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INFORMAL KNOWLEDGE NETWORKS:
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Gregor Schrott and Daniel Beimborn
Institute of Information Systems

Frankfurt University
Frankfurt, Germany

gschrott@wiwi.uni-frankfurt.de beimborn@wiwi.uni-frankfurt.de

Abstract

The problems knowledge workers face today are dynamic, unstructured, highly complex, and often cannot be
fully explicated. Such moving targets require different problem solving capabilities.  Because abstract
information is less valuable in this type of environment, knowledge workers have to utilize channels other than
handbooks.  Hence, corporate knowledge networks again are at the top of the research agenda.  For a
knowledge worker, access to knowledgeable colleagues, rather than access to large databases, becomes the
important factor. 

In such networks, the question of which managerial actions are appropriate for successful community
development ( i.e., supporting the actors) arises.  Unfortunately, today’s community engineering practices are
often characterized by a gross simplification and strong technological focus rather than modeling the impact
of managerial actions before taking them. 

As part of a larger research project, this paper addresses topological structures as an action variable of
community engineering.  A computer-based simulation model is introduced and applied to real-life data from
over 800 students and staff of the Economics and Business Administration Department at Frankfurt University,
Germany. 

Introduction

The increasing importance of corporate knowledge networks is leading to a rebirth of the main challenges of knowledge
management:  adequate support of the actors, teams, and communities in virtual knowledge networks within corporations
(Davenport and Prusak 1998; Wenger 2000).  In this work, knowledge networks are understood as “interconnected nodes
(individuals) linked by arcs or edges (communication flows), representing information communication patterns that crystallize
over time” (Ahuja and Carley 1999).  These informal networks are very important to employees, especially in fast-changing
organizational environments (Nardi et al. 2000) and have been recognized by many corporations (Botkin 1999; Enkel et al. 2000,
Lesser et al. 2001; Lesser and Prusak 1999).  Much has been written about knowledge management and virtual communities in
general, but only part of the literature has inspired applicable results for the management of and practice in virtual knowledge
networks (Ahuja and Carley 1999). Practices often are based on inaccurate perceptions of the organization’s informal structure,
characterized by random interventions rather than systematic network development (Cross et al. 2001; Krackhardt and Hanson
1993) and a strong focus on technical aspects. We believe that the communication structures underlying knowledge networks are
a key determinant influencing the efficiency of information supply. Therefore, knowledge officers should consider communication
topology as endogenous. Methods of social network analysis allow for the precise capturing of such network structures
(Wassermann and Faust 1994), and thereby act as a first step toward the development of appropriate solution strategies.  But being
able to generate highly accurate “snapshots” of structures is not sufficient for successful community support.  Managers
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responsible for network support should be able to estimate the effects caused by their actions before applying them to sensitive
virtual knowledge networks (Cross and Prusak 2002).  One goal of our work is to develop and evaluate solution strategies for
corporate knowledge officers facing decisions on community-engineering activities in order to improve the information supply
within virtual knowledge networks. As a first step, we introduce a basic model for analyzing the effect of a simple topological
change action on the performance of a network.

The research question is:  which information topology is best suited for successful knowledge networks?  This paper is organized
as follows:  based on a short literature review, we develop a new framework for testing the effect of community-engineering
activities.  We then apply our model to empirical data collected during the summer of 2002 at the Economics and Business
Administration Department at Frankfurt University, Germany.  The findings of the computer simulations are presented and
discussed.  The findings are then summarized and our next research steps described.

Related Work

The field of Computational Organization Theory (COT) (Carley and Prietula 1994) studies organizational phenomena by using
autonomous intelligent agents.  As articulated by Monge and Contractor (2003, “the agent-based approach to the study of complex
systems is especially suited to understand knowledge networks,” because COT allows for the study of highly complex phenomena.
In this work, all actions that aim at actively influencing the network topology will be subsumed under the term community
engineering.  Depending on the domain and level of interference, examples include the design of office spaces (coffee-corners)
or job rotation programs increasing the number of communication links within the network (people get to know new people) and
closed virtual workspaces and weekly team meetings intensifying existing links within the network (people get to know each other
better).

A Simulation Model for Virtual Knowledge Communities

Network Model

The modeled network consists of actors (knowledge workers) i , NW  with i = 1…I (NW:  set of actors) and relations between
these actors.  The relations are modeled by a relationship vector  for every actor i: iev
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If actor ihas a link to actor j, j, is called “neighbor of i.”  NHi represents the set of actor i’s neighbors ( ).NWiNWNH i ∈∀⊆
In case i has a link to actor j, eij is set to gij, which represents the edge weight, hence the intensity of their relation.  A positive
value indicates that actor i knows actor j and is able to ask him for advice concerning his problems. Every actor has certain
knowledge, i.e. he holds certain information objects. His personal information pool is defined as the knowledge base Ki and is
represented by the knowledge vector :iov
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The knowledge vector consists of all K different information objects, which exist in the network and are distributed over all actors.
If actor i holds object k (knows k), then the binary variable oik is 1. K is the total number of different existing information objects
in the network. 

Problems/information needs:  In the network, actors will face several problems over time (information needs arise) which have
to be solved within a given timeframe TP. After this time (deadline), the information objects are of no value to the actor (Barreau
and Nardi 1995; Kidd 1994).  For our model, this implies that the status of the problems becomes persistent.  For simplification,
we assume the same timeframe TP for all actors and problems and the problem sets of the different actors are disjoint.  Hence,
actor i’s actual set of problems Pit is modeled as problem vector :itpv
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again is a binary variable and is equal to 1 if actor i has problem k in period t. Every emerging problem has a correspondingiktp
information object actors do not know about, i.e., they don’t know where the respective information object exists; they just know
that there is a potential solution for their problem. Finding this object in the network solves the problem. If  is equal to 1, theiktp
problem could have emerged in period t or earlier if it has not been solved yet.  The problems remain active until being solved:

.1+≤ iktikt pp

Requests:  When searching for the information objects, actors send requests to their neighbors in order to find the answer to their
problems. These neighbors in turn forward the request to their neighbors, and so on. The actor-based communication acts per
period are represented as follows: 

Sending requests:

(4)
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Receiving requests is modeled accordingly, with opposite sign . −
ijktr

Restrictions:  The actors in the network have a certain number of maximal requests they are willing to serve. This restriction
represents the number of e-mails someone will process during one period (e.g., a day) of the simulation. Due to limited availability
as well as willingness to invest in other peoples’ problems, this restriction exists. Therefore, we define MC as the general maximal
capacity of accepted requests (messages): 

(5)∑ ∑
∈ =
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K
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Despite actors’ different willingness and ability to help within virtual knowledge networks (Nonnecke and Preece 2003), for
simplification purposes we assume that MC is equal for all actors. To determine the incoming messages that are forwarded, we
use a recognition probability  that a message will be recognized by actor i.  The probability depends on four things.  First,[ ]−

ijktrpr

it depends on the total number of messages that have been sent to the actor within period t. The higher the total number of
messages received by actor i (c.p.), the less likely a single message will be recognized.  Second, it depends on the weight of the
respective edge from sender to receiver.  The more intense actor j’s relationship with actor i the more likely actor i willije
recognize his request.  Third, it depends on the number of requests asking for the same information object.  The more people ask
for the same information object, the more likely the message will be recognized.  Fourth, it depends on the number of messages
that are recognized (MC). Hence, good relationships as well as multiple requests for the same information object increase the
expected likelihood of messages being recognized. 

(6)[ ] [ ] tki

er

erMC

rprrExp K

k NHj
jijikt

NHj
jijikt

ijktijkt ,,1

1

∀

⋅

⋅⋅

=⋅=

∑ ∑

∑

= ∈

+

∈

+

−−

Problem Solving Act:  The problem k of an actor h will be solved if one of his messages which could be forwarded by any other
actor will be received by the actor j who holds the corresponding information object.NWi ∈
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Decision Process:  Each actor has to decide twice each period.  He needs to decide, first, about forwarding incoming messages
and, second, about sending his own requests for solving his own problems.  When receiving requests, actor i either holds the
information required and is able to solve the problem (see above), or he does not have the information required and has to decide
about forwarding requests. The decision variable for actor i is  representing the decision about relaying received messages.+

ijktr

Which neighbors will get the forwarded message?  Actor i selects Z neighbours (or if he has less, then all neighbors) by an equally
distributed random process incorporating the edge weight (intensity of the relationship). The more intense his relation with an
actor j, the more likely he will ask that particular actor. The probability that actor j receives a request from actor i concerning
object k in period t, represented as expectation of , is calculated as follows:+

ijktr
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To ensure that exactly Z neighbors will be asked, the following restriction has to be met: 
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RNHit indicates the subset of neighbors of actor i that are relevant in terms of being able to receive messages in period t.  RNHit
does not include those actors j having asked actor i for the information object k until the current period and those actors j, which
have been asked by actor ifor the information object k in the past: 

(9)NWiNWNHRNH iit ∈∀⊆⊂

Sending Requests:  Choosing the neighbor for sending requests to solve his own problems follows the same rationale as
forwarding requests.  For every active problem (max.), Z neighbors will be asked. 

Measurement of Network Efficiency:  Finding the appropriate efficiency concepts of network design can follow different paths,
depending on the context of the problem-solving network. In this model, we take a straightforward approach to measure the effect
of different network designs based on Carley and Lin (1997).  The individual knowledge coefficient measures the problem solving
efficiency by building a ratio of solved problems and the total number of problems that appeared for each actor i:
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where  represents all strictly positive values of  (all problems being solved) and  represenmts all negative values+
ktx ktx −

ktx
(appeared problems). The knowledge coefficient ranges from 1 (all problems solved) to 0 (no problem solved). Besides the
individual measure of network efficiency, the overall knowledge coefficient can be calculated as follows: 
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While the knowledge coefficients are a good measure of overall performance of the network, they do not measure how efficiently
the problems have been solved. Therefore, we define SH as search hops per solved problem:
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where  represents all strictly positive values of .+
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Simulation Design

All simulation results were generated using JAVA 1.4 applications.  For data analysis PAJEK (Batagelj and Mrvar 1998), SPSS,
and MS Excel were used. To model an exemplary network, we used e-mail exchanges from over 800 members of the Faculty of
Economics and Business Administration at Frankfurt University, Germany. During August 2002, over 3,000 e-mail messages were
collected.  The network (cf. Figure 1) consists of 808 actors, connected by 2,573 relations.  The relations are directed (arcs) and
indicate the total number of messages send from actor i to actor j within the four-week period.  Hence, the network is very sparse.
The density (number of existing links/number of possible links) is very low at 0.0039. 

Figure 1.  Initial E-Mail Network

Based on this specific network, we ran simulations of problem solving behavior (50 runs per parameter constellation). Limiting
the number of incoming messages (MC) to 20 and assuming a maximum problem age (TP) of 30 periods, Z was varied from 1
to 10. Each network was simulated for 100 periods. The following table summarizes the initial parameter values.
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Table 1.  Parameterization

Capacity of incoming messages (MC) 20
Avg. number of problems appearing per actor and period (PC) 0.3

Number of maximum recipients of the same message (Z) Var.
Simulation horizon (T) 100

Max. age of a problem (TP) 30

To show the applicability of the proposed model, we use one action of community engineering:  increasing the network density
(number of existing links/number of possible links), which means that people get to know more other actors of the network. In
real-world terms, this could be stimulated by introducing new research assistants to the whole faculty via mailing lists. We
increased the density of the original network (0.0039) about 20 percent (0.0043) and 40 percent (0.0055).

Simulation Results

Increasing the network density leads to the effect displayed in Figure 2.

Figure 2.  Network Efficiency (KQ)/SH per Solved Problem/Increasing Density

As can be seen from Figure 2, increasing network density (overall Z) leads to a higher number of problems being solved in the
network (KQ).  Increasing the number of links by about 40 percent leads to an average increase of solved problems of 68 percent.
But increasing the number of messages probably comes at a high price: When considering the number of messages in relation
to the number of solved problems (the right-hand side of Figure 2), it can be seen that with increasing density, more messages
are being sent through the network. Hence, the advantages of more problems being solved have to be evaluated by knowledge
officers against the costs of message handling of the network members. 

Summary and Further Research

The design of corporate knowledge networks is not purely a technical question. Unfortunately, little is known about the dynamics
of processes within those networks and especially how to measure the effect of community-engineering actions undertaken by
corporate knowledge officers. Our contribution to this problem is the attempt of the development of a universal simulation toolbox
for knowledge networks which enables managers in charge of the network to anticipate the effects of their actions especially when
facing cost-intense and long-term decisions. As a first step, in this paper a basic model was introduced and applied to exemplary
real-world data. This paper does not aim at designing and evaluating different alternative actions of community engineering but
introduces a model to measure the effect of various actions of community engineering. Of course, this model can only be seen
as a first step in a research framework analyzing the measurements of such actions. Most of our assumptions are quite restrictive
and will be relaxed subsequently.  In addition, the current model will by extended to incorporate these dynamics.
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