
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 1998 Proceedings Americas Conference on Information Systems
(AMCIS)

December 1998

Using Divide-and-Conquer to Solve the Multiple
Discrete Resource Allocation Problem
Benjamin Shao
State University of New York at Buffalo

Raghav Rao
State University of New York at Buffalo

Follow this and additional works at: http://aisel.aisnet.org/amcis1998

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 1998 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Shao, Benjamin and Rao, Raghav, "Using Divide-and-Conquer to Solve the Multiple Discrete Resource Allocation Problem" (1998).
AMCIS 1998 Proceedings. 75.
http://aisel.aisnet.org/amcis1998/75

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301353582?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis1998%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis1998?utm_source=aisel.aisnet.org%2Famcis1998%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis1998%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis1998%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis1998?utm_source=aisel.aisnet.org%2Famcis1998%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis1998/75?utm_source=aisel.aisnet.org%2Famcis1998%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

-213-

Using Divide-and-Conquer to Solve the Multiple Discrete
Resource Allocation Problem

Benjamin B. M. Shao
H. Raghav Rao

Department of Management Science and Systems
State University of New York at Buffalo

Abstract

The multiple discrete resource allocation problem (MDRAP) explores how the decision maker allocates a
number of resources of different types among agents in order to achieve the aggregate maximum utility. The
MDRAP belongs in the NP-hard category of time complexity, which requires excessive efforts to obtain the
optimal solution even for a moderate problem size. Partial enumeration techniques such as dynamic
programming and branch-and-bound are available to tackle this complexity issue to some degree. In this
paper, a new partial enumeration method based on divide-and-conquer is proposed. The pronounced
distinction of this divide-and-conquer approach lies in its potential ability to parallelize the solving process,
and hence can obtain the optimal solution more quickly. A simulation study on a dedicated computer is
conducted and presented.

Introduction
The resource allocation problem (RAP) is defined as one in which the decision maker tries to allocate a limited amount of

resources among agents in order to optimize a given objective function. The RAP is a classic decision problem which appears
across different disciplines including economics, computer science, artificial intelligence, management science, operations
research, and others. In the context of AI, agents can be viewed as any intelligent systems (Russell and Wefald, 1991). The
resources to be allocated can be divisible (continuous), like petroleum, gas, and water. Or they can be indivisible (discrete), such
as trucks, workers, and machines. If there is more than one type of resource being considered, the RAP is referred to as a multiple
RAP.

A multiple discrete RAP (MDRAP) in its general form is much more difficult than its continuous counterpart, and is
classified as an NP-hard problem (Ibaraki 1981). An MDRAP can be formulated as an integer programming model:

P1: Maximize j
n

j'1

fj (x1j,x2j, ...,xmj)

s.t. j
n

j'1

xij ' Ni, i ' 1,2, ...,m,

 xij : nonnegative integer, j ' 1, 2, ..., n,

Ni : positive integer,

where Ni is the amount available for resource i and xij is the integer amount (decision variable) of resource i allocated to agent
j. The objective function is the sum of individual agent’s utility function fj and represents the aggregate utility function to be
maximized. It is noted that P1 is the general MDRAP and hence agent’s utility function fj does not have any restrictions like
quasi-concavity, monotonicity and others.

Because an MDRAP of P1 is NP-hard, exponential time is currently needed to find an optimal solution in relation to its
problem size. It means even for an MDRAP with a moderate size, excessive efforts are expected in order to find the optimal
solution, especially if it is solved using the exhaustive enumeration which simply checks all possible combinations of decision
variables and then identifies the particular combination as the optimal solution.

Partial enumeration techniques such as dynamic programming (Ibaraki and Katoh 1988) and branch-and-bound (Mjelde
1978 and Ibaraki 1988) are usually adopted to reduce the number of operations needed in exhaustive enumeration. In this paper,
based on the idea of divide-and-conquer, a new partial enumeration approach is presented to solve the MDRAP. The new method
has the same time complexity as those of dynamic programming and branch-and-bound, but it shows one novel advantage over

-214-

them in its potential parallelism. In other words, it is possible to apply this divide-and-conquer method on a parallel computer
with a number of processors and hence to solve the MDRAP more quickly.

The New Approach
Divide-and-conquer is a strategy to split a large-scale difficult problem into a number of easier subproblems. The

subproblems are solved first and then these subsolutions are combined in some way into an optimal solution of the whole
(Horowitz and Sahni 1978).

The underlying idea of this new approach is to divide the original MDRAP into a number of subproblems where only two
agents are involved. When there are only two agents to be considered for resource allocation, the solution is much easier to obtain
because the amounts of resources one agent attains are the complements of those allocated to the other agent. By doing so, we
do not have to worry about the possible combinations of resource bundles among all the agents, which is the primary cause for
the intractability of the MDRAP.

The new divide-and-conquer approach to MDRAP is presented as follows. Subroutine ReqMem requests a segment of
memory space with the specified size. Point variable fr stores the beginning address of the memory segment requested by
ReqMem. It should be noted that fj(j = 1, ..., n) is the original utility function for agent j and fr (r = n+1, ..., 2n-1) represents the
extra requested memory space. Vector Z = (N1, ..., Nm) and vector 0 is the m-tuple of zeros.

Algorithm Divide-and-Conquer for MDRAP
Input: utility function fj for agents j (j=1, ..., n).
Output: maximum aggregate utility and optimal allocation of Z = (N1, ..., Nm).
Set r = n, base = 0;
For I = 1 to log(n) - 1 do {

For J = 1 to (n / 2(I-1)) - 1 with increment 2 do {
Set r = r + 1;

fr= ReqMem (k
m

i'1

(Ni % 1));

for x = 0 to Z do
fr(x) = max{ fbase+J(xa)+ fbase+J+1(xb):

xa+xb = x };
} /* end of J */
Set base = base + n / 2(I-1);

} /* end of I */
Set r = r + 1;

fr= ReqMem (k
m

i'1

(Ni % 1));

for x = 0 to Z do fr(x) = max{ fbase+J(xa)+ fbase+J+1(xb):
xa+xb = x };

The optimal value is max{fr(x): x = 0 to Z} and the optimal solution x* = (x*
1, ..., x

*
n) can be traced back from fr to each fj (j =

1, ..., n).
Shao and Rao (1996) have shown the time complexity for this algorithm Divide-and-Conquer for MDRAP is

 and the extra requested space requirement is . Both are the same as those inO(nk
m

i'1

(Ni % 1)(Ni % 2)) (n&1) k
m

i'1

(Ni % 1)

dynamic programming and branch-and-bound (Mjelde 1978, Ibaraki 1988, and Ibaraki and Katoh 1988). Next some performance
features of this new divide-and-conquer approach are discussed.

Performance Features
Though still exponential in running time, its time complexity is as good as those obtained from dynamic programming and

branch-and-bound. On the other hand, it is interesting since it is, to our knowledge, the first approach based on
divide-and-conquer for solving the NP-hard MDRAP.

The number of agents, n, is assumed to be the power of two in the algorithm. This assumption can be relaxed to
accommodate any number of agents and cause no trouble for practical applications due to two observations (Shao and Rao 1996).
First, the algorithm intrinsically can handle the case with the number of agents equal to any power of two. Second, an optimal

-215-

 n N1 add. # D-C DP

 4 3200 10252803 14.39 11.81
 8 1600 7696007 10.88 8.18
 16 800 4497615 6.42 4.67
 32 400 2418431 3.41 2.53
 64 200 1258863 1.86 1.32
128 100 649127 0.93 0.72
256 50 336855 0.50 0.33
512 25 179036 0.28 0.22

 n N1 N2 add. # D-C DP

 4 55 55 5097568 10.93 8.95
 8 40 40 4449607 9.67 7.14
 16 28 28 2649991 5.88 4.12
 32 20 20 1601271 3.62 2.53
 64 14 14 893025 2.04 1.43
128 9 9 381250 0.87 0.66
256 6 6 199185 0.50 0.38

Table 1. Experiment Results for One Type of Resources

Table 2. Experiment Results for Two Types of Resources

solution obtained currently can be viewed as a utility function and treated as the input for the subsequent application of the
algorithm.

It is observed that this new approach gives us the potential to utilize parallel processing to solve the MDRAP more quickly.
In recent years, the technique of parallel processing has been used as a powerful tool to accelerate solving the complex and
difficult problems, in particular NP-hard problems per se. By its divide-and-conquer nature, this algorithm provides potential
parallelism which can solve the MDRAP in parallel. The reason is the For loop with index J can be executed in parallel on
different processors, since the fr’s which the J loop works on each time are independent and disjoint. In addition, the workloads
(the number of operations) distributed over the processors will be balanced, so the issues of synchronization and idle waiting
frequently encountered in parallel processing (e.g., Abali et al. 1993) are not present in this algorithm.

This parallelism feature provides the divide-and-conquer approach with promising merits for solving the MDRAP. Dynamic
programming and branch-and-bound are basically sequential approaches, which hence can only be implemented on one-processor
computers. Without considering the communications among the processors, the parallel version of this divide-

and-conquer algorithm will solve the MDRAP in time time, which is particularly helpfulO(log(n)k
m

j'1

(Ni % 1)(Ni % 2))

when there are a large number of agents involved in the MDRAP.

Experiment and Discussion
To further investigate the performance of the new divide-and-conquer method, a simulation study is carried out on a personal

computer with a 90mHz Pentium CPU. The programs for both divide-and-conquer and dynamic programming are coded in Turbo
C++. The experiments are conducted for one type and two types of resources, respectively. The results are presented in Tables
1 and 2.

The number of resources (N1 and N2) is
determined based on the maximum array size
allowed in the compiler. The numbers of
additions needed for both divide-and-conquer and
dynamic programming are the same, as expected
and explained earlier. The running times are
shown in seconds for both divide-and-conquer
(D-C) and dynamic programming (DP).

As shown, when executed on a dedicated
one-processor computer, the divide-and-conquer
algorithm needs the same number of additions as
dynamic programming, but takes a little more
time than dynamic programming. The reason is
because the new algorithm executes arithmetic
operations of logarithm (i.e., logn) and
exponential (i.e., 2(I-1)) to determine the upper
limits for the I and J loops, respectively, while the
dynamic programming sequentially determines
the stages corresponding to the agent numberings
without involving computations.

A parallel implementation of the
divide-and-conquer approach is currently under
construction on a 32-node nCUBE/2 hypercube
computer so as to show its merits of parallelism
over dynamic programming.

Conclusion
In this paper, a new approach based on

divide-and conquer is proposed to solve the
NP-hard MDRAP. Compared with the existing

partial enumeration techniques such as dynamic programming and branch-and-bound, this method requires the same number
of addition operations to find the optimal solution. However, the novel feature for this new approach lies in its potential
parallelism which can be executed in parallel on different processors of a parallel computer. A follow-up simulation experiment
is under way and will manifest this advantage when there are a large number of agents.

-216-

Acknowledgements
This research has been funded by NSF under grant #IRC 950579.

References
Abali, B., F. Ozguner, and A. Bataineh, "Balanced Parallel Sort on Hypercube Multiprocessors," IEEE Trans Parallel and

Distributed Systems, 4, 1993, pp. 572-581.
Horowitz, E. and S. Sahni, Fundamentals of Computer Algorithms, Computer Science Press, Inc., MD, 1978.
Ibaraki, T., Enumerative Approaches to Combinatorial Optimization, Basel: J. C. Baltzer, 1988.
Ibaraki, T. and N. Katoh, Resource Allocation Problems, The MIT Press, Cambridge, MA, 1988.
Mjelde, K. M., "Discrete Resource Allocation by a Branch and Bound Method," J. Oper. Res. Society, 29, 1978, pp. 1021-1023.
Russell, S. and E. Wefald, Do the Right Thing: Studies in Limited Rationality. The MIT Press, MA (1991).
Shao, B. and H. R. Rao, "A Decision Model for Multiple Discrete Resource Allocation," Working Paper, Department of

Management Science and Systems, SUNY at Buffalo, 1996.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 1998

	Using Divide-and-Conquer to Solve the Multiple Discrete Resource Allocation Problem
	Benjamin Shao
	Raghav Rao
	Recommended Citation

	Using Divide-and-Conquer to Solve the Multiple Discrete Resource Allocation Problem

