
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 1999 Proceedings Americas Conference on Information Systems
(AMCIS)

December 1999

An Agent-Based Approach For Collaborative
Schema Design
Benjamin Khoo
University of Maryland

Sriram Chandramouli
Hughes Network Systems, Maryland

Follow this and additional works at: http://aisel.aisnet.org/amcis1999

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 1999 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Khoo, Benjamin and Chandramouli, Sriram, "An Agent-Based Approach For Collaborative Schema Design" (1999). AMCIS 1999
Proceedings. 19.
http://aisel.aisnet.org/amcis1999/19

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301353409?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis1999%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis1999?utm_source=aisel.aisnet.org%2Famcis1999%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis1999%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis1999%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis1999?utm_source=aisel.aisnet.org%2Famcis1999%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis1999/19?utm_source=aisel.aisnet.org%2Famcis1999%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

55

An Agent-Based Approach For Collaborative Schema Design
Benjamin Kok Swee Khoo (khoo@gl.umbc.edu)

Department of Information Systems
University of Maryland, Baltimore County

Sriram Chandramouli (schandramouli@hns.com)
Hughes Network Systems
Germantown, Maryland.

Introduction

Data modeling is a crucial step towards
incorporating successful databases in an organization. The
design, operational behavior, and use of a database are
affected by the meaning of the information it manages.
The cognitive capability of the human mind is rather
complex; it has the capability to visualize a problem
domain in a variety of perspectives. It would be
interesting to conceive of an application, by which the
best thoughts of human minds can be pooled together to
create a conceptual schema design for a database. Thus,
the database design would be enhanced if capabilities
were provided for collaboration between different
designers working on different platforms at different
locations and even at different times but working on the
same database design. This paper describes an agent-
based approach, using an agent-based architecture
communicating through the Internet, which promotes the
collaborative conceptual schema design. The agent
communication was to be developed using KQML
(Knowledge Query Manipulation Language) in Java. The
prototype of the system developed captures only the static
properties of a system. The dynamic aspects of the
operations are resolved by considering certain additional
aspects that are not exactly database objects, but are
associated with a database occurrence which changes as a
result of an operation. These are implementation issues
that must be taken care by a database designer during the
implementation.

System Overview

The intent of the collaborative schema design
project is to enable different database designers working
on different platforms at different locations, and even at
different times to work on the same database design. This
feature is achieved through an agent communication
paradigm that allows agents to broadcast their available
services to prospective consumers. The clients are
provided with a GUI stub that enables them to type in text
commands for creating entities and the relationships
between them. The longer term plan is to provide the
clients with a front-end Java enhanced graphical tool (to
replace the GUI stub) that consists of a workspace and a

palette that can be used for creating various entities, and
the relationships between them.

Every client expresses his interest to messages
broadcasted by registering with the same group identity as
the other design team members or clients. Messages can
be shared between clients, only, when the clients share the
same group identity. When a client opens a socket
connection and registers with the MultiServer, the
MultiServer creates a client identity and an agent that
speaks Knowledge Query Manipulation Language
(KQML) is spawned off for each client (for multi-clients,
multi-threads of agents will be spawned). This agent will
act as a unique representative for that particular client.
The communication henceforth will take place between
the different agents that act as different client
representatives. Each agent spools its client request
(typically SQL statements) to the Agent Server. The
Agent Server invokes the SQL statements on the
Postgres95 database, thereby storing the entities,
relationships and attributes created or changed. On
completion of the request, the Agent Server will return the
words "Success" or "Failure" to the originating agent. The
originating agent then forwards the packet to the other
agents, which will in turn send it to their respective
clients. In this way, any changes to the database design by
any client is "broadcast" to all other clients working on
the same database design. There will be some basic rules
to control modification of the database design.

These database integrity checks are enforced by
the agent server (for example, clients cannot create
entities that already exist, and relationships cannot be
defined between the same set of entities, if a relationship
already exists between them, etc). Since the collaborative
schema design allows entities and relationships to be
shared across multiple clients, only the client that creates
an entity or a relationship has the rights to modify or
delete them. In this way, the notion of ownership has been
enforced on the object created by the clients. The software
also ensures that entities are not deleted before deleting
the relationships between them. It also prevents entities to
be deleted before deleting the attributes that may be
contained within the entity.

56

An agent server has an up-to-date information
regarding the unified schema different users attempt to
model. It is imperative that the agent server enforces the
consistency checks between the different objects (Entities
or Relationships) a client creates. When the agent
representatives share information with the agent server,
the agent server caches connection parameters from the
agent representatives. Thus, an agent server also acts as
an agent name server, as it transparently locates the agent
representative to which a packet must be routed. In this
way, the propagation of the packets is opaque to the
clients participating in the unified schema design.

An interesting scenario arises when a client goes
temporarily out-of-service or de-registers himself from
the agent server. The client will no longer receive any
packet broadcasted by the agent server. But, when the
client process starts up again, an agent that acts as a
unique representative to the client is spawned off, where it
queries the agent server frequently to extract the up-to-
date information. The details of such a mechanism are
discussed in a greater detail in the subsequent sections.

System Implementation

One of the important issues we faced while
implementing this project is how does the client obtain
the information that is propagated by other clients. We
considered two possible alternatives for designing this
feature. The first alternative is to make the agent server
proactive and broadcast a packet to the prospective clients
when it receives it. The second alternative is to make the
client proactive, by frequently querying the agent server
for new packets. The latter alternative is chosen due to the
argument that follows: an agent server is already a busy
process, as it involves sequencing or synchronizing the
packets generated by different clients. The agent server
also performs database integrity checks and stores the
information contained within a packet in a persistent
store. Hence, if the application logic that involves the
propagation of packets to prospective clients were given
to the agent server, it would be even busier! This would
seriously affect the response time to the clients, as the

agent server will be threaded to perform a variety of
activities. On the other hand, the client process does no
more than accepting the user input, converting them into
packets and sending them to the agent servers. As it
stands, the client process is light in nature. Thus, the
application logic involved in proactively querying for
more information contained within an agent server can be
incorporated on the client side.

This functionality is achieved in the following
way: every client issues a select request to the agent
server for querying new packets generated by other
clients. Such requests can be issued in a separate thread
within the client process. The requests are issued once in
every time period, t. This involves running an event loop
within a separate thread, that queries for new packets.
Since every client process runs a separate thread that
issues a select request, multiple threads from multiple
clients have to be synchronized to prevent inconsistency
in the resources they try to access. The thread-locking
feature in JAVA that allows event synchronization
created by different threads is utilized for this purpose.
This is illustrated in the following event trace diagram.

57

Looking at the low-level design of the project, there are
various packets generated by the clients. These packets
are transmitted to the agent server through an agent
spawned off by every client process (through the
MultiServer), that acts as a unique representative of the
client. We identified nine different packets that capture
the entire functionality needed for the conceptual schema
design.

Work Completed and Future Scope

The entire communication aspect of the project
that promotes group schema design has been
implemented. The software tools that were used are the
JAVA Development Kit 1.1, JACKAL, a JAVA API for
creating agents that speak KQML, and a JAVA API for
interfacing with the Postgres95 database. Currently, GUI
stubs act as substitutes to a fully functional GUI interface,
which is to be developed in the future. The GUI front end
is going to be a graphical module that provides clients
with a workspace for modeling the conceptual schema
design for the database. Once the properties of the objects
(Entities/Relationships) have been defined for the object,
the packets, as described before, can be generated and
streamed across to the agent server through the different
agent representatives. The GUI module also runs a
separate thread that

issues select requests frequently to query for packets
generated by other clients. Once the GUI front end
receives a packet, it can translate a packet to a graphical
object and displays them on the client screen.

References

References available upon request from the first author.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 1999

	An Agent-Based Approach For Collaborative Schema Design
	Benjamin Khoo
	Sriram Chandramouli
	Recommended Citation

