
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 1999 Proceedings Americas Conference on Information Systems
(AMCIS)

December 1999

Hard Failures - Soft Solutions
Paul Spedding
University of Salford

Trevor Wood-Harper
University of South Australia

Follow this and additional works at: http://aisel.aisnet.org/amcis1999

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 1999 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Spedding, Paul and Wood-Harper, Trevor, "Hard Failures - Soft Solutions" (1999). AMCIS 1999 Proceedings. 6.
http://aisel.aisnet.org/amcis1999/6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301353317?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis1999%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis1999?utm_source=aisel.aisnet.org%2Famcis1999%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis1999%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis1999%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis1999?utm_source=aisel.aisnet.org%2Famcis1999%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis1999/6?utm_source=aisel.aisnet.org%2Famcis1999%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

16

Hard Failures - Soft Solutions

Paul Spedding 1 Trevor Wood-Harper 1, 2

1: Information Systems Research Centre, University of Salford
2: School of Accounting and Information Systems, University of South Australia

Abstract

The traditional view is that hard problems - those
susceptible to the software engineering approach - are in
some sense easier to solve than soft problems / problem
situations. Hard problems are (in theory) more easily
scoped and their solutions more precisely defined and
more easily achieved than is the case for soft or messy
problems This paper suggests that this is not necessarily
the case: reasons for failure in hard and soft environments
have much in common. A case study will be used to
support the argument

Hard Failure

There is no doubt that the software engineering (SE)
approach has achieved a great deal since the term was
first used in the late 1960s. The original waterfall model
involves a number of clearly defined and separable steps,
and as one step is completed the development moves
forwards - steps cannot in theory be revisited. Boehm
(1988), writing from within the SE paradigm, proposed an
improvement, the spiral model, in which earlier steps can
be revisited and revised.

No adherent of software engineering would claim
however that the approach has prevented the occurrence
of failed systems. Indeed the literature has many
descriptions of widespread failures, for instance the US
Department of Defense survey in 1979 showed (Neumann
1995) that only 2% of software expenditure was on
software in satisfactory use, whereas over 75% was on
systems that were either delivered and never used or
never even delivered.

In such cases, the reaction of both researchers and
practitioners has often been to claim either that its
methods had not been implemented correctly, or that the
approach itself required further improvement.

In the former case, any failure in a system which has
been software engineered is viewed as a failure in one or
more of its steps. One common reason put forward for the
failure of a system is that the customers or users changed
their minds about requirements part-way through the
development.

In the latter case, many in the SE community believe
that updated methods are the key to improved systems.
Many improvements have been suggested to the software
engineering approach, but none has yet proved to be the
illusive "silver bullet" sought but not found by Brooks

(1987). Brooks and also Yourdon (1993) agree that in
the foreseeable future, no method or tool is likely to
appear which will guarantee software quality.

Soft Failure

Adopting a softer approach implies that, for instance,
an information system can sometimes be viewed as a
failure, even when every aspect of the supporting
software system works as its designer intended.

Since information system failure is a complex
concept, it is useful to explore IS failure itself before
attempting to find the relationship between hard and soft
failure.

The ubiquitous failure of information systems is an
area of considerable interest to researchers. There is
however limited uniformity in the views of researchers
over the definition and nature of information systems
failure, and also how it can be avoided. For instance,
Lyytinen (1988) claims that information systems failure
can be viewed as the gap between stakeholder expectation
and what is actually delivered: a rich definition owing to
the diversity of potential stakeholder perspectives.
Lyytinen also suggests that many (arguably) failing
information systems are viewed as successful from a
harder, software engineering perspective simply because
there are no identifiable software design or coding errors.

Robinson (1994) draws on the infamous failure in
1992 of the computerised London Ambulance Service
system. He suggests that IS failure is all-too-often viewed
as pathological, in the sense that the failure could have
been avoided by the use of better methods, or by more
rational behaviour and greater co-operation between those
involved. Robinson instead proposes a social definition of
failure, where the differing goals and expectation of
stakeholder groups will inevitably lead to differing views
on the success or failure of a particular IS outcome.

Orlikowski (1999) draws on the work of Argyris and
also Schon and in proposing that the reason why some
computer-based information systems fail is in the
unbridged gulf between "espoused technology" and
"technology-in-use". She suggests that the successful
installation of a new system cannot ensure its successful
use, and that the ethos of the organisation, for instance the
levels of staff co-operation and their view towards

17

knowledge sharing play the major part in realising the
success of the new system.

Most researchers are agreed that information systems
failure is subject to many different stakeholder
perspectives and is particularly context-rich.

Case Study - the Aerospace Company
Research Project

The authors were involved between 1994 and 1997 in
a research project exploring software quality assurance
(SQA) in a large aerospace company. Many of the details
of this project cannot be put into the public domain, but a
number of lessons can be learned from the experience
gained in the project.

The company was developing a completely new
compressed life-cycle model (CLCM) involving new
methods and CASE tools for developing airborne real-
time software control systems. For instance, the CLCM
was to make extensive use of an integrated modelling
environment, with widespread usage of sophisticated
software tools. The new methods would involve
computer-generated Ada code (autocode) being used on
safety critical software systems - an innovation for the
company, even the industry.

By means of the CLCM, the aerospace company was
intending to reduce avionics systems development time
by around 40% and cost by 30%, without any reduction in
quality. The company saw the development as crucial to
the future of the aerospace company and a blueprint for
new aircraft projects well into the twenty-first century.

It was seen to be equally crucial for the success of the
CLCM that customers (internal and exterior to the
company) were themselves "assured" of the quality and
safety of the delivered software systems - a particularly
sensitive area for real-time aircraft control systems.

Throughout the period, the CLCM was in its research
and development phase, and had not been approved for
use on real aircraft projects, despite being some years
overdue.

Senior staff in the CLCM project were drawn from
systems development teams on real aircraft projects and
were in most cases highly skilled and professional
adherents of the SE approach.

The CLCM project also employed a large number of
more junior staff, who, because of the size of the task,
often shouldered fairly major areas of responsibility in,
for instance, adapting a bought-in autocode generator for
CLCM use.

The original research emphasis had been to attempt to
apply the methods of traditional hard operational research
to SQA within the CLCM project. In what was always

accepted by both sides as a challenging (possibly even
unrealisable) project, the inputs to the SQA process were
to be identified, then measured, as were the quality
outputs / benefits associated with the SQA process. The
difficulties associated with this emphasis became
increasingly clear. It was problematic to measure the
inputs (largely staff effort) to the SQA process, and it was
even more difficult to measure output in terms of
improved quality. In these circumstance, the emphasis
increasingly shifted towards modelling the SQA process
in the CLCM project - very different from traditional
SQA - and a synergy was established here between the
work of the authors and that of a team of internal
company staff who were modelling processes as part of a
company-wide BPR exercise. The methodologies
included semi-structured interviews and the participation
in process modelling workshops.

In fact, the implementation of CLCM was subject to
constant time slips: when the authors' involvement ceased
in 1997, the project was around two years behind
schedule, and with no realistic hopes of complete
implementation within the foreseeable future.

Case Study Research Outcome / Discussion

Although the terms "hard" and "soft" are not precisely
defined, their use is sufficiently common to make them
clear labels in this discussion.

The outcome of the process modelling was a deepened
understanding of the ways in which software quality
assurance methods had grown up in tandem with the
system development methods they supported, and any
change to the latter would necessitate an up-date to the
former. For instance, the US Department of Defense
demands that airborne software complies with military
standard MIL-STD-498, which calls (amongst other
things) for code walkthroughs in software modules. This
is a well-respected method for software testing, but
completely inappropriate for autocode elements, since a
walkthrough clearly depends on the contribution of a
human programming team.

A further outcome was an understanding of the issues
which had caused the company considerable difficulty as
it strove to develop and implement its CLCM.

However, progress on the CLCM had been slow since
the project had begun in 1993, and towards the end of the
authors' involvement in 1997, the project slowed down to
the point where no real progress was being made. This
remains the situation in 1999 even though the CLCM
project is still formally continuing.

Clearly the CLCM would have to be judged as a
failure or partial failure.

On the spectrum from soft (exclusively human) to
hard (exclusively technical), there is no doubt that any

18

airborne, safety critical control system is inevitably going
to be at the hard end. The CLCM, with its reliance on
integrated modelling environment, high-powered CASE
tools and (potentially) the auto-generation of safety-
critical code is certainly a very hard software-engineered
system.

Most previous work in this area has concerned itself
with (to a greater or lesser extent) soft developments.
However in this case, we have a very hard environment,
yet, and this is the central point of this paper, the situation
here ties in well with the literature relating to softer
environments. In exploring the difficulties identified in
the CLCM during the process modelling, it became clear
to the authors that the problems were almost exclusively
human / organisational. They cannot be explained as
either ill-elicited or changing user requirements, nor as
poor software engineering methods.

The major sphere of difficulty perceived by the
authors was that the aerospace company operates almost
exclusively in an environment in which a project (ie the
development of a new aircraft) is a very large one-off
affair, with many areas of complexity. It consists of many
thousands of processes and increasingly it may be a large,
inter-organisational, multinational operation, executed
within a highly political context. The complexity of such
developments is recognised in, for instance Checkland
(1981). However, the paradigm adopted by the aerospace
company remained almost exclusively that of traditional
(software) engineering.

A further concern was morale amongst two groups of
staff. This was generally poor, and this undoubtedly
affected the potential benefits of the technology.

 - staff working on the CLCM project itself were often
young and inexperienced; job volatility was high and
the project was constantly under threat of restructuring
or even cancellation.

 - the software QA staff tended to be viewed as "police
officers" rather than "consultants": despite the fact that
many had considerable quality-related expertise, they
were not seen as major contributors to enhancing
quality. Instead, the quality assurance process was
widely seen as a matter of fulfilling a number of

somewhat arbitrary requirements, so that a member of
SQA staff would be under pressure to provide a
signature to allow the development process to move
on to the next stage. There was no doubt that SQA
staff were also held in relatively low esteem and were
generally not well rewarded.

In fact many staff in the company felt that they had
been suffering from an "innovation overload" for a
number of years. Following ISO9000 accreditation, and
European quality initiatives, the company had also
embraced the capability maturity model (CMM) and was
a participant in the ongoing SPICE process improvement
initiative.

Referring to the literature, Lyytinen or Robinson
would identify similar problems in this ultra-hard
environment in the distance between the proposed
technical solution and the experience of those trying to
develop and implement it.

It is perhaps particularly helpful to apply Orlikowski’s
approach: in this case the espoused technology would be
the sophisticated CASE tools which were developed in
house or bought in, forming a vital input to software
developments in the CLCM. A huge technical effort went
into attempts to validate and qualify these tools.
However, as technology-in-use, the system has failed, or
is failing, for precisely the “soft” reasons described above.

Conclusion

Even in attempting to solve a hard problem, a
traditional software engineering / engineering paradigm
carries no guarantee of success. There is concern that the
almost exclusive adoption of such a paradigm fails to
embrace the organisational and political complexity of a
major project such as the development of a new aircraft.
It is only by the use of softer approaches that an
understanding of "hard" failures is forthcoming.

References

Available on request from the first named author.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 1999

	Hard Failures - Soft Solutions
	Paul Spedding
	Trevor Wood-Harper
	Recommended Citation

