
Association for Information Systems
AIS Electronic Library (AISeL)

ICIS 2004 Proceedings International Conference on Information Systems
(ICIS)

December 2004

OOREA: An Object-Oriented Resources, Events,
Agents Model for Enterprise Systems Design
Uday Murthy
University of South Florida

Casper Wiggins, Jr.
University of North Carolina at Charlotte

Follow this and additional works at: http://aisel.aisnet.org/icis2004

This material is brought to you by the International Conference on Information Systems (ICIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ICIS 2004 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Murthy, Uday and Wiggins, Jr., Casper, "OOREA: An Object-Oriented Resources, Events, Agents Model for Enterprise Systems
Design" (2004). ICIS 2004 Proceedings. 16.
http://aisel.aisnet.org/icis2004/16

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301354583?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Ficis2004%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis2004?utm_source=aisel.aisnet.org%2Ficis2004%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis2004%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis2004%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis2004?utm_source=aisel.aisnet.org%2Ficis2004%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis2004/16?utm_source=aisel.aisnet.org%2Ficis2004%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

2004 — Twenty-Fifth International Conference on Information Systems 195

OOREA: AN OBJECT-ORIENTED RESOURCES, EVENTS,
AGENTS MODEL FOR ENTERPRISE SYSTEMS DESIGN

Uday S. Murthy
School of Accountancy

University of South Florida
Tampa, FL U.S.A.

umurthy@coba.usf.edu

Casper E. Wiggins, Jr.
Belk College of Business Administration
University of North Carolina at Charlotte

Charlotte, NC U.S.A.
cwiggins@email.uncc.edu

Abstract

A number of modeling approaches have been proposed in the literature for designing business information
systems. This paper critiques prior data modeling approaches and presents an integrated object-oriented
modeling approach that captures both the structural and the behavioral aspects of the business domain.
Although there is considerable interest in object-oriented (OO) technologies in practice and in the information
systems literature, there is no widely accepted OO modeling approach that facilitates the identification of
objects from a business information processing perspective. Based on McCarthy’s (1982) resources, events,
agents (REA) framework, the business process focused object-oriented ontology presented in this paper
identifies the key resources, events, and agents in an enterprise information systems context. Termed OOREA,
the ontology extends McCarthy’s REA model by capturing both the structural aspects of modeling, in terms of
the objects of interest in the domain, and also the behavioral aspects in terms of the processes that modify
objects. Application of the model is illustrated in the context of sales and related events for a retailing
enterprise.

Keywords: Enterprise systems development, business process modeling, object-oriented modeling, systems
analysis and design, entity-relationship modeling

Introduction

With the move toward enterprise-wide information systems, there is an emergent need for ontologies to guide enterprise systems
design and development using the latest tools and techniques. While relational databases still dominate enterprise systems, there
is considerable interest in object-oriented database systems for meeting the complex information processing needs of large
corporations (Sultan and Chan, 2000). A key advantage of the object-oriented approach is the integration of structural (static)
and behavioral (dynamic) aspects in one model (Booch et al. 1999; Navathe 1992; Ochuodho 1992). Although UML, proposed
by Booch et al. (1999), is generally accepted as the de facto standard for object-oriented analysis and design, it is not oriented
specifically toward the identification of objects of interest within a business information processing framework. Thus, what is
lacking is a business process oriented methodology for guiding object-oriented analysis and design for business information
systems. The purpose of this paper is to propose a business process based ontology for modeling enterprise systems within an
object-oriented framework.

Several logical modeling approaches have been proposed for the purpose of designing database-driven information systems.
Chen’s (1976) entity-relationship (ER) modeling approach was one of the first logical models that allowed designers to focus on
the entities of interest and the logical relationships among them independent of DBMS-specific features. A number of extensions
have been proposed to ER modeling, all aimed at capturing more of the semantics of the application domain being modeled (Hull
and King 1987; Teorey et al. 1986). Extended entity-relationship models (EER) focus on the data-oriented (structural) aspects
of the enterprise’s information domain, necessitating the development of separate process-oriented models using techniques such
as process flowcharts and data-flow diagrams to represent the behavioral aspects of the domain. Prior to systems implementation,

mailto:umurthy@coba.usf.edu
mailto:cwiggins@email.uncc.edu

Murthy & Wiggins/OOREA for Enterprise Systems Design

196 2004 — Twenty-Fifth International Conference on Information Systems

the data-oriented model and process-oriented models must be reconciled and integrated with one another. Several researchers
have called for the development of models that integrate the data and process aspects of the system in one view (Hull and King
1987; Navathe 1992; Ochuodho 1992).

While the lack of integration of structural and behavioral aspects is problematic from a systems design perspective, a more
fundamental problem in the systems analysis phase of enterprise modeling is the identification of entities/objects to be represented
in the model. McCarthy (1982) proposed an ontology for identifying the key resources, events, and agents in an enterprise
context, which is referred to as the REA framework. The REA ontology has its origins in Chen’s ER modeling approach and is
a means of representing information about economic resources, economic events, and economic agents and relationships among
them. McCarthy’s original work has led to a substantial body of research on extensions to and applications of the REA model
(David et al. 1999; Geerts and McCarthy 1999, 2000, 2002). However, a key limitation of REA modeling is that it takes a
structural view of the system, with behavioral aspects having to be modeled using techniques such as data-flow diagrams.

There has been considerable interest in the object-oriented paradigm from both modeling and technology perspectives. Object-
oriented modeling approaches can represent both the data- and process-oriented views of the system using the unifying metaphor
of the object (Booch 1991; Coad and Yourdon 1991a, 1991b). A number of alternative object-oriented modeling (OOM)
approaches were initially proposed in the literature (for a review of the alternative proposals, see Monarchi and Puhr 1992).
Booch et al. proposed the unified modeling language (UML) for object-oriented modeling, and there appears to be widespread
acceptance of UML as a standard. A significant advantage of object-oriented modeling is that semantics represented in the logical
model correspond directly to constructs in object-oriented technologies. For example, objects, their characteristics, and associated
procedures shown in an object-oriented modeling correspond to object classes, their attributes, and their encapsulated methods
in object-oriented programming environments such as C++, C#, or Java. The purpose of this paper is to extend McCarthy’s (1982)
REA framework by proposing an object-oriented ontology for modeling enterprise-wide phenomena. Termed OOREA, the
proposed ontology is used to model resources, events, and agents in the enterprise in terms of object classes, with each object
class having certain attributes and encapsulated methods.

The next section briefly reviews related research on semantic data modeling and object-oriented modeling. The drawbacks of
these approaches are discussed. In the third section, the OOREA model is presented and an illustrative OOREA model for a
retailing enterprise is developed. This model is then compared with McCarthy’s (1979) ER model for a retailing enterprise. The
concluding section summarizes the paper and discusses future research directions.

Background and Prior Research

This section discusses semantic data modeling and the problems associated with models such as the ER and REA models. Prior
research on OO modeling approaches and OO extensions to the ER model are also reviewed. The limitations of these models
are discussed.

Semantic Data Modeling

Semantic data models seek to naturally and directly incorporate more of the semantics, or meaning, of the application domain into
the database schema (Hammer and McLeod 1981). Semantic models provide systems analysts and designers with a higher level
of abstraction for modeling data, such that the resulting model closely reflects the real meaning of data (Hull and King 1987).
One of the first semantic data models was the entity-relationship (ER) model in which the domain being modeled is viewed as
a collection of real world entities and relationships among the entities (Chen 1976). Other semantic modeling approaches include
Hammer and McLeod’s semantic data model and Hull and King’s generic semantic model.

Drawbacks of Semantic Modeling Approaches

Semantic models focus primarily on the structural aspects of the domain and therefore represent a data-oriented view of the
system. From a process-oriented perspective, the behavioral aspects of the system refer to the procedures affecting each entity
and the transfer of data among entities. This process-oriented view of the system is typically modeled separately using tools such
as data flow diagrams, process flowcharts, and state-transition diagrams. The data- and process-oriented views must then be
integrated during detailed systems design—a process that can be quite cumbersome, even if CASE tools are used to automate the

Murthy & Wiggins/OOREA for Enterprise Systems Design

2004 — Twenty-Fifth International Conference on Information Systems 197

process (DeChampeaux and Faure 1992; Fichman and Kemerer 1992). This separate modeling of the structural and behavioral
aspects was well suited for conventional systems implemented on hierarchical or relational DBMS. In these DBMSs, the database
itself reflects only the structural aspects of the domain while the behavioral aspects of the domain are represented in application
programs. Although this separation of data from processes, referred to as data independence, has many advantages, it is critical
to ensure that the behavioral semantics affecting a database entity are consistently implemented across all applications accessing
that entity. For example, if there are four application programs that access an inventory table, and if there is a business rule that
a purchase order for an inventory item should be triggered whenever the reorder point for that item is reached, then all four appli-
cations must be programmed to reflect that business rule. Given these problems, systems developers are increasingly seeking to
seamlessly represent both the behavioral and structural aspects of the domain in one integrated representation (Coad and Yourdon
1991a; Ochuodho 1992).

Data Models for Enterprise Information Needs

McCarthy (1979) demonstrated how the ER approach can be applied to modeling enterprise information requirements in trans-
action processing contexts. McCarthy (1982) later extended this work and proposed the REA (resources, events, and agents)
framework for representing information about economic resources, economic events, and economic agents and relationships
among them. The key focus in the REA methodology is on the events that occur in an enterprise, the resources that are affected
by these events, and the agents that control and are associated with the events. Thus, using the REA modeling framework, entities
in an enterprise-wide information processing context are events such as sales and purchases, resources such as cash and inventory,
and agents such as customers and suppliers. Resource and event entities are connected by means of relationships that represent
the stock-flow interactions between them, such as a sale event representing an outflow of finished goods that is (eventually)
coupled with an inflow of cash. Economic agents and units are represented by means of their participation in and control over
events and resources. By focusing on the significant events that occur in an enterprise, the REA approach fosters a focus on
business processes.

Although McCarthy’s REA approach is a powerful tool for modeling the structural aspects of an enterprise information system,
the behavioral aspects must be modeled separately using data-flow diagrams, process flowcharts, and state-transition diagrams.
Another drawback of an REA-based enterprise model is that the modeling formalisms used have no direct counterpart in
technologies that might be used to implement the model. For example, there is no way to distinguish between resource, event,
and agent tables in a relational DBMS—they are all implemented as tables with only the table names conveying their meaning
or intended purpose; relational database systems do not allow a grouping or categorization of like tables. Generalization
hierarchies, which can be represented in an REA model, also cannot be implemented in a relational DBMS. The limitations of
relational database technology also prevent some features of semantic data models from being fully implemented. For example,
although many semantic modeling approaches including REA can depict generalization and aggregation hierarchies, most
relational DBMS cannot represent nested entities or aggregations of data items that are hierarchically related (Jackson 1990;
Ochuodho 1992). As another example, there is no way to distinguish between an entity table and a relationship table in a
relational DBMS (Jackson 1990). Relationships among entities depicted in an ER diagram must be inferred by searching for
cross-reference keys in the entity tables in a relational implementation.

Object-Oriented Modeling

In the object-oriented paradigm, objects provide a unifying metaphor for systems design and development activities from the
initial design stage through the implementation stage. Systems analysts, designers, and programmers all focus on a common set
of objects and inter-object relationships which results in a smoother and more seamless systems development process (Korson
and McGregor 1990). Recognizing these limitations of semantic models such as the ER model, some researchers have sought
to equip the ER model with object-oriented extensions, while others have focused on developing “pure” object-oriented modeling
approaches. Object-oriented modeling seeks to capture both the structural and the behavioral semantics of the application domain
using the unifying metaphor of the object. Monarchi and Puhr (1992) provide a good review of the different object-oriented
modeling approaches. Murthy and Wiggins (1993) explored the implications of the object-oriented paradigm for accounting
systems and reviewed several object-oriented modeling approaches in light of the needs of accounting systems. Murthy and
Wiggins call for further research on object-oriented modeling approaches specifically designed for modeling accounting systems
in an enterprise context.

Murthy & Wiggins/OOREA for Enterprise Systems Design

198 2004 — Twenty-Fifth International Conference on Information Systems

One object-oriented modeling approach that extends Chen’s ER model, providing it with object-oriented features, is Gorman and
Choobineh’s (1991) object-oriented entity-relationship model (OOERM). However, a limitation of OOERM for modeling
enterprise information systems is that, unlike REA, it does not explicitly address the unique needs of business event information
processing contexts. These object-oriented modeling approaches hold two key advantages over conventional semantic modeling
approaches like ER and REA. First, they are capable of representing both structure and behavior in one integrated model. Second,
they use a metaphor for modeling (the object) which has a direct correspondence in the technology used to implement the model
(object classes in object-oriented programming languages or database systems).

Chu (1992a, 1992b) explored the applicability of object-oriented approaches for accounting systems, but employed the chart of
accounts as the basis for constructing object classes. Generalization hierarchies that are implicit in the chart of accounts are easily
represented by means of superclass-subclass object relationships. Another advantage of using the chart of accounts as the basis
for developing an OO model is that the inheritance concept in object-oriented systems allows more general accounting attributes
and methods, such as account number and balance, to be defined at the highest level in an account class hierarchy. However,
using the chart of accounts as the basis for an OO accounting model has its limitations. The chart of accounts is essentially an
accounting artifact which does not always consider and represent the needs of non-accountants (McCarthy 1982). Entities
(objects) of interest which do not have a direct impact on the organization’s financial statements would likely be excluded in an
OO model based on the organization’s chart of accounts. For example, there is no logical place in a chart of accounts to store
information about employees and their skills. Thus, given that the chart of accounts does not capture all aspects of the
organization’s information domain, an OO model based on that chart of accounts will be limited to representing only those data
and procedures that have a financial statement impact. As such, a chart-of-accounts based OO model has limited applicability
for modeling enterprise-wide information needs.

Kandelin and Lin (1992) present a computational model of an events-based object-oriented accounting information system for
inventory management. Their objective was to integrate both data and knowledge representation in an events-based accounting
system. As Kandelin and Lin indicate, object-oriented technologies are well suited for integrating data structures along with
knowledge represented in encapsulated procedures for each data structure (object). The three main components of the Kandelin
and Lin computational model are an event message database system, an accounting report object subsystem, and an accounting
intelligence subsystem. However, they do not present a model or a methodology for designing a logical model of an OO events
accounting system.

More recently, Verdaasdonk (2003) put forth an object-oriented model for handling ex ante information in the context of
operations management. Verdaasdonk argues that the REA model focuses only on the modeling of static accounting phenomena
and is, therefore, not able to provide relevant ex ante accounting information for operations management decisions. Although
the object-oriented model proposed by Verdaasdonk has the advantage of integrating both the static (structural) and dynamic
(behavioral) aspects of the domain, his model is not intended as an ontology for object-oriented modeling of enterprise systems.
Rather, the Verdaasdonk object-oriented model is narrow in scope, aimed exclusively at supporting operations management
decisions. What is lacking, then, is a generalized object-oriented model for describing both the structural and the behavioral
aspects of accounting and non-accounting phenomena in an enterprise-wide context. In the next section, we describe such an
object-oriented model for designing enterprise information systems.

The Object-Oriented REA Model

The OOREA ontology proposed in this paper is essentially an object-oriented extension to McCarthy’s REA model. Resources,
events, and agents are all viewed as object classes, each with different attributes. Unlike McCarthy’s (1982) REA model, the
OOREA model shows the interaction among objects in terms of the processes that modify their values. Further, the OOREA
model’s use of the object metaphor for modeling simplifies the implementation process in object-oriented environments such as
Smalltalk, C++, ObjectStore, or Gemstone. An illustrative OOREA model of a retailing enterprise is also presented. This
OOREA model is then compared with an equivalent ER model (McCarthy 1979).

The OOREA Model

As noted earlier, a key advantage of McCarthy’s REA ontology is the focus on events (business processes), the resources that
affect and are affected by events, and the agents who perform and are associated with events. The OOREA model proposed here
harnesses this business process focus for object-oriented modeling in an enterprise-wide context. In essence, the OOREA

Murthy & Wiggins/OOREA for Enterprise Systems Design

2004 — Twenty-Fifth International Conference on Information Systems 199

Base Object 1

Attributes unique to
Base Object 1

[Complex data type]

Generalization
Object Class

Attributes
common to
all sub-classes

Subclass1 Attributes
common to

subclass1 objects

Subclass2 Attributes
common to

subclass2 objects

Base Object 2

Attributes unique to
Base Object 2

Nested object

Attributes for
nested object

Method 2
Method 1

Method 1

Message passing

Event Object Agent ObjectResource ObjectResource Object

Base Object 1

Attributes unique to
Base Object 1

[Complex data type]

Base Object 1

Attributes unique to
Base Object 1

[Complex data type]

Generalization
Object Class

Attributes
common to
all sub-classes

Subclass1 Attributes
common to

subclass1 objects

Subclass2 Attributes
common to

subclass2 objects

Generalization
Object Class

Attributes
common to
all sub-classes

Subclass1 Attributes
common to

subclass1 objects

Subclass1 Attributes
common to

subclass1 objects

Subclass2 Attributes
common to

subclass2 objects

Subclass2 Attributes
common to

subclass2 objects

Base Object 2

Attributes unique to
Base Object 2

Nested object

Attributes for
nested object

Base Object 2

Attributes unique to
Base Object 2

Nested object

Attributes for
nested object

Nested object

Attributes for
nested object

Method 2Method 2
Method 1Method 1

Method 1Method 1Method 1

Message passing

Event ObjectEvent Object Agent ObjectAgent ObjectResource ObjectResource ObjectResource ObjectResource Object

approach involves focusing on the structural aspects of the enterprise’s domain in terms of the key business events, associated
resources, and agents, through an object-oriented lens. This object-oriented lens necessitates a simultaneous focus on the
behavioral aspects of events, resources, and agents, while capitalizing on OO features of inheritance and encapsulation. Recent
research by Agarwal and Sinha (2003) suggests that novice users with prior experience in process-oriented modeling approaches
found UML to be easier to use than those without such experience. Agarwal and Sinha call for research to enhance the usability
of UML diagrams by addressing the close interdependence of class and interaction diagrams. The OOREA model proposed in
this paper, which is a variant of UML, represents one possible approach to addressing this issue.

The notational conventions used in the OOREA model, shown in Figure 1, are based primarily on the unified modeling language
(UML), proposed by Booch, Rumbaugh, and Jacobson (1999). As in UML class diagrams, object classes are represented by
rectangles; the top part of the rectangle specifies the unique name the object class, the bottom part contains the attributes for that
object class. Attributes that require simple data types are represented in simple typeface and those attributes requiring complex
data types are represented in boldface. For ease of exposition, resource objects are shown in shaded rectangles with shadows,
event objects are shown in bold rectangles, and agent objects are shown in shaded rectangles with rounded corners.

Figure 1. OOREA Modeling Conventions

Murthy & Wiggins/OOREA for Enterprise Systems Design

200 2004 — Twenty-Fifth International Conference on Information Systems

The typical application of the UML methodology entails the use of separate diagrams to depict structural and behavioral aspects,
i.e., class and object diagrams for the structural aspects, and use-case and activity diagrams for the dynamic or behavioral aspects.
As suggested by Dori (2002), the proliferation of diagrams in UML is one barrier to its widespread acceptance. By contrast, the
OOREA approach we propose employs a single diagramming convention for depicting all structural and behavioral aspects. Thus,
the OOREA approach requires a mechanism for depicting interaction between object classes. Accordingly, one significant
departure from UML is in the convention used in OOREA to indicate the methods for each object class. In UML, methods are
indicated within the bottom tier of object rectangles. However, this convention makes it difficult to show inter-object communi-
cation in terms of the messages passed between specific methods. In our OOREA modeling approach, we employ Gorman and
Choobineh’s (1991) convention for their object-oriented entity-relationship model (OOERM), in which methods are represented
by ovals below the object class. The separate depiction of each method in its own oval makes it easier to show messages passing
between methods of interrelated objects. As with OOERM, message passing is indicated with a dashed line; the parameters being
passed are indicated in italics next to each dashed line.

The inheritance feature in the object-oriented paradigm naturally supports generalization hierarchies. As shown in Figure 1,
generalization classes are shown at a higher level than the specialization classes. There may be any number of levels of
generalizations. Each generalization level consists of a superclass being decomposed into a number of subclasses. Each subclass
inherits all of the attributes and methods of its superclass. OOREA also supports modeling of aggregate or “nested” objects.
Multiple line items associated with a sale event is an example of a nested object. An association relationship specifies a connection
between two independent objects. In an ER model, associations among entities are depicted by means of the diamond symbol
connecting the associated entities. In OOREA, association type relationships are indicated by means of a message being passed
between the related objects. For instance, the customer and sale object classes would be associated by virtue of sale occurrences,
each of which would result in a message being passed from the sale object class to the customer object class with parameters such
as the amount of the sale to update the appropriate customer object instance (i.e., customer account in conventional terms).

An OOREA Model of a Retailing Enterprise

This section illustrates an object-oriented REA model of a simple retailing enterprise. The model includes the sales, purchasing,
cash receipts, cash disbursements, and other selected functions for a typical retailing enterprise. Both conventional transaction
processing capabilities and complex data handling capabilities (such as document images) are represented. Claims such as
accounts receivable, accounts payable, and wages payable are represented as attributes of their related agent objects (i.e.,
customer, vendor, and employee, respectively), and are discussed later in this section. An object class hierarchy for the resulting
OOREA model is shown in Figure 2. For ease of exposition, Figure 2 does not show the methods associated with each object.
Figure 3, which is a subset of Figure 2, depicts the methods for each object within this topography and identifies the message
passing which would likely occur between objects for typical sale and purchase transaction events for a retailing enterprise.

The class object hierarchy depicted in Figure 2 consists of an Information Entity superclass, Resource, Event, and Agent
subclasses and 14 base objects. The Information Entity superclass at the topmost level of the hierarchy is defined at a very general
level to allow for the representation of any resource, event, or agent about which the organization would like to store information.
Attributes and methods defined for the Information Entity superclass are inherited by all subclasses. The 14 base objects, which
include 3 Resource objects (Cash, Inventory, and PPEQ), 7 Event objects (Sale, Purchase, Cash Receipt, Cash Disbursement,
Employee Service, G&A Service, and Capital Transaction), and 4 Agent objects (Customer, Vendor, Stockholder, and Employee),
are identified in Figure 2. The attributes (instance variables) which give uniqueness to each class and object are also depicted.

Subclass objects inherit all attributes and methods of their superclass(es). For example, in Figure 2 all instances of the PPEQ
object inherit the Resource Type attribute of the Resource subclass and all four attributes (ID#, name, Description, and current
balance) defined for the Information Entity superclass, in addition to the six attributes uniquely defined for PPEQ objects.
Similarly, all instances of the Employee object inherit all four attributes defined at the Information Entity superclass level, and
inherit the agent type and address attributes from the Agent subclass. Line_Item is a nested object within the Purchase and Sale
objects, indicating that each Purchase or sale object instance may have more than one Line_Item instances associated with it.
Invoice Image and P.O. Image are document images and reflect complex data types.

Although the resources, agents, and events shown in Figure 2 all have a financial accounting orientation, it should be noted that
the OOREA model could easily represent information about system elements with a managerial accounting orientation. In
addition, information about non-accounting resources, events, and agents can also be represented. Examples of managerial and
non-accounting resources, events, and agents that do not have any direct bearing on the organization’s financial statements are
shown in Table 1.

Agent
Subclass

Information
Entity Class

ID #
Name
Description
Current Balance

Resource
Subclass

Resource
Subclass

ResourceType
Event

Subclass

Event Type
Date
Amount

Cash
Location

Cash
Location

PPEQ

Date Acquired
Cost, Depr Method
Salvage, Life,
Acc. Depreciation

PPEQ

Date Acquired
Cost, Depr Method
Salvage, Life,
Acc. Depreciation

Inventory

Item #, Qty, Cost,
P.O. #

Inventory

Item #, Qty, Cost,
P.O. #

Employee Service

Employee ID
Hours
Service Category

G&A Service

Vendor ID
Expense Category
Value

Capital Transaction

Stockholder ID
Stock Class, Price
Settlement Method

Cash Receipt

Invoice #
Customer ID
[Check Image]

Cash Disbursement

P.O. #
Vendor ID
[Check Image]

Purchase

Invoice #
Vendor ID
[P.O. Image]

Line Item
Qty

Sale

Invoice #
Customer ID,
[Invoice Image]

Line Item
Qty

Agent Type
Address

Customer

Credit Rating
Credit Limit

Vendor
Performance rating
Category

Stockholder

Holding Class
No. Shares
Date Acquired

Employee
Department
Title, Skill set

Agent
Subclass

Information
Entity Class

ID #
Name
Description
Current Balance

Resource
Subclass

Resource
Subclass

ResourceType
Event

Subclass

Event Type
Date
Amount

Cash
Location

Cash
Location

PPEQ

Date Acquired
Cost, Depr Method
Salvage, Life,
Acc. Depreciation

PPEQ

Date Acquired
Cost, Depr Method
Salvage, Life,
Acc. Depreciation

PPEQ

Date Acquired
Cost, Depr Method
Salvage, Life,
Acc. Depreciation

PPEQ

Date Acquired
Cost, Depr Method
Salvage, Life,
Acc. Depreciation

Inventory

Item #, Qty, Cost,
P.O. #

Inventory

Item #, Qty, Cost,
P.O. #

Inventory

Item #, Qty, Cost,
P.O. #

Inventory

Item #, Qty, Cost,
P.O. #

Employee Service

Employee ID
Hours
Service Category

Employee Service

Employee ID
Hours
Service Category

G&A Service

Vendor ID
Expense Category
Value

G&A Service

Vendor ID
Expense Category
Value

Capital Transaction

Stockholder ID
Stock Class, Price
Settlement Method

Capital Transaction

Stockholder ID
Stock Class, Price
Settlement Method

Cash Receipt

Invoice #
Customer ID
[Check Image]

Cash Receipt

Invoice #
Customer ID
[Check Image]

Cash Disbursement

P.O. #
Vendor ID
[Check Image]

Cash Disbursement

P.O. #
Vendor ID
[Check Image]

Purchase

Invoice #
Vendor ID
[P.O. Image]

Line Item
Qty

Purchase

Invoice #
Vendor ID
[P.O. Image]

Line Item
Qty
Line Item
Qty

Sale

Invoice #
Customer ID,
[Invoice Image]

Line Item
Qty

Sale

Invoice #
Customer ID,
[Invoice Image]

Line Item
Qty
Line Item
Qty

Agent Type
Address

Customer

Credit Rating
Credit Limit

Customer

Credit Rating
Credit Limit

Vendor
Performance rating
Category

Vendor
Performance rating
Category

Stockholder

Holding Class
No. Shares
Date Acquired

Stockholder

Holding Class
No. Shares
Date Acquired

Holding Class
No. Shares
Date Acquired

Employee
Department
Title, Skill set

Employee
Department
Title, Skill set

Figure 2. OOREA Object Classes

Murthy & Wiggins/OOREA for Enterprise Systems Design

202 2004 — Twenty-Fifth International Conference on Information Systems

CashCash

Agent
Subclass

Accounting
Entity Class

Resource
Subclass

Resource
Subclass Event

Subclass

Sale Customer

NewSale

CreateNew
Instance

Cash Receipt

NewCollection
IncreaseBalance

Compute-
balance

InventoryInventory

DecreaseQty

IncreaseBalance

DecreaseBalance

Salesperson

MakeSale
Cashier

CollectCash

Verification

CashCash

Agent
Subclass

Accounting
Entity Class

Resource
Subclass

Resource
Subclass Event

Subclass

Sale Customer

NewSaleNewSale

CreateNew
Instance

Cash Receipt

NewCollection
IncreaseBalance

Compute-
balance

InventoryInventory

DecreaseQty

IncreaseBalance

DecreaseBalance

Salesperson

MakeSale
Cashier

CollectCash

Verification

Table 1. Examples of Non-Accounting Resources, Events, and Agents

Resources Events Agents
• Patents • Customer inquiries/complaints • Potential customers
• Research and development projects • Contacts with potential customers • Potential stockholders
• Leased equipment • Machine breakdown • Consultants

Figure 3. OOREA Methods and Message Passing
(for credit sales and cash receipts)

In the OOREA model, events (transactions) are triggered through message passing between related objects, i.e., objects associate
(or interact) by sending messages to each other. Each message invokes a method within the target object which causes appropriate
actions to occur such as updating a system element. The methods and message passing characteristics for the sales and cash
receipts events are presented in Figure 3 and are now discussed. Note that Figure 3 is a subset of Figure 2, showing the resource,
event, and agent classes of relevance for sales and cash receipts.

When a sale or cash receipt event occurs, a new instance of the appropriate event object is created and caused to “fire” messages
to the related objects. For example, a Sale event causes the following actions: (1) the CreateNew method in the Information
Entity Class is invoked which creates and initializes a new instance of the Sale object (referred to as instantiation in OOP), (2) a

Murthy & Wiggins/OOREA for Enterprise Systems Design

2004 — Twenty-Fifth International Conference on Information Systems 203

message is passed to the new sale instance which invokes its NewSale method, (3) the NewSale method passes an IncreaseBalance
message to the indicated customer object and a DecreaseQty message to the appropriate inventory object. In the customer object,
the Increase Balance method causes the customer balance to be increased to reflect the new sale. In the inventory object, the
Decrease Qty method causes the inventory balance to be reduced for the items sold. Similarly, when a cash receipt occurs, a new
cash receipt object is instantiated via CreateNew Instance, the NewCollection method is invoked, an IncreaseBalance message
is sent to the Cash object and a DecreaseBalance message is passed to the Customer object to activate the appropriate updates
to these objects through their respective methods. Note that the cash receipt event receives a message from the sales event, which
serves as verification that the prior (required) event did occur. All other events would trigger similar creation, message passing
to related objects, and updating activities as those shown in Figure 3.

It should be observed that the Figure 3 OOREA representation reflects and is consistent with the REA concepts of stock-flow
relationships and duality relationships. For example, Figure 3 may be viewed as depicting sales and cash receipts as duality-
related event set pairs. Within each event set pair the stock-flow relationship is evidenced by the IncreaseBalance and
DecreaseBalance methods in the Resource objects which perform the respective increment and decrement roles for the event set
pair. For example, in the sales and cash receipts event set pair, the increment role is performed by the IncreaseBalance method
in the Cash object and the decrement role is performed by the DecreaseQty method in the Inventory object. The OOREA model
presented here represents claims such as accounts receivable, accounts payable, and wages payable as attributes of their related
agent objects. As depicted in Figure 3, the accounts receivable claim is maintained as a running balance in the Current Balance
attribute of each customer instance. Alternately, this claim could be periodically determined through the ComputeBalance
superclass method which, in the case of a customer, would determine the excess of sales to the customer over cash receipts from
the customer, less any adjustments or allowances. Balances of other claim types would be similarly determined.

Financial reporting aspects of OOREA are not illustrated in Figures 2 and 3 but could be implemented by means of a
GenerateReports event. When periodic reports are desired, the GenerateReports event would send a ComputeBalance message
to each object. As a ComputeBalance message is sent, it would be interpreted differently for the various objects (polymorphism)
but in general would aggregate the current balance field for each instance of each base object type. As an illustration, for Cash
and most base objects, the ComputeBalance method would simply aggregate the Current Balance attributes of each instance of
the base object. However, for the Inventory object class, ComputeBalance would first stratify inventory object instances into
purchase-quantity layers and then calculate the inventory balance based on a prescribed cost flow assumption. For Event objects,
ComputeBalance would aggregate the Current Balance fields for all instances for the current year only.

Comparison of OOREA and ER Models

For the purpose of comparison, we show both McCarthy’s (1979) complete ER model of a retailing enterprise in Figure 4, and
also an REA model of sales and cash receipts in Figure 5.

The OOREA model in Figure 2 is similar in some respects to McCarthy’s complete ER model shown in Figure 4. Both
approaches attempt to capture the semantics of the information domain for a retailing enterprise. In the ER model (Figure 4),
objects and events are shown as entities and relationships, whereas in the OOREA model (Figure 2), resource entities, agent
entities, and events are shown as object classes. Both models depict association type relationships. In the object-oriented model,
inter-object associations are indicated by messages being passed between them, whereas in the ER model, the relationship symbol
(diamond) depicts associations between entities. Generalization hierarchies are not depicted in the ER model, although the REA
model (McCarthy 1982) is capable of depicting generalization hierarchies. In the OOREA model, generalization-specialization
hierarchies are depicted by means of superclass-subclass relationships. The OOREA model shows nested objects, as in the
example of several line-item instances nested within both the sale and purchase event classes. Neither the ER model nor the REA
model is capable of depicting such nested relationships. Further, the OOREA model differentiates between simple and complex
data types associated with each object.

A significant point of difference between the OOREA model and the ER model is that the ER model depicts only the structural
aspects of the domain. In comparing the OOREA model in Figure 3 with the equivalent REA model in Figure 5, note that the
OOREA model indicates the operations affecting each object, that is, the behavioral aspects of the sales and cash receipts domain.
The OOREA model also shows the dynamics of the interaction between objects by way of messages being passed between them.
The focus of the REA model in Figure 5 is on the nature of the structural relationships between resource, event, and agent entities.
For example, the sales event is related to the inventory resource and the customer and salesperson agents. The OOREA model
in Figure 3 shows these structural relationships and also shows the dynamics of the methods in which they interact.

Murthy & Wiggins/OOREA for Enterprise Systems Design

204 2004 — Twenty-Fifth International Conference on Information Systems

Figure 4. ER Diagram for the Entire Retail Enterprise
(Source: “An Entity-Relationship View of Accounting Models,” W. E. McCarthy, The Accounting
Review (54:4), October 1979, pp. 667-686. Copyright © 1979, The American Accounting
Association; used with permission.)

Figure 5. REA Diagram for Credit Sales and Cash Receipts

Murthy & Wiggins/OOREA for Enterprise Systems Design

2004 — Twenty-Fifth International Conference on Information Systems 205

The ability to represent both the structural and behavioral aspects of the domain in one model provides a number of advantages.
First, the semantic expressiveness of the model should be enhanced, since analysts and users work with a single model rather than
separate models. (Using the ER/REA approach, analysts and users would work with the ER/REA model for the structural aspects
of the domain and then with data-flow diagrams for the behavioral aspects.) Thus, the use of OOREA facilitates cooperation
between the business domain experts (end users) and the information technology experts (systems analysts/designers) via the use
of a single model and a common vocabulary. With the incorporation of generalization hierarchies via superclass-subclass
relationships, the OOREA model should facilitate the proper identification and placement of controls in the system. Specifically,
controls that affect all objects within a given superclass-subclass hierarchy should be placed within the highest object in that
hierarchy. Finally, the joint modeling of structural and behavioral aspects is essential if the implementation domain is an object-
oriented environment. A key feature of OOREA is its use of the object metaphor for modeling, with a focus on the attributes and
methods of each object and the superclass-subclass relationships between objects. These constructs (object classes, attributes,
methods) correspond directly with the features in all object-oriented environments such as C++, C#, and Java. Object-orientation
is thus considered to be a unifying paradigm in which systems analysts, designers, and programmers all use the object metaphor
at each stage of the systems development process (Korson and McGregor 1990).

Summary and Conclusion

This paper presents an object-oriented extension to McCarthy’s (1982) REA model. Existing OO modeling approaches in
accounting and object-oriented extensions to the ER model were reviewed. The advantages of the OOREA model relative to
McCarthy’s original REA model were discussed. An illustrative OOREA model of a retailing enterprise was presented and
compared with an equivalent ER model (McCarthy 1979). The two key advantages of OOREA are (1) the integrated
representation of the data- and process-oriented views of the system and (2) the employment of a modeling formalism (i.e., the
object), which corresponds directly with constructs in object-oriented technologies, thereby easing the implementation process.

Future research could focus on the implementation of the OOREA model presented here in one or more OO environments.
Practical considerations and problems would more likely be revealed as a result of such an implementation. The extent to which
the OOREA model is perceived as being more semantically expressive is an issue that can be experimentally investigated.
Similarly, whether the use of the OOREA model improves communication between the analyst and the user is another empirical
question worthy of investigation. Research is also needed to better understand the information needs of functional areas other
than accounting so that integrated enterprise-wide information systems can be designed and implemented using OOREA. While
we contend that the OOREA model represents a superior method of identifying objects in a business information processing
context, the ability of organizations to adopt the OOREA modeling approach is unclear. Thus, research regarding the potential
adoption of OOREA by organizations and the barriers to such adoption would be fruitful. As object-oriented programming
languages and object-oriented databases become increasingly available, it seems likely that many business information systems
in the future will be developed using an object-oriented approach.

References

Agarwal, R., and Sinha, A. P. “Object-Oriented Modeling with UML: A Study of Developers’ Perceptions,” Communications
of the ACM (46:9), 2003, pp. 248-256.

Booch, G. Object-Oriented Design with Applications, Benjamin/Cummings, Redwood City, CA, 1991.
Booch, G., Rumbaugh, J., and Jacobson, I. The Unified Modeling Language User Guide, Addison-Wesley, Reading, MA, 1999.
Chen, P. P. S. “The Entity-Relationship Model—Toward a Unified View of Data,” ACM Transactions on Database Systems

(1:1), March 1976, pp. 9-36.
Chu, P-C. “Applying Object-Oriented Concepts to Developing Financial Systems,” Journal of Systems Management (43:5), May

1992a, pp. 28-34.
Chu, P-C. “An Object-Oriented Approach to Modeling Financial Accounting Systems,” Accounting, Management, and

Information Technologies (2:1), 1992b, pp. 39-56.
Coad, P., and Yourdon, E. Object-Oriented Analysis, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1991a.
Coad, P., and Yourdon, E. Object-Oriented Design, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1991b.
David, J. S., Dunn, C. L., McCarthy, W. E., and Poston, R. L. “The Research Pyramid: A Framework for AIS Research,” Journal

of Information Systems (13:1), 1999, pp. 7-30.
DeChampeaux, D., and Faure, P. “A Comparative Study of Object-Oriented Analysis Methods,” Journal of Object-Oriented

Programming (5:1), 1992, pp. 21-33.

Murthy & Wiggins/OOREA for Enterprise Systems Design

206 2004 — Twenty-Fifth International Conference on Information Systems

Dori, D. “Why Significant UML Change Is Unlikely,” Communications of the ACM (45:11), 2002, pp. 82-85.
Fichman, R. G., and Kemerer, C. F. “Object-Oriented and Conventional Analysis and Design Methodologies: Comparison and

Critique,” IEEE Computer (25:10), October 1992, pp. 22-39.
Geerts, G., and McCarthy, W. E. “An Accounting Object Infrastructure for Knowledge-Based Enterprise Models,” IEEE

Intelligent Systems & Their Applications (14:4), July-August 1999, pp. 89-94.
Geerts, G., and McCarthy, W. E. An Ontological Analysis of the Primitives of the Extended-REA Enterprise Information

Architecture,” The International Journal of Accounting Information Systems (3), 2002, pp. 1-16.
Geerts, G., and McCarthy, W. E. “Using Object Templates from the REA Accounting Model to Engineer Business Processes

and Tasks,” The Review of Business Information Systems (5:4), 2001, pp. 89-108.
Gorman, K., and Choobineh, J. “The Object-Oriented Entity-Relationship Model (OOERM),” Journal of Management

Information Systems (7), Winter 1991, pp. 41-65.
Hammer, M., and McLeod, D. “Database Description with SDM: A Semantic Database Model,” ACM Transactions on Database

Systems (6:3), September 1981, pp. 351-386.
Hull, R., and King, R. “Semantic Database Modeling: Survey, Applications, and Research Issues,” ACM Computing Surveys

(19:3), September 1987, pp. 201-260.
Jackson, M. S. “Beyond Relational Databases,” Information and Software Technology (32:4), May 1990, pp. 258-265.
Kandelin, N. A., and Lin, T. W. “A Computational Model of an Events-Based Object-Oriented Accounting Information System

for Inventory Management,” Journal of Information Systems (6:1), Spring 1992, pp. 47-62.
Korson, T., and McGregor, J. D. “Understanding Object-Oriented: A Unifying Paradigm,” Communications of the ACM (33:9),

1990, pp. 40-60.
McCarthy, W. E. “An Entity-Relationship View of Accounting Models,” The Accounting Review (54:4), October 1979, pp. 667-

86.
McCarthy, W. E. “The REA Accounting Model: A Generalized Framework for Accounting Systems in a Shared Data

Environment,” The Accounting Review (57:3), July 1982, pp. 554-78.
Monarchi, D. E., and Puhr, G. I. “A Research Typology for Object-Oriented Analysis and Design,” Communications of the ACM

(35:9), September 1992, pp. 35-47.
Murthy, U. S., and Wiggins, Jr., C. E. “Object-Oriented Modeling Approaches for Designing Accounting Information Systems,”

Journal of Information Systems (7:2), Fall 1993, pp. 97-111.
Navathe, S. B. “Evolution of Data Modeling for Database,” Communications of the ACM (35:9), September 1992, pp. 112-123.
Ochuodho, S. J. “Object-Oriented Database Support for Software Project Management Environments: Data-Modeling Issues,”

Information and Software Technology (34:5), May 1992, pp. 283-307.
Sultan, F., and Chan, L. “The Adoption of New Technology: The Case of Object-Oriented Computing in Software Companies,”

IEEE Transactions on Engineering Management (47:1), 2000, pp. 106-226.
Teorey, T. J., Yang, D., and Fry, J. P. “A Logical Design Methodology for Relational Databases Using the Extended Entity-

Relationship Model,” ACM Computing Surveys (18:2), June 1986, pp. 197-222.
Verdaasdonk, P. “An Object-Oriented Model for Ex Ante Accounting Information,” Journal of Information Systems (17:1), 2003,

pp. 43-61.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 2004

	OOREA: An Object-Oriented Resources, Events, Agents Model for Enterprise Systems Design
	Uday Murthy
	Casper Wiggins, Jr.
	Recommended Citation

	OOREA: An Object-Oriented Resources, Events, Agents Model for Enterprise Systems Design

