

[llustrative Example 1: A firm wishes to promote a product to listed customers. Targeting the entire list is expected to yield
$1million. Thelist covers25 yearswith an average of 10,000 customers added per year. The morerecent acustomer, the higher
isthe acceptance chance, with amarginal exponential declinerate of 0.2. Often, customer information isinaccurate and damages
promotion efforts with a sensitivity rate of 2. Raising quality level to 100 percent accuracy is viable, but expensive ($6 per
record), with negligible increase for older data. However, a cheaper mix of automated and manual procedures can lower cost,
with aquality cost sensitivity factor of 5. Sincethelistisaready in place, fixed costsand per-record marginal cost arenegligible.
To optimize the expected profit, two questions must be addressed: (1) how many years of customer data should beincluded, and
(2) what data quality level should be targeted?

Trandlation of the given problem to the model parametersyields
* |=1,sinceasingle promotion is analyzed and k = $1 million, the maximal value possible.
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Time Span Optimization Quality Level Optimization
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Figure2. Cost, Value, and Profit by Figure3. Cost, Value, and Profit by
TimeSpan (Q=1) Quality Level (T = 25)

« = 0.2, the value sensitivity to time and g = 2, the value sensitivity to quality level.
R = 10,000, the average number of records per year.

¢, = $6, perfect quality cost per record. §= 5, cost sensitivity to quality level.
¢ = ¢ = 6= 0, negligible fixed and per-record costs and quality cost sensitivity to time.

The solutionsfor three model cases are demonstrated: (1) optimizing thetime T for aperfect quality level (Q= 1), (2) optimizing
the quality level Q for the entire database (T = 25), and (3) optimizing T and Q simultaneously.

Case 1: Applying the values yields C(T) = 60000 T, U(T) = 1000000 (1 — €°27), and P(T) = 1000000 (1 — &°2") — 60000 T
(Figure 2). The optimal time span T°" can be obtained from (23): T°" = 6.02. The maximal profitability is estimated in
$338,808.

Case 22 Applying T = 25, yidds C(Q) = 1500000Q°, U(Q) = 1000000 (1 — €% * @, and P(Q) =
1000000 (1 — e® * Q? — 1500000 Q° (Figure 3). The optimal quality Q°" can be obtained from (29): Q" = 0.6422, with
maximal profitability is estimated in $245,793.

Case 3; Here C(T, Q) = 60000TQ?®, U(T, Q) = 1000000 (1 -€°*") * Q? and P(T, Q) = 1000000 (1 — €°2T) * Q? — 60000TQ".
Solving (34) and (35) numerically yields an optimal time span T°7" = 8.09 (equival ent to the most recent 80,900 dataset records),
Q°"T = 0.87 and expected profit of $364,879. Asexpected, this profit ishigher than the results obtained from optimizing thetime
span or the quality level alone.

For sensitivity analysis, first Q isfixed at Q°°" = 0.87 and the effect of T variationisillustrated in Table 1. Within arange of ~1
year from the T, profitability decline stays within ~1 percent. Within arange of ~2 years, the decline is less than 5 percent,
and within arange of ~3 years, the decline is less than 10 percent. Second, T isfixed at T°°" = 8.09 and the effect Q variation
isillustrated in Table 2. Within Q range of [0.85, 0.9], the profitability decline islessthan 1 percent. Within arange of [0.8,
0.95], the decline is less than 5 percent, but within a range of [0.75, 1] the decline exceeds 10 percent. The optimal solution
appearsto befairly robust. Keeping T and Q, within a reasonable range around the optimum yields arelatively small deviation
from optimal profitability.
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Table1l. Sensitivity to Time-Span Variation (Q = 0.87)
Time Span (T) Expected Profit ($) Margin from Optimum ($) Decline (%)
5 329,132 -35,747 -9.80%
6 349,652 -15,227 -4.17%
7 361,005 -3,874 -1.06%
8 364,852 -27 -0.01%
8.09 (Optimum) 364,879 0 0%
9 362,554 -2,325 -0.64%
10 355,255 -9,624 -2.64%
11 343,776 -21,103 -5.78%
Table 2. Sensitivity to Quality Level Variation (T = 8.09)
Quiality Level (Q) Expected Profit ($) Margin from Optimum ($) Decline (%)
0.7 311,291 53,588 -14.69%
0.75 335,803 29,076 -7.97%
0.8 354,057 10,822 -2.97%
0.85 363,865 1,014 -0.28%
0.87 (Optimum) 364,879 0 0%
0.9 362,744 2,135 -0.59%
0.95 347,903 16,976 -4.65%
1 316,224 48,655 -13.33%

Optimizing of the Field Structure

Potential closed-form solutionsfor optimal field structure were not explored in this study. However, optimization that considers
field structure together with T and Q, (17), can be numerically obtained with the appropriate software.

[llustrative Example2: Thesamefirmconsidersenhancingitscustomer list with external informationthat can support additional
decision tasks. The candidate enhancements are

3. Yearsof education
6. Value of houses owned

2. Number of children
5. Credit status
8. Value of appliances owned

1. Marita status
4. Neighborhood ranking
7. Vaue of cars owned

Four decisiontasksareeval uated, each with adifferent potential value contribution and adifferent set of additional fieldsrequired.

Task 1 has avalue potential of $1,000,000, and requiresfields (1), (2), (3) and (5).
Task 2 has avalue potential of $1,000,000, and requires fields (1), (2), (3) and (6).
Task 3 has avalue potential of $200,000, and requires fields (1), (2), (4) and (7).
Task 4 has avalue potential of $200,000, and requires fields (1), (2), (4) and (8).

AowbhE

Value has time sensitivity factor of 0.25 and quality sensitivity factor of 2. The fixed cost of enhancement is $100,000, plus
$10,000 per field added. The per-record linear cost has a fixed component of $0.2, plus $0.1 per field added. The per-record
quality cost hasafixed component of $10, plus$2 per record added. To optimize profit, thefollowing questions need addressing:
(1) Whichfield, among the candidates, should be added to the dataset? (2) How many years of datashould beincluded? (3) What
data quality level should be targeted?

Trandlation of the given problem to the model parametersyields
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From theillustrative example 1: R= 10,000, 6= 5, and 6= 0.

| = 4, since four tasks are considered. k; = k, = $1,000,000, and k, = k, = $200,000.

{# = 0.25},_, ,, the value sensitivity to time, and {8 = 2}, ; ,, the sensitivity to quality level.
Fixed cost components: ¢ = $100,000, ¢ = $10,000.

Linear cost components: ¢ = $0.2, ¢™ = $0.1.

Quality cost components: ¢’ = $10, ¢," = $2.

{n™, the sensitivity factors of task [i] to field [m] are presented in the following matrix:

Task/Field |m=1|2 |3 | 4|5 |6 |78
i=1 1 1110|1000
2 1 1100 1|0]O0
3 1 11]0|]1]0|0|1]O0
4 1 1]0]1]0]0]O0]1

The optimal solution can be obtained by considering (17) as the objective function.

1. Keeping T°" = 8.09 and Q°"" = 0.87, as previously obtained, the optimization suggests including fields (1, 2, 3, 5, 6) and
excluding (4, 7, 8), which impliesthat only tasks (1) and (2) will be supported since (3) and (4) depend on excluded fields.
The optimal profitability is estimated to be $300,412.

2. Reoptimizing T and Q aswell. The optimization here suggests the same mix of fields. However, the optimal T = 5.85
and Q" = 0.80 are now different. The estimated optimal profitability in this caseis $409,361, significantly higher then the
first result.

The results make intuitive sense: the two more profitable tasks were supported with the required fields, while the two less
profitable were omitted, due to atoo-high additional cost.

Conclusions and Directions for Future Research

Data management is important to business firms. While today it is driven by technical and functional efficiency, a stronger
inclusion of the economic perspective is encouraged. This study suggests that data management ought to align with profit-
maximization goals, and contributesto this suggestion with the proposed profit-maximization framework. The framework maps
theimpartial /technical characteristicsto theimplementation costsand to the val ue created within contextual usage. Bringingthose
aspects together allows profit maximization through optimal configuration of the characteristics. The framework provides a
powerful tool, from a business perspective, by consolidating value and cogt; it alows trade-off assessments toward profit
maximization. From thetechnical perspective, it informsthe design of data management systems by attributing value, cost, and
profitability to impartial characteristics. The framework isdemonstrated through optimization of an IPwith atabular data struc-
ture. Themodel illustrates cost/benefit trade-offswith key tabular dataset design characteristics: thetime span, the quality level,
and the field structure. As demonstrated, more is not necessarily better: increasing the number of records, adding more fields,
and approaching perfect quality may have functional and technical merits, but may not necessarily be optimal for profitability.

Thisstudy offersarange of opportunitiesfor futureresearch. Some are specificto the microeconomic framework proposed, while
otherstake abroader theoretical perspective. The microeconomic model allows many possible extensions, as discussed earlier.
Improving its contribution and usability requiresidentifying influential design characteristics, modeling their cost/benefit effect,
and assessing profit optimization accordingly. Such modeling will be challenging given the issues with nonlinearity, complex
constraints, stochastic behavior, considerations of current versus future goals, and dynamic behavior. For thisreason, obtaining
alinear-programming formulation or closed-form solutionsisnot likely. Alternatively, more advanced methodssuch asnonlinear
optimization, mixed-integer programming, dynamic programming, conjoint analysis, or the real -option approach can be examined.

Microeconomic modeling is applied within academic disciplines other than | S and the profitability framework could benefit from
better synergy with these. Two such bodies of research are referenced here. First is the product design, which uses micro-
economic model sto optimize products, services, and production lines. Profit optimization of the DM P/IP coincideswith thekind
of problems addressed by product design research, hence, the models and analytical methods that have been proposed may be
applicabletothe | S/IT setting. The second body of research isdatamining in which microeconomic models are applied to value-
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directed information searchin large datasets. Such models can contributeto abetter explanation of the utility obtained from data
consumption, an important part of the profitability framework that has not been sufficiently explored by IS research.

Empirical studiescan help assessthe value and cost associated with integrating datawithin business processes. Quantifyingthose
factorscan be challenging; processes are complex and invol ve complementary resources (Davern and Kauffman 2000). Thismay
require exploring techniquesfor business process mapping and val ue attribution. Empirical studiescan also helpidentify themore
influential characteristicsin complex systems, so that modeling can focus on alimited, but important, input set of characteristics.
Another aspect to be empirically confirmed is the assumed functional forms for value and cost mapping and the calibration of
their parameters.

Data management ought to be linked more robustly to the economic view of IS/1T. Data management technol ogies are broadly
researched, and so are information value and information economics. However, value and profitability are rarely addressed in
the context of datamanagement, and technol ogical characteristicsof datamanagement are not commonly discussed ininformation
economics or information value research. This gap can be redressed by understanding the value contribution of data and how
gains are affected by technological characteristics. A possible approach is to develop a data valuation taxonomy, identifying
aspectsof value contribution, detecting factorsthat appear to have strong explanatory power, and modeling the value contribution
along those factors. Factors that appear to influence |S/IT value in abroader context often align aong the distinction between
the operational and the strategic: internal use versus external managerial scope (West and Courtney 1993), current versusfuture
goals (Davern and Kauffman 2000), and uncertainty level (Sulganik and Zilcha 1996).

Finally, design for value and profitability isimportant not only to data management, but to system design in a broader sense.
Although in recent years the economic aspects of IS (cost, value, and profitability) have drawn significant attention, it is hard to
detect the influence of these conceptsin IS design. This may contribute to the often-heard arguments of misalignment and
disconnect between businessgoalsand I T. The suggested framework bringsthe economic considerationsto theforefront asgoals
that ought to direct optimal technical design. Such an approach, if proven to be useful, can better inform system design and
architectural choices.
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