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Abstract

Advances in data mining techniques have raised growing concerns about privacy of personal information.
Organizations that use their customers' recordsin data mining activities are forced to take actions to protect
the privacy of the individuals involved. A common practice for many organizations today is to remove the
identity-reated attributesfromcustomer recordsbeforerel easing themto dataminersor analysts. Inthisstudy,
we investigate the effect of this practice and demonstrate that a majority of the records in a dataset can be
uniquely identified even after identity related attributes are removed. We propose a data perturbation method
that can be used by organizationsto prevent such unique identification of individual records, while providing
the data to analystsfor data mining. The proposed method attemptsto preserve the statistical properties of the
data based on privacy protection parameters specified by the organization. We show that the problem can be
solved in two phases, with a linear programming formulation in phase one (to preserve the marginal
distribution), followed by a simple Bayes-based swapping procedure in phase two (to preserve the joint
distribution). The proposed method is compared with a random perturbation method in classification
performance on two real-world datasets. The results of the experiments indicate that it significantly
outperforms the random method.

Keywords: Privacy, data mining, linear programming, Bayesian method

I ntroduction

In recent years, we have observed an explosion of digital data generated and collected by individuals and organizations. The
widespread use of computers and the Internet for transaction processing, and the advances in storage technology and database
systems, have allowed us to generate and store mountains of data. In tandem with this unprecedented growth of technologiesto
collect and store data, techniques for datamining have emerged and flourished in order to extract useful knowledge from massive
volumes of data. Because of its ability in discovering hidden patternsin the transaction and customer data, data mining has been
appliedtoawidevariety of domains, including database marketing, credit and | oan eval uation, fraud detection, customer profiling,
Web usage analysis, and medical diagnostics.

While successful applications of datamining are encouraging, there areincreasing concerns about invasionsand potential threats
to privacy of personal information by information technology ingeneral, and by dataminingin particular. A survey by Time/CNN
(Greengard 1996) revealed that 93 percent of respondents believed companies selling personal data should be required to gain
permission from the individuals. In another study (Culnan 1993), more than 70 percent of participants responded negatively to
questionsrelated to the secondary use of private information. In 1990, L otus attempted to release a CD-ROM with data on about
100 million householdsin the United States. However, the product generated such strong public protestsregarding privacy issues
that Lotus was forced to withdraw the project (Rotenberg 1992). Recent studies point to similar and growing concerns with
privacy (Stanford 2002; Wang et al. 1998).
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In order to resolve the conflict between data mining and privacy protection, researchers in the data mining community have
proposed various methods. Agrawa and Srikant (2000) considered building a decision tree classifier from data where the
confidential valueshavebeen perturbed. By using adistribution reconstruction procedure, the authorswereabletobuild classifiers
whose accuracy is comparable to that of classifiers built with the original data. Estivill-Castro and Brankovic (1999) proposed
a data swapping method, also used in decision trees for classification. This method aims at maintaining the same decision tree
structure while perturbing the data. It does not consider the statistical distribution in the data. Therefore, the perturbed data may
produce poor resultswhen used for other datamining tasks, or even for different decision tree classifiers. Evfimievski et a (2002)
presented a framework for mining association rules from transaction data that have been randomized to preserve individuals
privacy. The authors derived a support estimator, which allows a data miner to recover itemset supports from randomized data
and subsequently discover association rules from the data. Other studies on privacy preserving mining of association rules can
befoundinAtallah et al. (1999) and Verykioset a. (2004). Many of the studies described above approach the privacy issuefrom
a data miner's standpoint. They focus on how to develop algorithms for mining those datasets where confidential values are
deleted or perturbed dueto privacy concerns. Webelieve, however, it ismoreimportant to approach theissue from the standpoint
of an organization that owns data, because the primary concern of a data miner is to discover useful knowledge from the data,
while an organization has to set privacy protection asitsfirst priority. In this study, therefore, we focus on the problem of how
to preserve privacy while still enabling meaningful data mining that benefits the organization.

Theissue of protecting confidential datais not new. There has been extensive research in the area of statistical databases (SDBS)
on how to provide summary statistical information without disclosing individuals' confidential data. The privacy issue arisesin
SDB when summary statisticsare derived on very few (or asingle) individuals' data. In thiscase, releasing the summary statistics
leadsto disclosure of individual confidential data. The methodsfor preventing such disclosure can be broadly classified into two
categories. query restriction, which prohibits queries that would reveal confidential data; and data perturbation, which aters
individual datain away such that the summary statistics remain approximately the same. Adam and Workman (1989) presented
an excellent survey of these methods. Duncan and Mukherjee (2000) investigated the effectiveness of the query restriction and
data perturbation methods against tracker attacks to online SDBs. Using a mathematical programming formulation, the study
showed that acombination of query restriction and data perturbation (termed data masking inthearticl€) providesbetter protection
than when these methods are used separately. In general, both query restriction and data perturbation methods have been
extensively investigated and employed (see, for example, Cox 1995; Muralidhar et al. 1999).

The privacy issues in data mining are somewhat different from those in SDBs. The main purpose of an SDB is to provide
summary statistics, while datamining involves tasks such as classification and mining association rules, in addition to providing
summary statistics. In an SDB, auser normally cannot retrieve a complete relational table and can use only afew limited query
types, often restricted to access aggregate statistics, to retrieve information. In data mining, relational (not contingency) tables
containing individual records haveto bereleased to dataminersin order to perform the above datamining tasks. Therefore, query
restriction methods are no longer applicable and data perturbation becomes the primary approach for privacy protection in data
mining. In addition, many data mining tasks involve processing and analyzing categorical attributes (e.g., the class attribute in
classification and all attributesin association rules mining). Although there are studiesthat deal with categorical datain the SDB
research (Chowdhury et a. 1999; Cox 1995; Fienberg et a. 2000), most of them are directed at data presented in a summarized
contingency table. Garfinkel et al. (2002) proposed a privacy protection method that appliesto datain arelational table, but the
method is limited to cases where confidential attributes are binary.

In this study, we investigate the privacy problem whereindividual recordsin adataset can be uniquely identified without using
identity-related attributes. We propose a data perturbation method that can be used by organizations to prevent deterministic
disclosure of individuals' confidential information, while providing the data to data miners or analysts for data mining. The
proposed method attempts to preserve the statistical properties of the data based on privacy protection parameters specified by
the organization. The basic idea is to maintain statistical distributions via appropriate data swapping (we use the terms
perturbation and swapping interchangeably in this paper, although their connotations are somewhat different in the related
literature). We show that the problem can be solved in two phases: in phase one a linear programming formulation is used to
preservethe marginal distribution, and in phase two asimple Bayes-based swapping procedureis employed to preserve thejoint
distribution. The proposed method applies to situations where confidential attributes are categorical (either as originaly
represented, or converted from numeric values).
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The Privacy Protection Problem

Typicaly, there are three partiesinvolved in the privacy problemin datamining: (1) the data owner (which isthe organization
that owns the data) who has complete privileges to access the data and wants to discover knowledge from the data to gain
competitive advantage, without compromising the confidentiaity of the data; (2) individuals who provide their personal
information to the data owner and want their privacy protected; and (3) the data miner (insider or outsider) who performs data
mining for the data owner with the given data and who is regarded as a potential data snooper in this study.

There isa common misconception, in many organizations, that if the identity-related attributes, such as social security number,
name, and phone number, are removed from the released data, there will be no leak inindividuals' confidential datato the third
party. Thefact is, adataset with identity related attributes removed would still contain many unique records, which can be often
identified by a method such asa GROUP BY query or a sorting algorithm. With some additional information, the data snooper
can easily find an individual’ s confidential data. To demonstrate the problem, let uslook at ahypothetical, but realistic, example.

A life insurance company wants to know the relationship between the amount of death benefit (confidential) and a set of
demographic attributes (non-confidential), in order to launch an effective marketing initiative. A consultant is hired to conduct
such analysis. The company provides him with a dataset consisting of its 100,000 customer records. To prevent disclosure of
confidential data, attributes such as account number, name, and phone number are deleted. In addition, the values of some
attributes are grouped. For example, the amount of death benefit is grouped into afew interval categories; the location attribute
only showswhich state the customer residesin, instead of the complete street address. The datarel eased to the consultant includes
the death benefit amount (grouped) and six demographic attributes. age (5), gender (2), location (50), education (5), occupation
(10), and marital status (5), wherethe number of categoriesin each attributeis shown in parentheses. The company would believe
that no confidential datacould be disclosed from this processed dataset. A simple calculation, however, showsadifferent picture.
The total number of category combinations for the six attributesis5 x 2 x 50 x 5 x 10 x 5 = 125,000. Assuming each category
combination is presented with equal likelihood, then each of the 100,000 customers will be a unique record. In real situations,
of course, the assumption of the uniform distribution acrossall dimensionsisrather unrealistic. Morelikely, some customerswill
share the same attribute values, but others will have unique vaues. These unique individuals will be exposed to the risk of
confidentiality disclosure. Suppose the consultant has noted that there is a unique record with { age = 6069, gender = female,
location = FL, education = bachelor, occupation = retired, maritd status = widowed}, which matches the demographic data of
one of hisrelatives. If he knew this relative has an account with the company, then he has effectively discovered the amount of
his relative’ s death benefit. This disclosure could have serious financial, legal, or even criminal implications.

In order to formulate this privacy protection problem more rigorously, we first define some terms. We assume that thereis only
oneconfidential attributein thedata, but the definitionsbel ow can be easily extended to caseswith multiple confidential attributes.
The definitions are explained using a reduced life insurance example shown in Table 1, which has one confidential attribute
(Amount) and three non-confidential attributes.

Definition 1: Afull pattern isa category combination that involves all attributes. A non-confidential pattern
is a category combination that involves all non-confidential attributes.

For example, the category combination { Age = 30-39, Gender = Female, Location = CA, Amount = Med}, as shown in record
#1, isafull pattern, while the part { Age = 30-39, Gender = Female, Location = CA} isanon-confidential pattern.

Definition 2: Arecord isidentifiableif itsfull pattern can be completely determined by its non-confidential
pattern. Arecord isuniquely identifiableif it is identifiable and there does not exist another record that has
the samefull pattern. Agroup of recordsare collectively identifiableif each member recordisidentifiable and
all members of the group have the same full pattern; in this case, each member of the group isalso said to be
collectively identifiable.

In Table 1, arecord marked with a U is uniquely identifiable, and a record with V is collectively identifiable (V1, V2 and V3
denotethreedifferent groups). Theunmarked recordsare unidentifiable. Weusethefollowing notationto facilitate theformulation
of the problem:

X (NxJ) the compl ete set of non-confidential datamatrix, with N recordsand J attributes, which is not
subject to perturbation;

Y, y (Nx 1) the original and perturbed confidential attribute, respectively;
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Tablel1l. An lllustrative Example

No. Age Gender L ocation Amount Identifiable Status
1 30-39 Female CA Med U
2 30-39 Female NY Low V1
3 30-39 Female NY Low V1
4 30-39 Male CA Med V2
5 30-39 Male CA Med V2
6 30-39 Male NY High U
7 4049 Female CA Med U
8 4049 Female NY Med
9 40-49 Female NY High
10 4049 Male CA Low U
11 4049 Male NY High V3
12 4049 Male NY High V3
13 50-59 Female NY Low U
14 50-59 Male CA Med
15 50-59 Male CA High
16 50-59 Male NY High U
U the set of all uniquely identifiable records;
\% the set of all collectively identifiable records, which has G different groups; and
C the number of categories in the confidential attribute.

In this study, we assume the data owner’ s policy isto prevent deterministic disclosure of confidentiality by perturbing a portion
of identifiable records. For recordsin U, this can be achieved by using a specified proportion for perturbation. For recordsinV,
if each identifiable group has at least one member record perturbed, then the group is no longer identifiable. For ease of
discussion, we assume that exactly one member record in each group is perturbed. The confidential value of an unidentifiable
record will not be perturbed since it cannot be determined by its non-confidential values. The objective is to maintain the joint
distribution of all attributes, while satisfying the privacy protection policy set by the data owner. It is usually not possible to
completely preservethejoint distribution. Sincethemarginal distribution of theconfidential attributeisusedin summary statistics,
preserving this becomes an important goal in itself. The problem, then, is

Minimize
(G1) Thedistance between theoriginal and perturbed marginal distributionsin the confidential attributey;
and

(G2)  The distance between the original and perturbed joint distributions;

Subject to

(C1 U is perturbed with proportion p, a parameter determined by the data owner;

(C2 For each collectively identifiable group in V, exactly one member record (or a specified number or
proportion of records) is perturbed.

In addition, none of the unidentifiabl e records may be changed. Note that solutionsto satisfy (C1) and (C2) can aways be found.
Thereason for including the proportion pin (C1)—and similarly the number of member records subject to perturbationin (C2)—
asaparameter isthat alarger p value will lead to a better protection of confidential data but cause the perturbed distributions to
be further away from the original distributions (and thuslead to aless reliable data mining outcome), while asmaller p will have
an opposite effect. Therefore, the proportion p isaparameter indicating the trade-off between privacy protection and datamining
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(see our discussion for the binary confidential attribute case in the next section, however). Noticing that the above problem
involves optimizing multiple objectives, we adopt a two-phase strategy to solve the problem, stated as:

Phase |: Minimize (G1), subject to constraints (C1), and (C2)
Phase II: Minimize (G2), subject to constraints (C1), (C2) and
(C3) The margina distribution of the perturbed confidential datais preserved during Phase II.

The Approach

Phasel: Preserving the Marginal Distributions
Consider set U first. Let N (aknown quantity) be the number of recordsin U originally having the k™ confidential category.

Let n,, (avariable) be the number of recordsin U changed from the k™ to the h™ category; that is, Ny, ’s are decision variables

whose values are to be determined by the Phase | optimization procedure. If the marginal distribution remains the same after
perturbation, then

anh_ Znhk, =1..,C.

. Cihzk . Cihzk

If thiscondition cannot be satisfied, then thereexistseither aslack (if Z Ny, < Z Ny ) orasurplus(if Z Ny, > Z Np ) quantity.

Let S, and S; , both nonnegative, be such a slack and a surplus variable, respectively. Then, the Phase | problem can be
formulated as alinear programming (LP) problem as follows:

min i(s; +s/) (1a)

C
st. Y Y ng=p>.N,, (1b)

k=1 h=l,..,C;h=k k=1
dDNp— DN +s,-s =0 k=1..,C, (10)
h=1,..,C;hzk h=1,..,C;hzk
anhSNk, =1..,C. (1d)
~Cihzk

This problem always has afeasible solution since constraint (1b) merely requiresthe proportion of perturbed recordsto be p, and

appropriate values can always be found for slack and surplus variables, S, and S; , to satisfy (1c). When the optimal value of

objective function (1) is zero, the marginal distribution of y is completely preserved; otherwise, it isimpossible to preserve the
marginal distribution. The optimal solution for some n,, may be fractional. In this case, we simply round it to an integer, which

should not be an issue since Ny, islarge in data mining problems.

Now consider set V. Based on constraint (C2), there will be G records perturbed (onefor each group). The set of these G records
is of the same nature as set U with p = 1. The method described above can be readily applied to perturbing these G recordsin V
by setting p = 1. When y is binary (C = 2), the only solution is to change the original value to the other one, and hence no
optimization issueisinvolved. The sameistruein perturbing U wheny isbinary and p is set to one. Doing so is, however, very
risky for the data owner because all of the original values can be found by reversing the perturbed values. Therefore, p should
be set to some value less than 1 when y is binary.
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Applying formulation (1) to therecordsin set U in thelife insurance exampl e, we have the following LP problem (wherepis set
to 0.5):

min S +S +S,+S, +S; +5;,
st N, + Nz + N, + Ny 4Ny +N,, =3 (=0.5%6)
- +
Np +N =Ny —Ny +8 +8 =0,
- +
Ny +Ny—N, =Ny +S, +S, =0,
Ny + Ny =Ny —Nyy+S; +S; =0
31 32 13 23 s3 S3_ '
n,+n,<2,
Ny +Ny <2,
Ny +Ny <2,

where subscripts 1, 2, and 3 index the three confidential values and all variables are nonnegative. An optimal solution to thisLP
problemisny, =1, nys =1, ny; = 1, and all of the remaining variables, including slack and surplusvariables, are 0. Based on this
solution, we should perturb one Low record to Med, one Med record to High, and one High record to Low. The optimal objective
function value reaches 0O, indicating that the marginal distribution of the confidential attribute is preserved. Similarly, an LP
problem can be formulated for perturbing recordsin V.

Phasell: Preservingthe Joint Distribution

Let P(X,y) and P(X,y) betheoriginal and perturbed joint distributions, respectively (here X and y are random variables, not

observed data). Let D(P(X,y), IS(X,y)) be thedistance between P(X,y) and P(X,y) ,tobeminimizedinPhasell. Using the
well-known I-Divergence (also known as Kullback-Leibler distance) measure, this distance can be defined as

umJLQXJ»=Zpa“rWM§%¢j; .

where subscript i runs over al possible full patterns. Expression (2) isminimized if and only if (Kullback 1959)
P(X,.Y,) = P(X,.Y)), Vi ©)
which is equivalent to

P(Y, [X,) = P(Y, |X,), Vi- 4
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since IS(X ) =P(X,) foreachi (non-confidential dataare not perturbed). This conditionisunlikely to hold because, for pattern

i, perturbingitstrue confidential value Y;; toadifferentvalue Y;, will cause P(Y, = Yy, | X;) todecreaseand P(Y; =y, [ X;)
toincrease. That is,

P(Y, = ¥, |X,) > P(Y, = ¥, IX,), and (59)
P(Y, = v, X)) <P(Y, =y, | X,). (5b)
Let | betheindex set for all records available for perturbation. Define two positive quantities for each i € | as below:
AP, () = P(Y; = v | X)) = P(Y, = ¥, X)), (62)
AR (r)=P(Y, = ¥, X)) = P(Y, =y, X,). (6b)

Our goal now isto select and perturb aset of records, indexed by |, , whose sizeisdetermined by constraints (C1) and (C2), such
that
2 {AR @) +AR (1)} @

iel.
is the minimum among all possible sets that satisfy (C1) and (C2). By definitions (6a) and (6b), we have
O0<AP ()< P(Y, =y, |X,) aadd O<AP(r) <1-P(Y. =y, | X,).
Combining them yields
0<AR () + AR (r) <1+ P(Y = y; [ X)) = P(Y, =y, | X;). ®)
Thisimplies that, to minimize expression (7), we should select pattern i for which
P = Y [ X)) =P(Y, =y, [ X)) ©

isassmall aspossible. Theintuition behind thiscriterion isthat we should perturb arecord’ sconfidential valuefromitstruevalue
to a new one when the conditional probability with the true value is low and that with the new value is high.

To estimate the conditional probability in (9), one would naturally consider the full-order conditional estimator (that makes no
assumptionsof any kind), which estimates P(Y; | X;) based onthei™ full and non-confidential patternsin the data. For example,
based on records#8 and#9in Table 1, thefull-order estimator yields estimates P(High | 40-49, Female, NY) =%, P(Med | 4049,
Female, NY) =%, and P(Low | 4049, Female, NY) = 0. The estimator is not useful, however, in terms of minimizing the
distance between thejoint distributions. More precisely, for identifiabl e patterns, the value associated with criterion (9) using the
full-order conditional estimator is constant no matter which, and how, identifiable records are perturbed. In fact, estimating the
probabilitiesfor values of confidential attributes of identifiable patternsis problematic since only a single record exists with the
corresponding non-confidential pattern. Motivated by thisreasoning, we consider using the simple Bayesestimator, which avoids
high order computation by assuming conditional independence, to estimate P(Y; | X;) .

The simple Bayes estimator for P(Y; | X;) , the posterior probability of Y; given X, , isgiven by
P(Y) .
PCY [ X)) =——C]11P(X; 1Y), Vi, (10)
P(Xi)lj:! ]
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where X i isthejthattributeof X . Substituting expression (10) into (9), we obtain the differencein posterior, dueto perturbing

record i's confidential value from Y;; to Y, , as.
J J
d, (t,r) = Ki{ p(y) [T pOx; 1Y) =Py )] T pO%; 1)} (11)
j=1 =1

where x and y are the observed values of random variables X and Y;: P(-) isthe estimate of P(-); and K; =1/ p(X;) isa
constant (normalizing factor) for the ith pattern. The Phase |1 problem can now be stated as

min Zdi(t,r), (12a)

st. Congtraints (C1), (C2) and (C3). (12b)
We can write problem (12) above using aformal integer programming formulation. However, we do not attempt to solve the

problem with a traditional integer programming technique, due to the high computational cost. The generic representation of
problem (12) is adequate to understand our computational procedure described in the next section.

Computational Procedure

A procedure to solve problem (12) is to make a series of swaps between the confidential values of different records so that the
valueof abjectivefunction (12a) isreduced after each swap. A swap, whichisdefined below, must satisfy the constraintsin (12b).

Definition 3: A swap of two records refersto an exchange of the confidential values of the two records. That
is, aswap betweenrecord (X, Y,) andrecord (X,,, Y, ) ,where Y. # VY, , setsthefirstrecordto (X, Yp)

and the second to (X,,, Y, ) .

Clearly, a swap defined this way always preserves the marginal distribution of y [constraint (C3)]. Further, we define an
admissible swap as follows:

Definition 4: A swap is admissible if constraints (C1) and (C2) remain satisfied after the swap.
We have developed a set of rules for determining whether a swap is admissible. These rules are closely related to the
implementation of the computational algorithm and are discussed in Appendix A. Our algorithm uses a measure, called cost,
defined below:

Definition 5: The cost of a swap between recordsi and j is defined as

¢; =, (t.r) = d, (A1 +[d, (1)~ (& .7y (13)

(IR J
or equivalently [ by substituting equation (11) into (13)]
¢, =d;(h,r)+d;(h,r;). (14)

wheret referstotheoriginal confidential value; h andr refer to confidential values before and after the swap,
respectively.

Note that the confidential value for arecord before aswap may be different from that record’' s original confidential value asthe
record may have been involved in some prior swap. In equation (13), d; (t;, ) represents the difference in the posterior
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probability for the confidential attribute value for record i before the swap as compared to the original value, while d;(t,.r)
represents the difference after the swap. If d; (t;,r;) < d; (t;, ;) , then the probability of the value after the swap is closer to
that of the original value than that before the swap. So, perturbing record i from h tof; he ps minimize the objective valuein

problem (12) if d; (t;,r;) —d;(t;, ;) isnegative. A similar observation is made for perturbing record j. Therefore, a swap
involving recordsi and j will cause the objective value in problem (12) to decrease if the cost in equation (13) is negative. The

computational algorithm for the whole problem is outlined in Table 2. The rules for admissible swaps are presented in
Appendix A.

Table2. Computational Algorithm

1. Find aninitia perturbed set by solving problem (1) using linear programmimg.
2. For each record in U and V, compute posterior probabilities P(Y; | X;) (K =1,...,C) based on equation (10).

3. Compute the cost associated with each admissible swap based on equation (14). Sort those swaps with a negative cost
in ascending order. Perform swapping for each of them in the sorted order. After each swap, reset the costs of the
remaining swaps that involve any of the two current records to zero, since the admissibility of those swaps needs to be
re-examined.

4. Repeat step 3 until all costs are nonnegative.

Table3. Computational Resultsfor the Example

. Original  Phasel Phasell
No.  P(Low [X) p(Med | x) p(High [X)  Amount Perturbed d(t,r) perturbed d(t,r)
1 0.2269 0.7563 0.0168 Med High 0.7395 Med 0
6 0.2842 0.1895 0.5263 High Low 0.2421
7 0.1698 0.7547 0.0755 Med 0 High 0.6792
10 0.0476 0.6349 0.3175 Low Med -0.5873
13 0.6090 0.0902 0.3008 Low Med 0.5188 Low 0
16 0.1130 0.0502 0.8368 High Low 0.7238 High 0
0.7431 0.1651 0.0917 Low Med 0.5780 Med 0.5780
4 0.0826 0.8257 0.0917 Med High 0.7339 High 0.7339
11 0.0769 0.0684 0.8547 High Low 0.7778 Low 0.7778
Sum 4.0718 2.4237
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Next, we discuss the computational complexity of the algorithm. The LP problemin step 1 involves 2C + 1 constraints, C(C—1)
decision variables, and 2C dack and surplus variables, where C isthe number of confidential categories, which isunlikely to be
large in practice. Computing posterior probabilitiesin step 2 is of order O(NJC), , which is approximately linear inN since N is
dominantly larger than C and J (number of attributes). Steps 3 and 4 of the algorithm use a repeated sorting procedure to
efficiently perform an exhaustive search for optimal swaps. Since there are at most N(N — 1)/2 available swaps, the algorithm
is guaranteed to converge to zero. Computing the costsin step 3isof order O(N?) and sorting the costsis of O(M log M), where
M is the number of swaps having negative cost. Performing swaps on the sorted list and resetting the related costs is of
O(M log M) aswell. So, thetime complexity for step 3isof O(N2+ M log M). Sincethereareat most N(N—1)/2 total available
swaps and step 3 evaluates (and eliminates) N/2 swaps, it will take at most N — 1 loops of step 3 to converge. Therefore, thetime
complexity for the Phase Il swapping procedure is of order O(N2 + NM log M). Note that the actual time complexity is
substantially lower because there are alarge number of inadmissible swaps.

The results of applying the algorithm to the life insurance example are shown in Table 3 (for identifiable records only), where
p=0.5 and C=3. Calculationsfor posterior probabilitiesin columns 2, 3, and 4 areillustrated in Appendix B. The “Phase |
Perturbed” column shows the perturbation results based on the LP solution described earlier. As shown earlier, the marginal
distribution of the confidential attribute (Amount) remains the same. The Phase |1 swaps are shown with arrows. For example,
the Amount value for record #1 is perturbed from Med to High in Phase . A swap between record #1 and record #7 (which isnot
perturbed in Phase 1) is made in Phase I, which resets record #1' s value to Med and perturbs the value for record #7 from Med
to High. The objective function value, the sum of d.'s, is reduced from 4.0718 to 2.4237 after such swaps.

Experimental Evaluation

Weevaluate theeffectiveness of the proposed method based onitsperformancein classification analysis, which isone of themost
important data mining tasks. We ran the C4.5 decision tree system (Quinlan 1993) on two real world datasets, described bel ow,
and eval uated the proposed method based on classification results such aserror rate and tree size. Theideaisthat if aperturbation
method is good, then the classification results based on the perturbed data should be close to those based on the original data.

The Association for Information Systems maintainsaWeb sitethat conductsannual surveysof MISfaculty salary offers(Galletta
2004). Inthis study, we selected the salary offer datain 1999, 2000, 2001, and 2002 (attributes are consistent for these four years
and somewhat different for the other years). The dataset consists of 509 records of MIS faculty memberswho received offersin
the period. Thereare 13 attributes, including salary offered, position, courseload, number of yearsteaching, campustype, public
or private, region, year indicator, and so on. The identity-related attributes such as name and e-mail address, if submitted, are
deleted from the published data. Salary was considered asthe confidential attribute and was chosen asthe classattribute. Initially
numeric salary values were grouped into three categories. After running a sorting algorithm on the data, we found that 502 out
of 509 records are identifiable and 478 of them are uniquely identifiable. So, it is not difficult to discover the salary of asurvey
participant.

The second dataset, collected from Blake and Merz (1998), was originally extracted from the U.S. Census Bureau databases. It
contains 48,842 records, each with 15 attributes (6 numeric and 9 categorical). These attributes provide an individual’s
demographicinformation such asage, gender, race, education, occupation, marital status, income, and so on. Theincomeattribute
wasconsidered confidential and also chosen asthe classattribute. Thisattribute hastwo categories, <50K and >50K, but thelatter

Table4. Experimental Results

Perturbation Time

Dataset Method Error Rate (%) Number of L eaves (sec)
Original 30.84 52

Offer Proposed 33.79 75 0.41
Random 61.12 106 0.31
Original 19.01 507

Census Proposed 30.44 843 38.67
Random 50.10 2181 6.43
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category accountsfor lessthan 25 percent of thetotal records. Thishighly unbalanced distribution would either force usto choose
arather small perturbation proportion p or, if pislarge, cause the perturbed marginal distribution to significantly depart fromthe
original distribution (also see our earlier discussion on binary confidential attribute). In either case, it will bedifficult to evaluate
the proposed method. Therefore, we randomly deleted a part of records having the income value of <50K. As aresult, the total
number of recordsin theworking dataset is 25,049. In order to apply the proposed algorithm, the numeric attributesin the dataset
were converted to categorical ones based on the equal-frequency binning method implemented in the Weka data mining package
(Witten and Frank 2000). Using the sorting algorithm, we found that 18,278 out of 25,049 records are identifiable and 11,470 of
them are uniquely identifiable.

The problem raised in this study has not been investigated previously, so there is no existing data perturbation method against
which we can compare our method. We wrote arandom perturbation program, which perturbs the confidential values without
considering the joint distribution of the data. This random program does attempt to assign confidential values approximately
proportional to the original marginal distribution since it is not difficult to do so. For each dataset, we set the perturbation
proportion to 0.5 and generated two perturbed datasets, one by the proposed method and the other by the random method,
respectively. We then ran C4.5 on each dataset, aswell asthe original dataset. A 10-fold cross-validation test was conducted for
each dataset and the results are shown in Table 4. The perturbation time in the last column refers to the time taken to generate
the perturbed data.

It is quite clear that the data generated by the proposed method produced better results than the one by the random method: the
error rates and tree sizes based on the data with the proposed method are closer to those on the original data. It is also observed
that the proposed method works better on the Offer data than on the Census data. Note that there are three categories in the
confidential attributein Offer but only two categoriesin Census. When the confidential attribute has only two categories (binary),
the proposed method has only the choice of which record to perturb from, but not the choice of which value to perturb to. This
may be an explanation for the difference in performance between the two datasets. These observations are, of course, based on
two datasets only. In order to make more definitive conclusions regarding the effectiveness of the proposed method, more
empirical studies would be desired.

Conclusions and Extensions

We have investigated the privacy protection problem that arises when identifiable records exist in a dataset. We have proposed
a two-phase data perturbation approach to the problem. The results of the classification experiments show that the proposed
method significantly outperforms the random perturbation method. In future, we plan to conduct experiments using data from
different application domains. We also plan to evaluate the proposed method with different data mining tasks, such as clustering
and association rules mining.

The proposed method applies to situations where confidential attributes are categorical. In this study, we assume that the
confidential attributes are inherently categorical. This is the case in many medical and health management applications (e.g.,
medical treatment, genetic records, etc.), socia science applications (e.g., sexual orientation, academic transcripts, criminal
records, etc.), aswell as business and financial applicationswhere the grouping of originally numeric attributesis predetermined
(e.g., income level specified from multiple choices). In other applications, confidentia attributes may be presented in numeric
forms. How the values of numeric attributes are grouped will clearly have an impact on the proportion of recordsin adataset that
can be uniquely identified. Thisis arelated problem that desires further investigation.

In this study, we assume there is only one confidentia attribute in the data. When multiple confidentia attributes exist, the
proposed method can be applied by running the computational procedure multiple times, each run perturbing one confidential
attribute in turn. This implementation should be as effective as in the single-confidential-attribute case if there are no or few
correlationsbetween the confidential attributes. When such correl ationsare significant, the proposed method may or may not work
well. Thisis another issue worth further study (see Sarathy and Muralidhar 2002).

References

Adam, N. R,, and Wortmann, J. C. *“Security-Control Methods for Statistical Databases: A Comparative Study,” ACM
Computing Surveys (21:4), 1989, pp. 515-556.

2004 — Twenty-Fifth International Conference on Information Systems 1005



Li & Sarkar/Privacy Protection in Data Mining

Agrawal, R., and Srikant, R. “Privacy-Preserving DataMining,” in Proceedingsof 2000 ACM S GMOD International Conference
on Management of Data, Dallas, TX, 2000, pp. 439-450.

Atallah, M., Bertino, E., Elmagarmid, A., Ibrahim, M., and Verykios, V. “Disclosure Limitation of Sensitive Rules,” in
Proceedings of the | EEE Knowledge and Data Engineering Exchange Workshop (KEDX' 99), Chicago, IL, 1999, pp. 45-52.

Blake, C., and Merz. C. J. “UCI Repository of Machine Learning Databases,” Working Paper, Department of Information and
Computer Science, University of California, Irvine, CA, 1998 (available online at http://www.ics.uci.edu/~mlearn/
MLRepository.html).

Chowdhury, D. S., Duncan, G. T., Krishnan, R., Roehrig, S. F., and Mukherjee, S. “Disclosure Detection in Multivariate
Categorical Databases. Auditing Conidentiality Protection through Two New Matrix Operators,” Management Science
(45:12), 1999, pp. 1710-1723.

Cox, L. H. “Network Modelsfor Complementary Cell Suppression,” Journal of the American Satistical Association (90:432),
1995, pp. 1453-1462.

Culnan, M. “‘How Did They Get My Name?: An Exploratory Investigation of Consumer Attitudes toward Secondary
Information Use,” MIS Quarterly (17:3), 1993, pp. 341-363.

Duncan, G. T., and Mukherjee, S. “Optimal Disclosure Limitation Strategy in Statistical Databases. Deterring Tracker Attacks
through Additive Noise,” Journal of the American Statistical Association (95:451), 2000, pp. 720-729.

Estivill-Castro, V., and Brankovic, L. “Data Swapping: Balancing Privacy against Precisionin Mining for Logic Rules,” Data
Warehousing and Knowledge Discovery (Dawak’ 99), M. Mukeshand A. M. Tjoa (Eds.), Springer-Verlag, Berlin, 1999, pp.
389-398.

Evfimievski, A., Srikant, R., Agrawal, R., and Gehrke, J. “Privacy Preserving Mining of Association Rules,” in Proceedings of
8" ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, Canada, 2002, pp. 217-
228.

Fienberg, S. E., Makov, U. E., and Steele, R. J. “Disclosure Limitation Using Perturbation and Related Methods for Categorical
Data,” Journal of Official Statistics (14:4), 2000, pp. 485-502.

Galletta, D. “MIS Faculty Salary Survey Results,” available online at http://www.pitt.edu/~galletta/salsurv.html; accessed
March 2004.

Garfinkel, R., Gopal, R., and Goes, P. “Privacy Protection of Binary Confidential Data against Deterministic, Stochastic, and
Insider Threat,” Management Science (48:6), 2002, pp. 749-764.

Greengard, S. “Privacy: Entitlement or Illusion?,” Personnel Journal (75:5), 1996, 74-88.

Kullback, S. Information Theory and Satistics, John Wiley & Sons, New Y ork, 1959.

Muralidhar, K., Parsa, R., and Sarathy, R. “A General Additive Data Perturbation Method for Database Security,” Management
Science (45:10), 1999, pp. 1399-1415.

Quinlan, J. R. C4.5: Programs for Machine Learning, Morgan Kaufmann, San Mateo, CA, 1993.

Rotenberg, M. “Protecting Privacy,” Communications of the ACM (35:4), 1992, p. 164.

Sarathy, R., and Muralidhar, K. “The Security of Confidential Numerical Data in Databases,” Information Systems Research
(13:4), 2002, pp. 389-403.

Stanford Student Computer and Network Privacy Project. “A Study of Student Privacy Issues at Stanford University,”
Communications of the ACM (45:3), 2002, pp. 23-25.

Verykios, V. S., ElImagarmid, A. K., Bertino, E., Saygin, Y ., and Dasseni, E. “Association Rule Hiding,” |EEE Transactionson
Knowledge and Data Engineering (16:4), 2004, pp. 434-447.

Wang, H., Lee, M. K. O., and Wang, C. “Consumer Privacy Concerns about Internet Marketing,” Communications of the ACM
(41:3), 1998, pp. 63-70.

Witten, I. H., and Frank, E. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations,
Morgan Kaufmann, San Francisco, CA, 2000.

Appendix A. Rulesfor Admissible Swaps

Let UP and U" bethe set of perturbed and unperturbed recordsin U, respectively; and let VP bethe set of perturbed recordsin V.
For thelifeinsurance examplein Table 3, UP = {#1 #13 #16], U" = {#6,#7,#10} , and VP = {#2,#4#11} . Wedo not consider the
set of unperturbed recordsin V because, based on constraint (C2), the confidential value of any record in this set should remain
the same in the perturbation process. To describe the set of rules for admissible swaps, we first define aterm:

Definition 6: A cross-category swap is a swap between two records that have different original confidential
values.
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The essential property of the admissible swap isthat perturbation proportions for setsU and V are unchanged after such a swap.
Whether the perturbation proportionswill change depends on whether the swap i s cross-category, and to which set of UP, UY, and

VP the two records involved in the swap belong. We enumerated all possible scenarios and identified the following rules:

Rule 1: No swap between two recordsin U" isallowed. Thisis obvious since the swap will cause |U" | to decrease and
|UP | to increase.

Rule 2: No swap between VP and U is allowed. If we allow such a swap, then an unperturbed record in U" will be
[U” ]

u

perturbed. Because UP isnot involved in the swap, theratio will change. Inthelifeinsurance example, if aswap

between records#2 (in VP) and #6 (in U") ismade, then set U will have four records perturbed, whilethereareonly three
perturbed records before the swap.

Rule 3: No cross-category swap between arecordin UP and arecord in U" isallowed. To explainthisrule, let a and
b be the true and current categories for the record in UP , respectively. Let ¢ be the (true and current) category for the
record in U" . We have a # b since the record in UP isa perturbed one, a = ¢ since thisis a cross-category swap, and
b = c by Definition 3. If this swap is made, then thefirst record will have a perturbed value of ¢, and the second record
will have a perturbed value of b. Since the first record is till a perturbed one but the second record is changed from
unperturbed to perturbed, |[UP | isincreased by one and |U" | is decreased by one.

Rule4: A cross-category swap can be made only if the four involved categories (i.e., thefirst record’ strueand current
categories, and the second record’ strue and current categories) belong to four different categories. Let a and b be the
first record’ strue and current categories, respectively; and let ¢ and d be the second record’ strue and current categories,
respectively. We havea = ¢ sincethisisacross-category swap, and b =d by Definition 3. If botha= band c = d, then
thisisthe case described in Rule 1; if a= b or ¢ = d but not both, then thisis the case described in Rule 3. Therefore,
a=bandc =d. If a= d, thenthefirst record’s confidential attribute isreset to itstrue value after the swap, which will
cause either |UP | or |VP| to decrease. Therefore, a = d. Similarly, ¢ # b. We have established that a, b, ¢, and d must be
mutually different.

Appendix B. Calculations of Probabilitiesin Table 3

We explain here how the posterior probabilities in columns 2, 3, and 4 of Table 3 are calculated. Let us take record #1 as an

example. We first compute the prior (marginal) probabilities for the three confidential categories:
P(Low) = 4/16, P(Med) = 6/16, and P(High) = 6/16.
We then compute the conditional probabilities for { Age = 30-39}, given a certain Amount value:
P(30 — 39 | Low) = 2/4, P(30 — 39| Med) = 3/16, and P(30 — 39 |High) = 1/6.
Similarly, we can obtain the conditionals for { Gender = Female} and { Location = CA}, given an Amount value:

P(Female | Low) = 3/4, P(Female | Med) = 3/6, and P(Female | High) = 1/6;
P(CA Low) = 1/4, P(CA | Med) = 5/6, and P(CA | High) = 1/6.

Finally, we compute the posterior probabilities based on equation (10):

P(Low | 30 — 39, Female, CA) = % (4116)(2/4)(3/4)(1/4) = (3/128)/P,
P(Med | 30 — 39, Female, CA) = % (6/16)(3/6)(3/6)(5/6) = (5/64)P, and
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P(High | 30 — 39, Female, CA) = % (6/16/)(1/6)(1/6)(1/6) = (L/576)/P,

where the normalizing factor P = P(30 — 39, Female, CA) is not calculated because it will be cancelled out when we normalize
the posteriors as follows:

(3/128)P =0.2269,

P(Low |30- 39, Female, CA) = =
(3/128)P + (5/64)P + (1/576)P

(5/64)P
(3/128)P + (5/64)P + (1/576)P

=0.7563, and

P(Med |30 - 39, Female, CA) =

P(High |30 - 39, Female, CA) = (L/576)P =0.0168.
(3/128)P + (5/ 64)P + (1/ 576)P
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