
Association for Information Systems
AIS Electronic Library (AISeL)

ICIS 2002 Proceedings International Conference on Information Systems
(ICIS)

December 2002

Quality and Profits Under Open Source Versus
Closed Source
Birendra Mishra
University of Texas at Dallas

Ashutosh Prasad
University of Texas at Dallas

Srinivasan Raghunathan
University of Texas at Dallas

Follow this and additional works at: http://aisel.aisnet.org/icis2002

This material is brought to you by the International Conference on Information Systems (ICIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ICIS 2002 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Mishra, Birendra; Prasad, Ashutosh; and Raghunathan, Srinivasan, "Quality and Profits Under Open Source Versus Closed Source"
(2002). ICIS 2002 Proceedings. 32.
http://aisel.aisnet.org/icis2002/32

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301354463?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Ficis2002%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis2002?utm_source=aisel.aisnet.org%2Ficis2002%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis2002%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis2002%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis2002?utm_source=aisel.aisnet.org%2Ficis2002%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis2002/32?utm_source=aisel.aisnet.org%2Ficis2002%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

2002 � Twenty-Third International Conference on Information Systems 349

QUALITY AND PROFITS UNDER OPEN
SOURCE VERSUS CLOSED SOURCE

Birendra Mishra
School of Management

University of Texas at Dallas
Richardson, TX USA
bmishra@utdallas.edu

Ashutosh Prasad
School of Management

University of Texas at Dallas
Richardson, TX USA
aprasad@utdallas.edu

Srinivasan Raghunathan
School of Management

University of Texas at Dallas
Richardson, TX USA
sraghu@utdallas.edu

Abstract

The open source model of software development has received substantial attention in the industry and popular
media; nevertheless, critics frequently contend that open source software are inferior in quality compared to
closed source software because of lack of incentives and project management, while proponents argue the
opposite. This paper examines this quality debate by modeling and analyzing software development under open
and closed source environments. The results show no dominant quality advantage of one method over another
under all circumstances. Conditions under which each method can generate higher quality software are
examined.

Keywords: Open source, software quality

1 INTRODUCTION

Recent years have seen an increasing interest in the open source movement as a new paradigm for software development. Open
source refers to the use of shared source code, open standards, and collaboration among software developers and users worldwide
to build software, identify and correct errors, and make enhancements (O�Reilly 1999). Unlike the traditional (proprietary)
paradigm of software development, users have free access to the source code, which they can modify to correct software bugs,
port the software to new hardware or software platforms, solve additional problems, create add-on software programs, or simply
use it for free. Enhancements submitted by individual users are often fed back to the original source code for public use. Table
1 provides short descriptions of some commonly used open-source software that are widely used by companies including some
of today�s most powerful e-commerce Websites like Yahoo, Cisco Systems, and C-Net.

Championed by the philosophy that software is a public good and should be freely shared, used, and codeveloped by all, the open
source movement challenges the traditional paradigm of software as a proprietary good, to be guarded carefully via copyrights
or patents and licensed or sold to users for profit. The traditional paradigm (referred to as closed source) treats software
development as a highly specialized process, managed best by a localized team of highly qualified developers, careful project
management, and occasional enhancements in the form of new releases. In contrast, open source software is based on the
principles of continuous improvement (implemented via frequent releases), collaboration among developers and users (irrespective
of geographical locations or employing firms), and adherence to open standards (implemented via open-source licenses). As
described by Raymond (1999), open source represents a �bazaar style� of software development, in contrast to the �cathedral
style� emphasized by closed source software development.

mailto:bmishra@utdallas.edu
mailto:aprasad@utdallas.edu
mailto:sraghu@utdallas.edu

Mishra et al./Quality &Profits: Open Source Vs. Closed Source

350 2002 � Twenty-Third International Conference on Information Systems

Table 1. Examples of Open-Source Software

Software Description
Closed-Source
Competitors

Operating system:
Linux Linux is the predominant enterprise server operating system in use today with

over 7 million users.
Windows NT
(Microsoft), OS/2
(IBM), HP-UX (HP)

FreeBSD FreeBSD, Open BSD, and other Berkeley UNIX derivatives boast an estimated
1 million users.

Solaris (Sun), HP-UX
(HP)

Programming languages:
Perl Larry Wall�s Perl language is the engine behind most �live content� on the

Internet, and is used by over 1 million users.
ASP (Microsoft)

Python Guido van Rossum�s Python language is used by over 325,000 users.
Programming tools:
GNU project A high-quality set of programming tools, including gcc C , g++ C++ compiler,

emacs editor, and gdb debugger from the Free Software Foundation�s GNU
project.

Visual C++
(Microsoft), Cold
Fusion (Allaire)

Web server:
Apache Apache is currently deployed in over 53 percent (1 million) of today�s web

servers, well ahead of second-placed Microsoft�s IIS at 23 percent.
Internet Information
Server (Microsoft)

Web client:
Mozilla Netscape�s next-generation web browser Mozilla, is the open-source version of

its popular browser product Communicator.
Internet Explorer
(Microsoft)

Internet infrastructure:
BIND Berkeley Internet Name Daemon servers are the core of the Internet�s Domain

Name Service (DNS) system.
Sendmail Sendmail is the primary e-mail transport/forwarding agent on the Internet.

Used by 80 percent of all Internet sites.
Miscellaneous:
Ghostscript Postscript editor and printer Adobe Acrobat
StarOffice Sun Microsystems� open source word processor, spreadsheet and other general-

purpose office application software.
Microsoft Office

Critics contend that the quality of open source software suffers from the �free rider� problem. However, proponents claim that
software contributors are not necessarily altruistic; programmers contribute to source code for social recognition and prestige in
the open source community and to signal their talent to prospective employers, which may lead to job, consulting, or other career
opportunities (Lerner and Tirole 2000).

In addition, critics suggest that the lack of formal project management in bazaar style software development undermines the
product�s quality. However, open source proponents argue that the quality of open source software stems not from its
management but from its openness. Free access to the source code ensures that the code is tested and retested by a worldwide
user base, leading to timely identification of bugs and opportunities for software enhancements, hence, is more reliable. In
contrast, closed source software has a lower likelihood of error identification and correction, but closed source firms have a strong
incentive to continually improve their program to ensure that clients buy the updates later. Limited coordination in an open source
environment may lead to some duplication of effort between programmers trying to correct the same error and, hence, it is unclear
whether having multiple users spend resources on improving a common software necessarily improves its quality over having
a closed firm with coordinated efforts and formal project management.

Mishra et al./Quality &Profits: Open Source Vs. Closed Source

2002 � Twenty-Third International Conference on Information Systems 351

The proponents of both paradigms point to the inherent incentives built into respective approaches to build quality software, with
respect to software pricing and the approach to software development (e.g., cathedral style versus bazaar style). This paper focuses
on the impact of inherent incentive structure of the closed and open source approaches on the software quality using game
theoretic analysis to examine whether quality may improve or suffer in an open source model, compared to that in a closed source
model. Our findings indicate that despite the free nature of open source software, built-in incentives for software developers in
the open source model can enhance software quality to be comparable to or exceed closed source quality.

The remainder of the paper proceeds as follows. In the next section, we discuss the quality debate surrounding software
development, specifically focusing on open source software. Section 3 discusses the modeling framework and assumptions.
Section 4 examines how quality improvement comes about in a monopoly market. Section 5 examines quality improvement when
closed source software is in monopoly and compares the result to those in the preceding section. The final section concludes with
discussion and directions for future research.

2 THE QUALITY DEBATE IN OPEN SOURCE SOFTWARE

High quality software is vital for most firms because software applications are rapidly emerging as a firm�s central nervous
system; not only do they control a firm�s everyday operations, but they also enable or constrain the ability to make and implement
strategic business decisions (Prahalad and Krishnan 1999). The traditional conception of software quality is centered on a
product-centric, conformance view of quality (Prahalad and Krishnan 1999). Benchmarking software based on predefined
specifications assumes that it is possible to specify ex ante the entire range of features expected of a software. However, in reality,
different users have different expectations of the same software and users� expectations of software evolve with time. For
instance, some users may view performance and reliability as the key features of software, while others may consider ease of
installation and maintenance as key features of the same software. Therefore, software applications today must do more than just
meet technical specifications; they must be flexible enough to meet the varying needs of a diverse user base and provide
reasonable expectations of future enhancements. Changing user perceptions necessitate a new way of conceptualizing and
assessing software quality by synthesizing the conformance, service, and innovation aspects of the software and its vendor
(Prahalad and Krishnan 1999). Conformance refers to a software vendor�s ability to deliver the right product; service refers to
its ability to customize the product to specific user needs; and innovation refers to its ability to deliver a continuous stream of
novel features in the form of future upgrades. Although quality can be multidimensional, for the purpose of this analysis we distill
all three dimensions into a single dimension.

Comparing open source with closed source software based on the above conceptualization of quality suggests some interesting
implications. First, open access to source code allows greater opportunities for customizing open source software to the specific
needs of individual users than closed source software. In fact, such customization is encouraged and widely practiced by the open
source community, while closed source software that provide clients with access to source code (e.g., SAP R/3) proclaim that any
modification to source code will result in loss of customer support, thus limiting the product�s customizability to a predefined set
of options. Second, continuous innovation and upgrades require soliciting suggestions and feedback from software users. While
open source programmers actively solicit inputs from users worldwide via listservs, Usenet groups, and bulletin boards, closed
source software developers have limited interaction with a small group of users. Hence, any enhancement to closed source
software will reflect the changing needs of a small user group and be smaller in magnitude and scope than that of open source
software. In practice, upgrades to open source software are released much more frequently than upgrades to closed source
software, and consequently, open source software such as Linux seem to have developed faster than comparable closed source
software such as Windows NT. As examples, Linux has supported 64-bit processing since 1995 while NT became 64-bit ready
in 2000; Linux supports the latest networking standards such as Ipv6 but NT does not; and Linux provides ports to more software
development environments than does NT. However, open source projects do seem to lag their closed source counterparts in
coordination of developers and project management, leading to some duplication of efforts by multiple developers, inefficient
allocation of time and resources, and lack of attention to mundane software attributes such as ease of use, documentation, and
support, all of which impact conformance to specifications.

Indeed, industry comparisons of open source versus closed source software are inconclusive or slightly in favor of open source.
For instance, a comparative evaluation of Linux and Windows NT (respectively, open source and closed source server operating
systems) by Bloor Research (1999) found that Linux is significantly superior to NT in three out of nine dimensions (availability,
user satisfaction, and value for money), somewhat superior in three other dimensions (operational features, support, and
scalability), comparable in two dimensions (interoperability and functionality) and inferior in one dimension (application
availability). Some system administrators prefer Linux over Windows NT because of Linux�s simpler hardware configuration

Mishra et al./Quality &Profits: Open Source Vs. Closed Source

352 2002 � Twenty-Third International Conference on Information Systems

requirements, lightweight nature, better multi-processing capabilities, and networking support; however, others prefer Windows
NT because of better security, ease of management, and superiority in Java performance. The lack of a verdict on the open source
versus closed source debate is reflected in the fact that closed source firms such as IBM, Sun Microsystems, and Netscape
Communications, that profess value in the open source philosophy and routinely commit time, resources, and manpower to open
source projects, are not yet ready to abandon their internal closed source projects.

When an individual programmer submits a proposed improvement to an open source software, a coordinating committee
(consisting of experienced programmers) evaluates the merits of that proposal, examines possible side-effects of the suggested
improvement, compares it with alternative ideas submitted by other programmers, and finally decides whether to incorporate the
proposed improvements to the software, and if so, distributes the enhanced version as a new software release. As long as
developers return some of their improvements to this committee, the software will continue to improve. Submission, evaluation,
and acceptance of improvements can be viewed as a tournament, where one improvement is accepted from a set of submissions,
and the programmer submitting that improvement gains visibility, respect, and future prospects within and outside the open source
community (Lerner and Tirole 2000).

Finally, as suggested by the open source examples listed in Table 1, the open source model appears most viable for generic
context-independent applications such as operating systems, network software, word processors, and spreadsheets, where no
specialized user inputs are required. Our domain of study for open source is likewise restricted to general purpose software used
by a large number of end users who are price and quality takers (as opposed to a specific use software contract requiring exact
price and quality specifications). The model is thus not applicable for highly specialized business applications such as customized
procurement systems or payroll systems, where programmers cannot code without knowing the users� requirements and the quality
of the software product is determined by its meeting contractual specifications.

We summarize this section with a table listing the key features and relevant differences between open source and closed source
software. These features provide the conceptual underpinnings for modeling open source and closed source software development
within an economic framework.

Table 2. Conceptual Underpinnings of Modeling Framework

Open Source Closed Source
1. Programmers freely provide improvements for

recognition if their improvement is accepted.
2. If the program is popular, a very large number of

programmers may work on it.
3. A coordinating committee or an open forum for

exchange selects the best software quality
improvements.

4. Programmers compete with each other for recognition
(tournament).

5. Users do not pay a price; hence particularly attractive to
users.

6. Less time and effort is spent by individual
user/programmer on research and development, but
there are more programmers.

1. Programmers are hired by a software firm and work for
compensation.

2. The number of programmers working on the code is
limited by the firm�s resources.

3. Coordination is imposed by the firm to reduce overlap
of efforts.

4. Programmers do not compete with each other.

5. Users pay a price to offset the costs of research and
development that the software firm invests.

6. More time and effort spent on research and
development by software firm, but there are fewer
programmers.

3 THE MODELING FRAMEWORK AND ASSUMPTION

In this section, we present a software development model from both the consumer and developer perspectives. Table 3 provides
a detailed summary of notations used in this paper. On the consumer side, we assume that the consumer valuation V of a software
with quality Q is given by:

V = tQ2 (1)

Mishra et al./Quality &Profits: Open Source Vs. Closed Source

2002 � Twenty-Third International Conference on Information Systems 353

Table 3. List of Main Notation

Functions, Parameters, and Strategy Elements Notation
Functions and Parameters

Value to consumers V tQθ=
Quality of the software (open source, closed source) (,)os csQ Q Q
Individual developers quality

i i iQ q ε= +

Distribution of Qi ()
iQ i iF Q q ε= +

Coordination parameter "

Stochastic noise component gi

Cost of quality 2() 2i i iC q c qλ=

Index for cost of high and low type (,)i L H∈
Proportion of high type programmers $

Utility of a programmer ()w y yν=
Risk aversion parameter <

Number of open source programmers Nos

Market Size D

Demand for software of quality Q at price P (,)Q P∆

Reward for the winning open source programmer ()R D

Variable cost to the firm for hiring Mcs employees 2()cs csC M kM=

Strategy Elements
Quality choice by the individual developer qi

Number of closed source programmers Mcs

Price of the closed source software P
Fraction of total profit retained by the firm D

Consumers are heterogeneous in their valuations. We model this heterogeneity by assuming that t is distributed uniformly between
0 and 1 without loss of generality. The concave utility function of these consumers is captured by the parameter 2 < 1. There are
a total of D consumers. Thus, in a monopoly, the demand for a software with quality Q offered at a price P,)(Q, P) is given by

)(Q, P) = D(1-P/Q2) (2)

On the developer side, the software is developed by a set of programmers. For individual programmers, quality is generated by
the time and effort spent on the project. Programmer i chooses an average quality output qi by applying the requisite effort. Some
improvements can also come randomly, in a serendipitous manner, or by �stroke of luck.� Additionally, some randomness is
inherent due to the subjective nature of the evaluation process. Therefore, the evaluated quality Qi is modeled as a random variable
with two parts: a deterministic component (function of programmer effort) and a random term:

Qi(qi) = qi + gi (3)

The cumulative distribution function (c.d.f.) of Qi is denoted . ()
iQF Q

Mishra et al./Quality &Profits: Open Source Vs. Closed Source

354 2002 � Twenty-Third International Conference on Information Systems

Programmers� costs of quality C(qi) is assumed to be increasing and convex, i.e., C'(qi) > 0 and C''(qi) > 0. We know that
programmers differ in their skill and experience. Presumably, all types of programmers can ultimately get a job done but more
skilled and experienced programmers will find it less costly in terms of time and effort to do so. Thus, one may differentiate
programmer types by their cost of programming parameter (Lazear and Rosen 1981). For simplification of analysis, we assume
that programmers belong to one of two types: high (H) and low (L); however, this simplification is not critical to our results. For
the same level of output quality, a high type programmer incurs a lower cost compared to a low type. More specifically, we
assume that the programmer�s cost of quality is given by the cost specification

, (4)
2

()
2
i i

i
c qC q λ= { , }i L H∈

where, c is a cost parameter, and 8i (8H < 8L) indexes the relative cost between the high and low type programmers. Note that this
cost specification satisfies the earlier stated requirements of the cost function: C'(qi) > 0 and C''(qi) > 0. The parameter c is likely
to have a value less than 1 in open source models, and is normalized to 1 in closed source models. The value c < 1 in open source
implies that open source programming may be viewed by some programmers as a hobby or may be done for altruistic motives
(Lerner and Tirole 2000). We denote the number of programmers in high and low types by NH = $N and NL = (1 � $)N
respectively, where N is the total number of programmers working on the software.

The quality choice of individual programmers determines total quality. We denote the effective quality that results in software
improvement as where a is the coordination parameter. The coordination parameter a is normalized to 1 in the case of openiqα∑
source software, which has little, if any, coordination among programmers. In the case of closed source, " is likely to be much
greater than 1 because the closed source approach is designed to achieve a synergistic outcome that they could not have achieved
individually. The utility specification for a programmer is given by

(5)()w y yν=

where < # 1 is the risk aversion parameter. This power function is fairly standard for capturing risk aversion and is widely used
in economics and business literature.

The above model applies to both closed source and open source software. The difference between closed source and open source
approaches lies in the manner in which the programmers are rewarded for their efforts. In the case of open source, the
programmers compete for recognition by participating in a tournament. In the case of closed source, the firm shares its profit with
its programmers.

4 QUALITY UNDER OPEN SOURCE

We assume that the open source environment consists of a set of Nos programmers who submit improvements to the open source
code, where Nos $ 2. There is a coordination committee that costlessly evaluates submissions as a tournament and selects a winner.
The role of the coordination committee may be formal or informal. For instance, the winner may be selected informally through
mutual consensus among open source users, while a rigid hierarchical structure may govern which improvements, or variations
of an improvement, will be incorporated into the software, as in the case of Linux. Let Dos be the number of open source users.
Since the software is and free, the entire market should adopt the software regardless of its final quality. Thus, Dos is equal to
the size of the market D in this monopoly case.

The winning programmer obtains a reward valued at R(D) and there is no reward for the rest of the field. The value of the reward
is expected to increase with the size of the user base, i.e., R'(D) > 0. This reward may include social recognition and prestige in
the open source community, job offers from firms, consulting opportunities, selection to the board of directors of open source
firms, and so forth (Lerner and Tirole 2000). Lerner and Tirole propose that open source programmers have two incentives to
participate: the ego gratification incentive and the career concern incentive. Whereas the latter is a pure monetary concern, the
ego gratification incentive is a function of the number of individuals who use the open source software. Reward is a function of
the total number of users of the open source software, R(D) can be interpreted as pertaining to both intrinsic and extrinsic rewards.

Mishra et al./Quality &Profits: Open Source Vs. Closed Source

2002 � Twenty-Third International Conference on Information Systems 355

Open source programmers work independently of one another, because they are geographically dispersed and because of the
incentive structure that forces them to compete with one another for the reward. In contrast, closed source software development
encourages collaboration between programmers.

An individual programmer enters the tournament with the following expected payoff:

(6)(,) () ()i i i OS iU p q q R D C qυ
−= −

where, p(A) is the probability of the programmer winning the tournament and q-i is a vector of the qualities of the remaining
submissions. The probability of the programmer winning the tournament is the probability that his entry is evaluated better than
the remaining Nos � 1 entries, i.e.,

(7)(,) [max{ }]i i i j j ip q q prob Q Q− ≠= ≥

Evaluating this probability requires the distribution of . Substituting equation (7) into the programmer�s utilitymax{ }j j iQ ≠

function and obtaining the quality choice of the programmer and the expected improvement, we reach the following proposition:

Proposition 1: The optimal quality level of each programmer, qos , is obtained as the solution of the series of Nos equations:

, . The expected quality of the winning software is where
(,) ()() 0i i OS i

i i

p q q C qR D
q q

υ−∂ ∂− =
∂ ∂

[1,]OSi N∈ ∫∫
∞−

∞

−−
0

0

]1[
NN YY FF

.
1

OS

N

N

Y Qj
j

F F
=

= ∏

(Proofs are in the Technical Appendix)

Proposition 1 provides a general characterization of software quality in the open source model. However, more specific insights
require imposing more structure to this proposition. For this purpose, we make the following assumption.

(Tournament Winner Assumption) The probability of programmer i winning the tournament is given by the function:

(8)

1

(,)
OS

i
i i N

j
j

qp q q
q

−

=

=

∑

This probability can be derived both from Proposition 1 with a specification of the random variable based on the Gumbel
distribution. The above assumption has been used widely in economics literature including the tournament literature (Rosen 1986).
Although high cost programmers have a low probability of winning the reward, they do not voluntarily drop out. The first order
condition is:

(9)1

2

1

() []
0

[]

OS

OS

N

j i
j

i iN

j
j

R D q q
c q

q

υ

λ=

=

−
− =

∑

∑

The solution is bounded away from zero for all programmer types implying participation from both high and low types. Equations
for the low and high cost programmers can be written and solved for the following results.

Mishra et al./Quality &Profits: Open Source Vs. Closed Source

356 2002 � Twenty-Third International Conference on Information Systems

Corollary 1.1: The ratio of high and low productivity programmers� quality levels are . Software quality isH L

L H

q
q

λ
λ

=

.
() 1()OS

OS
H L

N R DQ
c

υ β β
λ λ

−= +

The above result leads to the following interesting and valuable insights. First, from Corollary 1.1, the quality improvement Qos
is increasing in <, $, Nos , and D, and decreasing in c. The former shows that risk aversion leads to lower quality levels. Higher
number of programmers and higher fraction of high productivity programmers also increases quality because of higher total effort.
The improvements due to D follow from the logic that if reward from effort is increased, programmers are motivated to work
harder.

Second, a particularly interesting result is that the quality of open source software is decreasing in c. Critics contend that open
source software development is dependent upon people who consider it a hobby rather than a serious pursuit, and hence quality
may suffer. In contrast, our model suggests that such hobby considerations decrease the programmer�s cost of effort, and thereby
increase the quality of open source software.

Third, the role of Nos in quality improvement is somewhat ambivalent. A larger number of programmers decreases the likelihood
of any individual programmer obtaining the reward and, therefore, acts as a disincentive to effort. At the same time, more
programmers will provide a larger number of improvements and lead to higher quality software. Since the quality expression is
increasing in the number of programmers, the latter is the dominant effect.

Fourth, some open source communities may require a critical quality threshold in addition to a programmer winning the
tournament in order to realize any reward. For such a quality threshold Q*, the expected reward is p(Qos $ Q*)p(qi, qi-1)R(D)<
instead of p(qi, qi-1)R(D)<. p(Qos $ Q*) represents the proportion of projects undertaken under the open source model. Although
analytically intractable, it can be seen that a quality threshold is detrimental to open source software quality since the reward is
effectively reduced. If the quality threshold is sufficiently high, it is possible that the open source model may suffer from the
�public good� problem because programmers unwilling or unable to meet the quality threshold may simply stop making
contributions. When the threshold increases, the effective reward decreases, causing the individual programmer effort and the total
quality to decrease. This, in turn, reduces the probability that the quality will be higher than the threshold, thus reducing the
number of projects that will be taken up in the open source. This result may explain why relatively few new software projects are
developed by open source.

Finally, although the above model examined programmers of two types (high and low ability), a related question is that whether
open source quality can be improved by employing a more heterogeneous population of programmers. By setting 8N = 1 � g and
8L = 1 + g and examining the sensitivity of quality to heterogeneity, we see

(10))])1(())1([(][ββεββ
ε

−++−−=
∂

∂
sign

Q
sign OS

Thus, if there are more high ability programmers than low (i.e., $ $ ½), the quality improves with higher diversity among
programmers (i.e., higher g). On the other hand if the number of low ability programmers is very large compared to that of high
quality, higher diversity reduces the quality. In the latter case, it is better if the programmer abilities are close to the average ability
within this group.

5 CLOSED SOURCE QUALITY AND COMPARISON WITH OPEN SOURCE

In closed source software development, a dedicated team of programmers is maintained to design and improve proprietary
software code. However, individual programmer effort and contribution quality are expensive to monitor, typical of principal-
agent and team compensation models. As a result, compensation cannot be tied to individual performance metrics. Neither can
a fixed salary be given since it would encourage employees to shirk. Therefore, programmer compensation is generally based on
the total quality outcome. To motivate programmers to work harder, firms typically offer shares in the company�s profits to
employees (Hermalin 1998). This scheme is taken as the basis for the closed source firm. The following sequence of actions is
considered:

Mishra et al./Quality &Profits: Open Source Vs. Closed Source

2002 � Twenty-Third International Conference on Information Systems 357

Stage 1: The firm announces the compensation plan and hires Mcs programmers.

Stage 2: Each programmer chooses a quality output qi. The combination of these individual outputs determines
total software quality.

Stage 3: The firm sells the software at price P and realizes a profit.

This description of a closed source firm follows Hermalin closely, with some modifications. In Hermalin, a fixed number of risk
neutral and identical team members shared the profit, while in the present case, a firm decides how many programmers to hire
and how to share the profits with these programmers (i.e., all profits may not be shared). Further, employees are assumed to be
risk averse. The game is solved by backward induction, solving the last stage first.

Stage 3 Analysis:

The demand for closed source software)CS (QCS, P) is given by equation (2). The profit of the closed source firm is:

(11)
P

() Max (,)CS CS CS CSQ P Q PΠ = ∆

(.)
(,) /

CS CS

CS

Q PP
Q P P

−∆
⇒ =

∂∆ ∂

The marginal cost of reproducing software is usually negligibly small and, therefore, is not included in (11).

Stage 2 Analysis:
The firm shares a proportion (1 � D) of the total profit with employees and retains the rest. Let CCS(qi) denote the cost of the
programmer�s effort in this closed source environment. CCS(qi) is given by equation (4). Then the utility function is:

(12)[](1) () ()i i CS CS CS iU u Q C qυρ= − Π −

where programmer i receives a fraction ui of the profit available to all programmers.

The employee�s optimal quality choice is obtained by solving the first order condition.

Stage 1 Analysis:

In the first stage, the firm maximizes its share of the profit less variable expenses such as recruitment, coordination, overhead,
and equipment costs, which is generally a convex function of number of employees.

(13)[]
,

Max () ()
CS

CS CS CSM
Q C Mυ

ρ
ρΠ −

We assume that the firm�s cost of overhead is given by .2()CS CSC M kM=

With a heterogeneous pool of employees, it may be possible that the different employees are compensated differently using a
mechanism design. This outcome is called a separating equilibrium, i.e., an equilibrium where the firm offers different amounts
to the different programmer types. The following proposition shows this is not feasible.

Proposition 2: Under the assumptions that individual programmer qualities are unobservable and the compensation is based
on profit sharing, a separating equilibrium does not exist.

Mishra et al./Quality &Profits: Open Source Vs. Closed Source

358 2002 � Twenty-Third International Conference on Information Systems

Risk Aversion Versus Quality in Closed Source

0

50

100

150

200

250

300

350

400

450

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

υυυυ

Q
ua

lit
y

Risk Aversion Versus Quality in Closed Source

0

50

100

150

200

250

300

350

400

450

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

υυυυ

Q
ua

lit
y

Therefore, we examine a pooling equilibrium where all programmers obtain an equal share. The expected quality QCS in the
closed-source model can now be obtained:

Proposition 3: The ratio of programmers� quality levels . Software quality obtained isH L

L H

q
q

λ
λ

=

.

θθυ

υυ

υυυυ

λ
β

λ
βυυθα

−−

−+

−+++

 −+−
=

4
1

1)21(

2
1)1(2)3(4)1(

4

1)1(

k

D
Q LH

CS

The number of programmers is endogenously determined and does not enter the quality expression. However, the quality of the
closed source software improves with higher demand (i.e., higher D), better coordination (i.e., higher "), more high quality
programmers (i.e., higher $), higher consumer valuation (i.e., higher 2), and lower costs (i.e., lower 8H, 8L, or k). The effect of
the risk aversion is difficult to derive analytically.

Figure 1. Effect of Programmer Risk Aversion on Quality

However, numerical simulations (see Figure 1 for the following parameters: D = 1000000, " = 1, 2 = 0.5, $ = 0.5, 8H = 1, 8L =
2, k = 1) show that higher risk aversion (i.e., lower <) reduces quality. It also follows from Proposition 3 that if the coordination
parameter a is zero or the risk aversion is very high, closed source quality is negligible.

Comparing overall quality under open and closed source environments, we get

Proposition 4: The quality of open source software, QOS,, is lower, equal to, or higher than the quality under closed source, QCS,
if

Mishra et al./Quality &Profits: Open Source Vs. Closed Source

2002 � Twenty-Third International Conference on Information Systems 359

2
(1) 4

2
(1) 4 (3) 2(1) 1

(1 2) 1

1(1)
()

4
H L

OS

D
N R D c

k

θ υ θυ θ

υ υ υ υ

υ
υ υ

β βα θ υ υ
λ λ

+ − −

+ + + −

+ −

 − < − + =

 >

Propositions 3 and 4 provide several qualitative insights that are likely to hold for other functional specifications:

First, there is no universal quality dominance of open source over closed source or vice versa under all circumstances. Second,
the open source model becomes more attractive in an environment where a large pool of programmers is willing to work on open
source software. This provides a rationale as to why the Internet revolution has been a major impetus for open source by allowing
programmers worldwide to participate. Quality can be further enhanced if more programmers can be urged to participate, if
programmers� efforts are publicly recognized, and if programmers perceive code contribution to be a fun task or a hobby.

Third, it is difficult to compare programmer ability in open source and closed source environments. We have taken $ to be the
same under both circumstances. It is possible that a closed source firm has a potential advantage in that a selection process may
help identify and eliminate low ability programmers (i.e., only high ability programmers are employed despite a heterogeneous
labor supply). On the other hand, it can be argued that open source programmers may be more skillful because they are self-
selected. Also, since the source code is subject to extensive peer review, a level of personal accountability exists in open source
development that does not exist in the closed source model (http://www.linuxworld.com/linuxworld/lw-1998-11/lw-11-
ramparts.html). If the open source programmers are of higher quality compared to closed source, the results of our model will tilt
in favor of open source quality.

6 CONCLUSIONS

In this paper, we examined software quality improvement under two possible models of software development: The traditional
closed source model (e.g., Microsoft�s Windows NT) and the emerging open source model (e.g., Linux).

We found that open source software quality is not necessarily lower than closed source quality despite the absence of a proprietary
interest, and neither paradigm dominates under all circumstances. The quality of software developed by the open source
tournament may sometimes but not universally dominate over the quality of closed source software depending on a combination
of factors such as compensation, software demand, number of programmers, reward systems, programmer�s cost of effort, and
coordination of programmers.

However, it is still possible to compare marginal improvements in quality between open and closed source development due to
each of the above factors, when all else is equal. First, quality is likely to improve in both open source and closed source with
increasing market demand for the software. Both closed source firms and open source communities will have stronger incentives
to improve software that are desired more by users, but for different reasons. Closed source firms see increased market demand
as an opportunity for generating more revenues through sales and licenses, while open source programmers have a higher
opportunity to gain recognition among their community or signal their talent to potential employers (open source or otherwise).

Since many open source programmers come from a hacker culture, they perceive identifying bugs and fixes as a fun or enjoyable
activity, and hence increase quality by reducing programmers� cost of effort. The enjoyment associated with open source code
improvement acts as an intrinsic motivator, enabling programmers to create and share improvements, even in the absence of any
extrinsic rewards such as pay.

As a future extension we are currently examining the effect of the nature of the market (monopolistic versus competitive) on the
quality of open and closed source software. Preliminary findings are that quality of both open source and closed source software
decreases in competitive markets. This result suggests that competition from the open source movement may hamper the
innovation in the closed source software industry and vice versa.

(http://www.linuxworld.com/linuxworld/lw-1998-11/lw-11-ramparts.html
(http://www.linuxworld.com/linuxworld/lw-1998-11/lw-11-ramparts.html

Mishra et al./Quality &Profits: Open Source Vs. Closed Source

360 2002 � Twenty-Third International Conference on Information Systems

7 REFERENCES

Bloor Research. �Linux Versus NT: The Verdict,� Press Release, October 22, 1999, Press Release (available online at
http://www.bloor-research.com/product/245/linux_v_windows_nt_the_verdict.html).

Green, J. R., and Stokey, N. L. �A Comparison of Tournaments and Contracts,� Journal of Political Economy (81), June 1983,
pp. 349-365.

Hermalin, B. E. �Towards an Economic Theory of Leadership: Leading by Example,� American Economic Review, 1998, pp.
1188-1205.

Holmstrom, B. �Moral Hazard in Teams,� The Bell Journal of Economics (13), 1982, pp. 324-340.
Lazear, E. P., and Rosen, S. �Rank Order Tournaments as Optimum Labor Contracts,� Journal of Political Economy (89),

October 1981, pp. 841-864.
Lerner, J., and Tirole, J. �The Simple Economics of Open Source,� Working Paper, Harvard Business School, Cambridge, MA,

2000.
Mood, A., Graybill, F. A., and Boes, D. C. Introduction to the Theory of Statistics (3rd ed.). Singapore: McGraw-Hill, 1974.
O�Reilly, T. �Lessons from Open-Source Software Development,� Communications of the ACM (42:4), April 1999, pp. 32-37.
Prahalad, C. K., and Krishnan, M. S. �The New Meaning of Quality in the Information Age,� Harvard Business Review (77:5),

September/October 1999, pp. 109-118.
Raymond, E. S. �The Cathedral and the Bazaar,� Working Paper, Thyrsus Enterprises, 1999 (available online at

http://www.tuxedo.org/~esr/writings/cathedral-bazaar/).
Rosen, S. �Prizes and Incentives in Elimination Tournaments,� The American Economic Review (76:4), September 1986, pp. 701-

715.

Technical Appendix

Proof of Proposition 1

We relabel programmers so that what was earlier referred to as the ith programmer is now the Nth programmer, and apply a
statistical result (Mood et al. 1974, p.183) as an intermediate step:

Proposition 1: If {Q1, Q2, �,QN-1} are independent random variables with c.d.f.s {FQ1, FQ2, �,FQ,N-1} respectively, and YN-1 =

max {Q1, Q2, �, QN-1} then the c.d.f. of YN-1 is . ∏
−

=

=
−

1

1
1

N

j
QjY FF

N

Proof of Proposition 1: Prob[YN-1 < Q] = Prob[Q1 < Q]1Prob[Q2 < Q]1 � 1Prob[QN-1 < Q] = . ∏
−

=

1

1

N

j
QjF

We observe that p(qi, q-i) = prob[Qi - YN-1 ³ 0]. In other words p(.) is the c.d.f. of the random variable (YN-1 - Qi) and can be

determined using the convolution theorem, . ∫ ∏
∞

∞−

−

=
− =≤− dxxFxfQYp

N

j
QQiN ji

1

1
1)()()0(

If YN= is the distribution of the maximum quality, its expectation is obtained by the formula∏
=

N

j
QjF

1

 (Mood et. al 1974, p. 65). Q.E.D.∫∫
∞−

∞

−−=
0

0

]1[)(
NN YYN FFYE

http://www.bloor-research.com/product/245/linux_v_windows_nt_the_verdict.html
http://www.tuxedo.org/~esr/writings/cathedral-bazaar/

Mishra et al./Quality &Profits: Open Source Vs. Closed Source

2002 � Twenty-Third International Conference on Information Systems 361

Proof of Corollary 1.1

Starting with equation (1) and (Tournament Winner Assumption)

(i)

1

() ()
OS

i
i OS OS iN

j
j

qU R D C q
q

υ

=

= −

∑

Solving for quality chosen, the first order condition is:

1

2

1

() []
0

[]

OSN

OS j i
j

i iN

j
j

R D q q
c q

q

υ

λ=

=

−
− =

∑

∑

2 2

() [(1)] () [(1)]0 and 0
[] []

OS H H L L OS H H L L
H H L L

H H L L H H L L

R D N q N q R D N q N qc q c q
N q N q N q N q

υ υ

λ λ− + + −
⇒ − = − =

+ +

(ii)
() () and

() ()
OS OS

H L
H H L L H H H L L L

R D R Dq q
N q N q c N q N q c

υ υ

λ λ
⇒

+ +

The approximation is reasonable if the input of a single programmer is small compared to the total quality. The second order
condition is always met. Dividing the two equations we get 8L/8H = qH/qL. Multiplying the first equation by NH and the second
by NL and adding we get the expected quality of the software:

 QED. (iii)
() 1() () ()OSH L

OS OS
H L H L

N R DN NQ R D
c c c

υ
υ β β

λ λ λ λ
−= + = +

Proof of Proposition 2

Proof by contradiction. Suppose a separating contract (xl, QCS) and (x2 ,QCS) is announced where x1 > x2. These would satisfy
the following incentive compatibility constraints:

IC1: 1 1 1 1 2 1(, |) (, |)CS CSx Q x x Q xΠ > Π

IC2: 2 2 2 2 1 2(, |) (, |)CS CSx Q x x Q xΠ > Π

However, IC2 is violated since each employee prefers the higher share. Intuitively what this means is that since the firm can only
observe the combined output of the employees, it cannot discriminate between the employees since each one would pretend to
be of the high type without any cost incurred for lying. Q.E.D.

Proof of Proposition 3

We solve the game by backward induction, solving the last stage first. Stage 3 analysis gives:

Mishra et al./Quality &Profits: Open Source Vs. Closed Source

362 2002 � Twenty-Third International Conference on Information Systems

P
Q
PDMaxQ

CS
PCSCS)1()(θ−=Π

4
)(

θ
CS

DQ
QCSCS =Π⇒

Substituting this into the Stage 2 analysis, we get the utility of the programmer.

24
)1(2

i
i

CS

q
M

DQ
CS λ

ρ
υθ

−

 −

We write the following two conditions for the two types of employees:

LCS
CSH

qQ
M

D =

 − −1)(
4

)1(θυ
υ

ρ
λ

αθυ

HCS
CSH

qQ
M

D =

 − −1)(
4

)1(θυ
υ

ρ
λ

αθυ

An immediate conclusion from these equations is that the efforts of the two types are inversely proportional to their cost
parameter.

H L

L H

q
q

λ
λ

=

This implies that the low cost programmers choose a higher quality level than the high cost programmers. We now solve for
software quality. Multiplying the first equation by "MH and the second by "ML and adding we solve as follows.

θυ
υ

λ
β

λ
βρθυα −=

 −+

 − 22)(1
4

)1(
CS

LHCS

Q
M

DM

θυυ
υ

λ
β

λ
βρθυα

−
−

 −+

 −=⇒

2
1

21 1
4

)1(

LH
CSCS

DMQ

Now, in Stage 1, the firm maximizes its share of the profit.

2

2
21

, 4

1
4

)1(

CS
LH

CS

M
kM

DMD

Max
CS

−

 −+

 − −

−
θυ

θ
υ

υ

ρ

λ
β

λ
βρθυαρ

2
1 θυρ −=⇒

Mishra et al./Quality &Profits: Open Source Vs. Closed Source

2002 � Twenty-Third International Conference on Information Systems 363

θθυ

θυθυ

θ
θυυθθθ

λ
β

λ
βυυθα

−−

−+

−++

 −+−
=⇒

4
1

24

2)1(222

2

1)1(

k

D
M LH

Substituting these back into the quality expression we get:

Q.E.D.

θθυ

υυ

υυυυ

λ
β

λ
βυυθα

−−

−+

−+++

 −+−
=

4
1

1)21(

2
1)1(2)3(4)1(

4

1)1(

k

D
Q LH

CS

Proof of Proposition 4

The proof follows from the expressions of Qos and QCS.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 2002

	Quality and Profits Under Open Source Versus Closed Source
	Birendra Mishra
	Ashutosh Prasad
	Srinivasan Raghunathan
	Recommended Citation

	Quality and Profits Under Open Source Versus Closed Source

