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Abstract

In 1989, Wand and Weber proposed a formal model of systems decomposition based on ontology.  Chidamber
and Kemerer (1994) soon applied this model to develop complexity metrics for object-oriented design (OOD).
Chidamber and Kemerer�s OOD metrics suite continues to receive interest in software engineering (Bansiya
and Davis 2002; Basili et al. 1996).  To date, however, Wand and Weber�s good decomposition model has
received almost no application in information systems (IS).  For three reasons, we believe the theory might
assist IS researchers.  First, object-oriented analysis (OOA) has not been as successful in practice as OOD or
OO programming (Chuang and Yadav 2000).  The good decomposition model may help IS researchers
investigate improvements to OOA.  Second, Johnson (2002) recently lamented how few OOA studies employ
any theory.  Wand and Weber�s theory may, therefore, be a useful approach.  Third, many believe OOA is a
revolutionary step away from traditional approaches (Sircar et al. 2001).  Practicing analysts could benefit
from theory-based principles to guide their use of this �revolutionary� technique.      

In this study, we report an experiment to determine the utility of the good decomposition model in OOA.  We
operationalized each condition of Wand and Weber�s model in a set of UML diagrams and tested participants�
understanding of the diagrams across three levels.  Our results lend support to Wand and Weber�s theory, but
only across dependent variables that tested participants� actual understanding.  The impact on participants�
perceptions of their understanding remained equivocal.

Keywords:  Object-oriented analysis, unified modeling language, UML, ontology, decomposition

1 INTRODUCTION

When systems analysts specify requirements for new applications, they often use diagrams called conceptual models.  These
diagrams are designed to support communication between developers and users, to help analysts understand a domain, and provide
an input to systems design (Wand and Weber 2002).  Following the move toward object-oriented (OO) development in industry,
at least 19 OO modeling specifications have emerged (Wieringa 1998).  The UML (unified modeling language) has been adopted
as the standard by the Object Management Group (Kobryn 1999).  The aim of this study is to empirically test a theory that might
provide a basis for improving OO analysis (OOA) in UML.  

To date, most OOA research has compared OO to traditional approaches and studied relative strengths and weaknesses (e.g.,
Agarwal et al. 2000; Hardgrave and Dalal 1995; Vessey and Conger 1994).  There has been less focus to date on improving use
of any one method on its own.  The standardization of UML, however, affords an opportunity to focus on improving the �science�
of diagramming in this suite.  Given the revolutionary nature of object-oriented analysis (OOA) (Sircar et al. 2001) and the lack
of theory in studies to date (Johnson 2002), theory-driven approaches to improving UML diagramming are essential.  

mailto:abjones@cis.gsu.edu
mailto:pmeso@cis.gsu.edu
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The objective of this paper is to empirically test the usefulness of Wand and Weber�s good decomposition model as a foundation
for improving OOA in UML.  The good decomposition model is a set of formal conditions that define characteristics of well-
specified systems (Weber 1997).  The conditions are based on an ontology (or meta-theory of the structure and behavior of real
world systems) proposed by Bunge (1977).  We recognize upfront that the good decomposition model can only provide a partial
solution for OOA.  The model primarily operates at a semantic level and scholars recognize that syntactic, pragmatic, and social
concerns are also important (Shanks 1999).  Our objective is to test the benefit of this semantic level theory.

We focus on the good decomposition model for two reasons.  First, it is the only theory we know of that (1) provides a formal
set of properties of �good� decompositions and hence is clearly refutable, and (2) covers all aspects of systems modeling and can
thus be used right across the UML suite.  Second, while there have been no tests (to our knowledge) of the good decomposition
model in systems analysis, the model formed a foundation of Chidamber and Kemerer�s (1994) metrics suite in OO design, which
has had ongoing impact in software engineering (Citeseer reported 141 citations by March 2002).  The model also proved
promising in an early study of non-OO design (Paulson and Wand 1992).  Like Basili et al.�s (1996) test of Chidamber and
Kemerer�s metric suite, our purpose is to empirically validate the good decomposition model to determine its usefulness for OOA.
Specifically, we want to test the following research question:  Do UML diagrams that manifest better decompositions increase
analysts� understanding of a domain?

2 THE GOOD DECOMPOSITION MODEL

In systems development, decomposition involves breaking down a high-level statement of requirements into smaller pieces to
be designed and implemented.  Better decompositions are more likely to result in systems that can be understood, maintained,
and perform effectively (Parnas 1972).  There are many levels to an IS decomposition, from an initial statement of requirements
to implemented code.  This paper tests the utility of Wand and Weber�s theory for assisting an important early level: the
decomposition from the initial statement of requirements to an OOA specification of those requirements in UML (see Figure 1).

As Figure 1 shows, an analyst could propose many alternative decompositions to represent a real world domain.  The good
decomposition model provides a set of metrics for determining the relative quality of these decompositions.  It is important to note
that an analyst could also develop multiple decompositions of equal quality (whether good or bad) (Paulson and Wand 1992).
The good decomposition model thus does not assume that there is one best way to model the real world.  The model is also
deliberately parsimonious.  Other metrics can be used in combination with the model to compare �equivalent� decompositions
(see Paulson and Wand 1992; Chidamber and Kemerer 1994).  This paper is limited to a test of the good decomposition model
alone. 

The good decomposition model proposes five conditions required for a good decomposition: minimality, determinism,
losslessness, minimum coupling, and strong cohesion (Weber 1997) (described in Table 1).  

Minimality requires that a system does not contain any redundant state variables (attributes).  In a UML diagram, for instance,
redundant state variables would include attributes that are not used by any method in the system and are unnecessary for the
system to perform its function.  

Figure 1. Alternative Decompositions from the Real World to a Conceptual Model
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Table 1.  Summary of Wand and Weber Good Decomposition Conditions 

Condition Description (adapted from Weber 1997; cohesion condition also in Dromney 1996)
Minimality A decomposition is considered good only if for every subsystem at every level in the level structure of the

system there are no redundant state variables. 
Determinism For a given set of external (input) events at the system level, a decomposition is good only if for every

subsystem at every level in the level structure of the system an event is either an external event or a well-
defined internal event. 

Losslessness A decomposition is good only if every hereditary state variable and every emergent state variable in a system
is preserved in the decomposition.

Minimum
Coupling

A decomposition has minimum coupling iff the cardinality of the totality of input for each subsystem of the
decomposition is less than or equal to the cardinality of the totality of input for each equivalent subsystem
in the equivalent decomposition.    

Strong
Cohesion 

A set of outputs is maximally cohesive if all output variables affected by input variables are contained in the
same set, and the addition of any other output to the set does not extend the set of inputs on which the
existing outputs depend.  

Determinism relates to system dynamics.  External events are changes of state in the focal system caused by a change of state in
another system or subsystem.  Such events are inherently unpredictable (e.g., a class cannot know when another class will send
it a message or its message contents).  While unpredictable, the determinism condition requires that external events still be named
so the system knows their existence and source.  Internal events are internal state changes controlled by the system.  For example,
methods in a class can operate on attributes in their class.  Determinism requires that all internal events be named and well
defined.  Internal events are well defined when, given a specific pre-event state, an internal event leads predictably to one and
only one post-event state. 

Losslessness requires that emergent properties (or properties of higher-level systems) are not lost during decomposition.  A
property of a customer relationship management system, for instance, might be customer satisfaction.  As the system is broken
down into its constituent parts, the losslessness condition requires that the customer satisfaction property is not lost in the final
system. 

Minimum coupling is judged in the context of equivalent decompositions, viz., ones that contain the same objects and components
(Weber 1997).  Coupling increases with interaction between subsystems.  In OOD, coupling can be defined as a method in one
object using methods or instance variables in another object (Chidamber and Kemerer 1994).  Degree of coupling can then be
defined as the number of other classes to which an object is coupled (including the number of ways that each object is coupled
to any other object).     

Strong cohesion in the good decomposition model is based on Dromney�s (1996) definitions.  Chidamber and Kemerer applied
Wand and Weber�s definition in OOD as the similarity of methods in a class; the larger the number of similar methods, the more
cohesive the class.  For example, a class that contains attributes and methods that can logically be separated into two sets (i.e.,
are dissimilar) would violate Wand and Weber�s and Chidamber and Kemerer�s definition of strong cohesion.

To summarize, the good decomposition model provides a set of conditions proposed to be necessary for good system specification.
Wand and Weber propose that analysts and users will be more able to understand systems complying with the conditions.  Recall,
however, that Wand and Weber�s model derives from ontology (philosophy) (Bunge 1977).  To predict that these conditions affect
analysts� understanding of OOA scripts requires that the conditions be supported by theories of cognition.  Table 2 summarizes
how violations of each of these conditions reduce an individual�s understanding based on theories of semantic memory (Collins
and Quillan 1969).  In semantic network theory, individuals store concepts in memory as nodes connected by paths (Ashcraft
2002).  To perform cognitive activities, concepts from memory must be recalled.  This follows a process of spreading activation.
A node is primed in memory which leads to the paths connecting to it being activated.  Activation has to be strong enough for
a search along the path to reach a connected node.  In these theories, understanding (typically operationalized as accuracy and
response latency) is positively related to the strength of activation (Ashcraft 2002).
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Table 2.  Impact of Good Decomposition Violations on Human Understanding

Illustrations of Impact in Semantic Memory Caused by Violations of Good Decomposition:

No  Violation Minimality
Losslessness

Determinism

Coupling Cohesion

Violation Impact on Semantic Memory (adapted from Weber 1997)
Minimality Increases the number of nodes in memory.  This diffuses the strength of priming of any one node and

decreases the likelihood that a search in memory will be successful.

Losslessness Nodes representing emergent properties are lost.  A search for these nodes in memory will be unsuccessful.

Determinism When events are not well specified, the state of other subsystems must be known before a subsystem�s
behavior can be understood.  More distant nodes must be accessed.  These nodes will experience weaker
priming and retrieval will be slower and less accurate.

Minimum
Coupling

As the strength of coupling between nodes increases, the number of paths between nodes increases.  This
dissipates the level of priming on any one path leading to higher response latency and less accuracy.  

Strong
Cohesion 

If a subsystem lacks cohesion, the nodes connected directly to it will relate to multiple functions that the
system performs.  When an individual focuses on the node, all connected nodes will be primed but only some
are relevant to understanding.  Priming of relevant nodes is thus weaker so response latency (accuracy) will
increase (decrease).

An assumption of these arguments, however, is that individuals encode elements (or chunks) of a conceptual model directly into
memory in a more or less one-to-one mapping so that the violations in the model are also manifest in their semantic network.
Theories of memory suggest two situations when this assumption might not hold.  First, when individuals have plenty of time to
analyze a model, they are likely to engage in elaboration processes to restructure their semantic network.  Elaboration can improve
an individual�s memory by increasing the priming of nodes in memory and by improving the structure of the semantic network
(Weber 1997).  Second, when individuals are expert in the domain represented, they will already have an existing semantic
network.  Rather than encode the conceptual modeling constructs in a one-to-one fashion into memory, they can internalize the
model by adjusting their existing semantic network.  Moreover, where there are clear problems or ambiguities in the conceptual
model, they can use their existing knowledge to determine a more plausible or correct interpretation of the terms or relationships
in the model when internalizing it in memory (Burton-Jones and Weber 1999).  The implication for empirically testing the good
decomposition model is that the test should not allow participants significant time,1 nor represent a domain in which the
participants are expert.  Empirical tests where these conditions do not hold may not find significant results (see Weber 2001; we
thank an anonymous reviewer for calling our attention to this paper).

These arguments lead us to develop our formal propositions.  We propose, subject to the assumptions above, that UML diagrams
that manifest better decompositions will communicate meaning more effectively and thereby improve individuals� understanding.
Further, we posit that violations of the good decomposition conditions have approximately equal weight on individuals�
understanding, so that they operate in an additive (approximately linear) fashion.  Table 3 states our four propositions.  The next
section outlines our experiment to test these propositions.
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Table 3.  Propositions

# Proposition 
1 UML scripts complying with all five conditions (good decomposition) will be more understandable than UML scripts

violating all conditions (bad decomposition)

2 UML scripts complying with all five conditions (good decomposition) will be more understandable than UML scripts
violating three conditions (moderate decomposition) 

3 UML scripts violating three conditions (moderate decomposition) will be more understandable than UML scripts
violating all conditions (bad decomposition)

4 Better decompositions will be more understandable (the relationship is approximately linear) 

3 METHOD

We used a laboratory experiment to test our propositions.  Given the exploratory nature of our research, this method helped us
to control for other factors that might impact users� understanding of UML diagrams. 

3.1 Design

The experiment used a 1*3 between-groups design.  Each group received three UML diagrams that either fully complied (good),
partially complied  (moderate), or violated all of the good decomposition conditions (bad).  Participants were randomly assigned
across groups.  Order of tasks was randomly assigned to control for learning effects.  The dependent variables were:  (1) problem-
solving performance; (2) performance in a cloze (or fill-in-the-blanks) test; and (3) perceived ease-of-understanding the diagrams.

3.2 Participants 

A total of 59 senior-level students studying OOD at a large university in the southern part of the United States participated.  Two
responses could not be included (one subject arrived too late, the other misunderstood the instructions), resulting in three groups
of 19 (N = 57).  Participants were awarded credit but attendance was voluntary.  All students took an OOA course as a prerequisite
and both courses used UML.  Participants reported that they first learned UML (on average) 6 months prior.  Their average self-
reported expertise in the domain modeled was 3.5 on a 7-point scale (where 4 represented the same as a practitioner).  Overall,
while participants were familiar with UML and the domain tested, they could not be considered expert in either. 

3.3 Materials

Participants received three diagrams, a use case, class, and state transition diagram.  The diagrams derived from a case adapted
from Conger (1994).  Three versions of each were created:  good, moderate, and bad.  The moderate decomposition violated
minimality, losslessness, and determinism.  These were selected because we considered them less familiar to the IS community
than coupling and cohesion.  The bad decomposition violated all conditions.  Figures 2, 3, and 4, show the bad class, state
transition, and use case diagrams respectively.  To conserve space, we do not show the good or moderate diagrams, but have
annotated the bad diagrams to explain the differences in the diagrams.  All materials are available on request.

Prior research has not operationalized the good decomposition conditions in OOA.  To manipulate each condition, we used
definitions in Weber (1997), Chidamber and Kemerer (1994), and Parsons and Wand (1997).  Each manipulation was made to
specific aspects of the diagrams to isolate their effects as much as possible.  To ensure validity, an independent academic expert
on the topic reviewed the diagrams, and changes were made based on this feedback.  As shown in Figure 2, minimality was
manipulated by including redundant attributes in the applicant and job contract classes.  Losslessness was manipulated in the 1..n
relationships between the Applicant!Employee-Contract and Client!Job classes.  The good diagram included overall
performance and overall satisfaction ratings in the applicant and client classes.  These emergent properties were lost in the bad
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Losslessness:
Only satisfaction per job is shown.  
The good diagram also showed 
clients� overall satisfaction with 
the history of their jobs (an 
emergent property).  

Coupling:
The skill in demand method has to 
be run for each Applicant.  The 
good diagram diagram included 
this method in the Applicant class, 
reducing coupling between classes.

Cohesion:
The good diagram 
separated Applicant 
and Interview classes 
into more cohesive 
classes.

Coupling:
Two methods from the Interview class (record interview quality and 

record interview result) were located in the Applicant and Client 
classes in the bad diagram, increasing coupling with this class.

Minimality:
These classes 
contain redundant 
attributes not in the 
good diagram.

Losslessness:
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shown.  The good diagram also 
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performance over the history of 
their contracts (an emergent 
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Figure 2.  Class Diagram:  Bad Decomposition
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Violation for internal events: Compared to the good diagram, the .status 
update event here is indeterminate because for two states �On Call,� and 
�Requested,� the internal event leads to two further internal events (.status 
update and .retire).   The good model showed that the transition between 
these states depended on state changes in classes other than Applicant.  

Violation for external events: Compared to the good 
diagram, these three external events are not fully specified
as they do not include the value of the state variable in the 
Employee Contract or Job classes that triggers the state 
change. 

Figure 3.  State Transition Diagram:  Bad Decomposition
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Figure 3.  State Transition Diagram:  Bad Decomposition
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were separate Use Cases.  

Figure 4.  Use Case Diagram:  Bad Decomposition 

diagram where only the hereditary properties of job satisfaction and contract performance remained.  Determinism was
manipulated in the state transition diagram (Figure 3).  The external events (�job status� and �employee contract status�) were
under specified and the internal event status update was indeterminate because for two states (in demand and on call), two internal
events emerged from the subsequent state.   Minimum coupling was violated by methods that increased coordination between
classes (�skill-in-demand� in the job rather than applicant class, and �record client interview result� and �record sample interview
quality� in the client and applicant rather than interview class).  Strong cohesion was violated in the use case (Figure 4) by using
more aggregated use cases, and in the class diagram (Figure 2) by collapsing the service and applicant classes into one class and
the sample and final interview subclasses into one class, reducing similarity of methods.  Apart from the violations, the diagrams
between groups were informationally equivalent (i.e., contained the same semantics) (per Kim et al. 2000).

3.4 Dependent Measures

Our dependent measures were based on education research that found that understanding is best tested by deep processing such
as problem solving (Mayer 1989).  Following Gemino (1998) and Bodart et al. (2001), the problem-solving measure in our
research was participants� number of acceptable answers to 11 problem-solving questions asked about the domain.  Each question
asked for a selection of answers to a relevant business problem and an explanation for each answer.  Each answer-explanation
pair was worth one mark (half a mark for each part).   Requiring an explanation for each answer ensured that we tested deep rather
than just surface understanding.  For example, one problem-solving question was: 

ICI has a number of applicants with skills in high demand but who are not yet contracted with a client.  From
the information provided in the models, list up to six possible causes for this and explain how each might have
led to this situation.

We assessed participants� answers by creating a set of �acceptable� answers to each question (Mayer 1989).  For example,
acceptable answers to the above question included: �low quality in sample interview,� �clients cancel jobs before contract starts,�
�low certification,� and �low performance rating.�  Of the 11 questions, the answers for two questions came from one diagram,
the answers for six questions came from two diagrams, and the answers for four questions came from all three diagrams.  The
questions did not stipulate, however, which diagrams would be useful. 

We also tested participants understanding via a fill-in-the-blanks test whereby the narrative was provided for participants to
complete.  We assessed participants based on the number of blanks they filled with a correct word or synonym.  For example,
an extract of the fill-in-the-blanks test was: 

Applicants� _______ is recorded as _______ when their applications are received.  If their _______ are
_______  _______ they are moved to an _______  _______ state.  If they perform to _______  _______ in the
__________ interview they are moved to _______  _______.
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In accordance with the assumptions of our tests (outlined in section 2 above), the problem-solving and fill-in-the-blank tests were
designed to be challenging but not unreasonable.  Specifically, students were given approximately three minutes per problem-
solving question and were required to complete 116 blanks or approximately 4.5 blanks per minute in the fill-in-the-blanks test.
Students were advised to do the best they could but not to worry if they could not finish the experiment. 

To measure participants� perceived ease-of-understanding their diagrams, we adapted Davis� (1989) perceived ease-of-use
instrument.  Four items were chosen from the instrument in Moore and Benbasat (1991) and Gemino (1998) and adapted to ask
participants about their models� �ease-of-understanding� rather than �ease-of-use.�  For example, one item of the scale was: 

Trying to understand the UML diagrams of ICI required a lot of mental effort.

An independent coder and one of the researchers separately coded the problem-solving and fill-in-the-blanks answers.  Scoring
the problem-solving answers required some subjectivity.  The coding scheme appeared reliable, however, as the correlation
between coders for the 11 questions ranged from r = 0.87 to r = 0.97.  The fill-in-the-blanks test was much more objective,
reflected in the correlation between coders (r = 0.99).  The results reported in section 4 are based on the independent coder�s
scores for the problem-solving and fill-in-the-blanks tests. 

3.5 Procedures

Six Ph.D. students participated in a pilot test.  Minor changes were made to the materials and procedures based on their feedback.
During the experiment proper, participants were given a pre-questionnaire that asked their experience in UML and the domain
modeled.  They were also provided a summary of the UML syntax.  Participants then had 10 minutes to complete a set of
comprehension questions about the UML diagrams.  These were not a dependent measure but merely a way of engaging
participants and helping them become familiar with the diagrams before the experimental tasks.  Next, participants received the
fill-in-the-blanks or problem-solving test (based on random assignment).  The fill-in-the-blanks test was allocated 25 minutes and
the problem-solving test 35 minutes.  The instructions explained that all three diagrams would be useful.  When the time elapsed,
participants� answers were collected and the second task was provided.  After completing both tasks, participants completed the
ease-of-understanding instrument.  The experiment took approximately 1 hour, 15 minutes in total. 

Recent research has adopted two approaches when testing diagram-based problem solving.  In one approach, researchers take
away participants� diagrams before the experimental tasks begin, to force participants to work from memory (e.g., Bodart et al.
2001; Gemino 1998).  In a second approach, participants can access and work through the diagrams when problem solving (e.g.,
Kim et al. 2000).  We adopted the second approach.  Like Kim et al., our diagrams contained more elements in total than typically
used in the first approach.  Taking away the three diagrams would have made it unlikely that participants in any group could recall
enough details to perform effectively.  One weakness in the second approach is if participants can answer the questions by simply
copying information from the diagrams, without engaging in problem-solving processes.  This was alleviated in our study by
requiring participants to explain each answer in the problem-solving test, and by having to integrate material from the three
diagrams to complete the fill-in-the-blanks test. 

4 RESULTS

The data analysis proceeded in two steps.  We first examined descriptive statistics and the psychometric properties of the
perceived ease-of-understanding instrument.  We then performed tests of our hypotheses.

4.1 Descriptive Statistics

Table 4 reports our correlation matrix.  The correlation matrix shows significant correlations (" = .05) in the hypothesized
direction for fill-in-the-blanks and problem solving.  Perceived ease-of-understanding, however, showed no significant differences
across groups.  Participants� experience in UML and their perceived knowledge of the domain had no effect on any dependent
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variable.  There appeared a learning effect on the fill-in-the-blanks test, as the order of tasks was positive and significant.2  The
problem-solving results did not suffer a learning effect.  

Table 4.  Pearson Correlations

 
Group Order 

Months
Exp Exp Bus  CLOZE TOTPROB

Order .000
Months

Exp
.006 -.090

Exp Bus .062 .084 -.199
CLOZE .246* .346** .105 -.086

TOTPROB .543** .127 -.074 .018 .500**
PEOU .033 .157 .078 -.070 .019 .038

*  Correlation is significant at the 0.05 level (1-tailed), ** significant at the .01 level (1-tailed)

Legend: Group: 1 = Bad; 2 = Moderate; 3 = Good 
Order: 1 = fill-in-the-blanks first, 2 = fill-in-the-blanks second
Months Exp: How long the participant has known UML
Exp Bus: How much knowledge of the business domain the participant reports
CLOZE: Total score on the cloze or (fill-in-the-blanks test)
TOTPROB: Total number of acceptable answers in the problem-solving exercise
PEOU: Perceived ease-of-understanding

We found the perceived ease-of-understanding instrument to be unidimensional.  All items in a confirmatory factor analysis loaded
greater than .7.  The reliability  was lower than the .7 rule of thumb (" = .64).  Given the extensive validation of the ease-of-use
instrument on which ours was based (Moore and Benbasat 1991), we remained somewhat confident in our scale�s psychometric
properties, although we return to this issue in our conclusions. 

F� and t�tests assume that dependent variables for each group have normal distribution and homogenous variance.  We had three
groups and three dependent variables.  For two of the nine distributions, there was evidence of non-normality (significant
Kolmogorov-Smirnov statistic).  One of these was due to outliers, which when removed had no bearing on the results.  The
normality assumption when violated, however, is typically not disruptive to the functioning of t� or F�tests (Huck and Cormier
1996).  Kirk (1995) reports that when cell sizes are equal, the normality assumption does not become problematic unless cell sizes
drop below 12.  Figure 5 shows the distribution of results for the problem-solving and fill-in-the-blanks tests.  Higher quality
decompositions were associated with higher variance.  This does not affect the statistical tests because equal Ns make t� and
F�tests robust to violations of this assumption (Huck and Cormier 1996), but we return to this finding in our conclusions. 

4.2 Tests of Propositions 

Table 5 reports one-way ANOVAs to test propositions 1 through 3.  We also ran ANCOVAs with UML experience as a covariate
(results not shown) and found the same results.  Proposition 1 predicted that participants� understanding of the diagrams would
be better in the good than bad group.  Our results support this proposition for the two objective measures but not for the ease-of-
understanding scale.  As expected, the results were less strong for the Good!Moderate and Moderate!Bad relationships; the
results supported propositions 2 and 3 on problem solving but not for fill-in-the-blanks.  Once again, the ease-of-understanding
results showed no difference across groups. 
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Legend: Group: 1 = Bad; 2 = Moderate; 3 = Good
CLOZE: Total score on the cloze or (fill-in-the-blanks test)
TOTPROB: Total number of acceptable answers in the problem-solving exercise
Outliers:  The outliers shown above did not alter the results so are included in all reported tests
Maximum scores: the maximum scores were 116 (CLOZE) and 49 (problem-solving)

Figure 5.  Descriptive Statistics for Hypothesis Tests

Table 5. One-Way ANOVAs for Differences Between Groups  

Proposition Dependent  Var.  df Mean (Standard Dev.) Between Groups F Sig. (1-
tail)

Proposition 1:
Good > Bad

 CLOZE  36, 1 41.79 (25.21) (Good) > 28.71 (14.70) (Bad) 3.82 .030
 TOTPROB  36, 1 12.82   (7.08) (Good) >   5.00   (3.20) (Bad) 19.24 .000
 PEOU  35, 1   4.18   (0.73) (Good) >   4.13   (0.67) (Bad) 0.45 .417

Proposition 2:
Good > Moderate

 CLOZE  36, 1 41.79 (25.21) (Good) > 34.45 (23.47) (Mod.) 0.86 .180
 TOTPROB  36, 1 12.82   (7.08) (Good) >   7.34   (3.87) (Mod.) 8.75 .003
 PEOU  35, 1   4.22   (0.51) (Mod.) >   4.18   (0.73) (Good) 0.44 .418

Proposition 3:
Moderate > Bad

 CLOZE  36, 1 34.45 (23.47) (Mod.) > 28.71 (14.70) (Bad) 0.82 .187
TOTPROB  36, 1   7.34   (3.87) (Mod.) >   5.00   (3.20) (Bad) 4.14 .025
 PEOU  36, 1   4.22   (0.51) (Mod.) >   4.13   (0.67) (Bad) 0.23 .319

Legend: CLOZE: Total score on the cloze or (fill-in-the-blanks test)
TOTPROB: Total number of acceptable answers in the problem-solving exercise
PEOU: Perceived ease-of-understanding

Table 6 reports the results for our fourth proposition: that decomposition quality and understanding are positively linearly related
(i.e., can be fitted by a regression line).  The results support this proposition for the fill-in-the-blanks and problem-solving
measures as both regression models are significant, as are the coefficients.  The results also confirmed that the problem-solving
measure was more powerful than the fill-in-the-blanks test.  The adjusted R2 for fill-in-the-blanks (.15) was half that for problem-
solving (.28), even taking into account order (learning) effects. 

As shown in Figure 5, participants generally received low scores in the tasks, consistent with the challenging nature of the
experiment.  To provide further confidence in the results, we ran two sensitivity tests (not shown here to conserve space).  First,
we tested the consistency of the problem-solving results across the 11 questions.  The results appeared consistent as we found
the score for every problem-solving question was positively correlated with the quality of the decomposition, and in a MANOVA



Burton-Jones & Meso/An Empirical Test of the Good Decomposition Model

112 2002 � Twenty-Third International Conference on Information Systems

Coefficient Std. Error t Sig. (1-tail) 

(Constant) -.762 10.738 -.071 .472

GROUP 6.539 3.277 1.996 .026

ORDER 15.023 5.352 2.807 .004

Cloze (Fill-
in-the-

Blanks):

Predictors:  (Constant), ORDER, GROUP (1 = Bad, 2 = Moderate, 3 = Good)

Overall Model: F = 5.931 (p = .003) (df = 54, 2), Adj R2 = .150

When ORDER excluded, GROUP remains significant but the Adj R2 drops to .043

Coefficient Std. Error t Sig. (1-tail) 

(Constant) -.762 10.738 -.071 .472

GROUPGROUP 6.539 3.277 1.996 .026.026

ORDER 15.023 5.352 2.807 .004

Cloze (Fill-
in-the-

Blanks):

Predictors:  (Constant), ORDER, GROUP (1 = Bad, 2 = Moderate, 3 = Good)

Overall Model: F = 5.931 (p = .003) (df = 54, 2), Adj R2 = .150

When ORDER excluded, GROUP remains significant but the Adj R2 drops to .043

Coefficient Std. Error t Sig. (1-tail)

(Constant) .570 1.759 .324 .374

GROUP 3.908 .814 4.799 .000

Problem-
solving

Predictors:  (Constant), GROUP (1 = Bad, 2 = Moderate, 3 = Good)

Overall Model: F = 23.034 (p < .001)(df = 55, 1), Adj R2 = .282

ORDER was not included in regression because it was not significant

Coefficient Std. Error t Sig. (1-tail)

(Constant) .570 1.759 .324 .374

GROUPGROUP 3.908 .814 4.799 .000.000

Problem-
solving

Predictors:  (Constant), GROUP (1 = Bad, 2 = Moderate, 3 = Good)

Overall Model: F = 23.034 (p < .001)(df = 55, 1), Adj R2 = .282

ORDER was not included in regression because it was not significant

with all 11 questions, eight were significant and in the hypothesized direction (p < .05, one-tailed).  Second, we examined whether
the results differed depending on the diagram used to answer the question.  Recall that there were three types of questions based
on the number of diagrams used to create their acceptable answers (refer to section 3.4).  Of the three types of questions, both
questions with answers from one diagram received support, five of the six questions with answers from two diagrams received
support, and one of the three questions with answers from all three diagrams received supported.  It, therefore, did not appear that
the results were skewed by the use of only one particular diagram. 

Table 6.  Regression Results (for Proposition 4)

Table 7 summarizes our results.  We received support for each of proposition subject to two trends: (1) the problem-solving
measure was the most powerful measure of understanding, yielding consistent support for all propositions; and (2) no significant
differences were found for perceived ease-of-understanding in any of our tests.

Table 7.  Summary of Results:

Dependent Variable 
Proposition 1:
Good > Bad

Proposition 2:
Good > Moderate

Proposition 3:
Moderate > Bad

Proposition 4:
Better decompositions

increase understanding? 

Problem-solving Yes Yes Yes Yes

Fill-in-the-blanks Yes No No Yes

Ease-of-Understanding No No No No
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5 CONCLUSION AND IMPLICATIONS

The implications of this study should be considered in light of its limitations.  First, like all laboratory experiments, generalizations
should be made cautiously.  We note that our participants were less experienced and likely less motivated than practicing analysts.
Second, the results are for only one experiment and a small sample.  Replications would be desirable.  Third, we tested each
violation of the good decomposition conditions in limited ways.  A broader test could test each violation in more depth.  Fourth,
our participants worked under tight time constraints.  Further research is needed to determine the degree to which the theory holds
as time constraints are reduced and participants have more expertise.  Finally, our diagrams combined several violations in the
one model.  A recent study of program understanding found weak effects when testing each violation on its own (Weber 2001).
While the difference in results could be due to different tasks or procedures, it may also be due to stronger effects occurring when
there is an interaction of violations.  Our experimental design did not allow us to test these effects (we acknowledge an anonymous
reviewer for this insight). 

Despite these limitations, we believe our results bear implications for practitioners and researchers.  We consider the main benefit
of the good decomposition model for practitioners to be its parsimony and wide applicability.  As UML includes a massive
collection of techniques (Kobryn 1999; Wieringa 1998), a parsimonious metric can help practitioners focus on how each technique
adds or detracts from an overall system decomposition.  We believe our initial results are strong enough for practitioners to
consider testing the good decomposition model as an OOA quality metric.  The conditions could also be used as a training device
to help analysts develop good UML diagrams. 

For researchers, our study offers four avenues of research.  First, our results for the perceived ease-of-understanding instrument
showed no difference in results across the groups, consistent with Gemino (1998) and Burton-Jones and Weber (1999).  This raises
two possibilities:  (1) the instrument may lack reliability or tap into the wrong construct to test understanding, or (2) the
relationship between actual and perceived understanding is more complex than initially assumed.  Studying these implications
and, potentially, designing an improved instrument, would be very useful for future research.  Second, on two dependent variables,
we found the decomposition conditions supported understanding but also increased variance; the benefit of good decompositions
was not the same for all participants (refer to Figure 5).  Future research could test whether this was an artifact of our design or
whether individual differences might be interacting with decomposition quality to produce the observed effects.  Third, it is known
that the use of conceptual models in practice differs greatly from academic prescriptions.  Redesigning the study for a practitioner
environment would be most valuable.  Fourth, we note Bansiya and Davis� (2002) recent objection that many quality metrics for
object-oriented software analyses can be applied only after a product is complete, or nearly complete.  They called for metrics
to support the early stages of development to ensure that the analysis and design had favorable internal properties.  Our results
provide some evidence that the good decomposition conditions could form such a metric for OOA.  Future research will hopefully
test this hypothesis further. 
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