
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 1999 Proceedings Americas Conference on Information Systems
(AMCIS)

December 1999

Learning Spreadsheet Software in the Traditional &
Synchronous Modes: A Model and A Pilot Study
to Investigate End User's Performance &
Satisfaction
Shailendra Palvia
Long Island University

Follow this and additional works at: http://aisel.aisnet.org/amcis1999

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 1999 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Palvia, Shailendra, "Learning Spreadsheet Software in the Traditional & Synchronous Modes: A Model and A Pilot Study to
Investigate End User's Performance & Satisfaction" (1999). AMCIS 1999 Proceedings. 132.
http://aisel.aisnet.org/amcis1999/132

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301353311?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis1999%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis1999?utm_source=aisel.aisnet.org%2Famcis1999%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis1999%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis1999%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis1999?utm_source=aisel.aisnet.org%2Famcis1999%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis1999/132?utm_source=aisel.aisnet.org%2Famcis1999%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E


378

Learning Spreadsheet Software in the Traditional & Synchronous Modes:
A Model and A Pilot Study to Explore End User's Performance & Satisfaction

Shailendra C. Palvia, Long Island University,  516-299-2302, spalvia@liu.edu

Introduction
A survey of U.S. senior information systems

(IS) executives found that, "organizational learning and
use of IS technologies," ranked fifth out of a list of 20
critical IS management issues (Niederman, et al., 1991, p.
480). In the global context, this issue ranked sixth out of a
list of 20 critical IS issues facing IS executives in India
during 1988 (Palvia and Palvia, 1992); training and
education of DP Personnel ranked fifth most important
issue in Singapore around 1987 (Rao et al, 1987);
retaining, recruiting, and training was the number one
issue for Hong Kong around 1989 (Burn et al, 1993); and
recruiting, training, and promoting IS staff ranked
eighteenth most important issue among 20 critical issues
around 1994 in Taiwan (Palvia and Wang, 1995).

Knowledge of and skills in the use of word
processing (e.g., Word, WordPerfect), spreadsheet (e.g.,
Excel, Lotus), and database software (e.g., Access,
Paradox) represent the basic computer literacy
requirements for white-collar knowledge workers.  A
survey of knowledge and skills requirements of IS
specialists and end-user personnel (Nelson, 1991) found
that (a) both IS specialists and end-users are most deficient
in the area of "general IS knowledge," (b) people need
more "organizational knowledge," and (c) end-users need
more knowledge in the use of software packages. Both
academic institutions and corporate training centers are
spending billions of dollars worldwide to provide the
necessary training in the use of these software packages.
According to Industry Report on 1997 Training Budgets
(Johnston and Lou, 1997), U.S. organizations with 100 or
more employees budgeted a total of $58.6 billion for
formal training - a 5% increase over the previous year (not
adjusting for inflation). The number of software training
companies and individual consultants has been increasing
exponentially to cater to the unmet demand for training.
According to the 1997 Industry Report  cited above, 38%
of training functions are being designed and developed by
outside contractors and 32% of these are delivered by
some outside contractors. Given this scenario, academic
institutions are increasingly expected to educate their
students in these skills before they graduate. Research that
can systematically and scientifically determine cost
effective approaches to imparting computer software
education to the diverse segments of students graduating
each year has the potential of a phenomenal payoff.

Hermanutz (1991) conducted experiments to
evaluate and compare the effectiveness of  computer-based
and traditional teacher-centered methods to teaching word-
processing software.  Czaza et al.  (1986) evaluated the
effectiveness of three training strategies -- instructor,
manual, and computer -- in teaching naive computer users
to use word-processing software.  In another study,
Bowman et al. (1995) compared a control group, taught by
traditional lectures, with an experimental group using
Computer Based Training (CBT). Marks (1992) found that
training videos represent an alternative to traditional
classroom training or interactive methods for training
employees.  She reported studies that indicate that people
remember concepts if they are linked to images, which can
be provided by video training.

It is easy to notice that nobody, to the best of
author's knowledge, has evaluated alternative approaches
to instructor driven computer software teaching in a
classroom setting.  This research is initiating investigation
into this unexplored area.

A Model for Evaluating Computer Software
Education Approaches

The premise of this model (Exhibit-1) is that a
learning mode (or training method)1 in either individual
setting or group setting will be effective in different ways
for different kinds of end-users (based on their learning
styles) and for different types of tasks of learning.
Furthermore, the quality of education provided with these
modes can be measured in terms of user satisfaction,
efficiency of the learning mode (training method), and
performance.

End-User Learning Style
End-users differ in their learning styles.

Importance of learning style in end-user training is the
focus of an article in MIS Quarterly (Bostrom et al 1990).
This study makes recommendations for software training
methods based on four end-user learning styles:
Converger, Assimilator, Diverger, and Accomodator.
These four learning styles represent four quadrants
generated by two learning modes as postulated by Kolb's
theory (1971).  "Level of Involvement" mode can be active

                                                          
1 This artcle, will use the term "learning mode" and
"training method" interchangeably. Please note that the
former term is from the perspective of a student whereas
the latter term is from the perspective of an instructor.



379

experimentation at one extreme to reflective observation at
the other extreme.   "Type of conceptualization" mode can
be abstract conceptualization at one extreme to concrete
experiences at the other extreme. There are other studies
that support our model parameter of End-User Learning
Style.

Task Characteristics
Task characteristics can have a significant impact

on the dependent variables in the model.  In the context of
learning software, the characteristics are different for word
processing, spreadsheet, presentation, and database
management software.  Furthermore, for a specific
software like Excel, characteristics differ based on the
lesson being elementary or advanced (e.g., covering
concepts like absolute and relative addressing.)

Based on extensive literature survey -- task size,
scope, and complexity can have a significant impact on
learning software.  Kolb (1981) argues that because of the
experiential nature of learning, different learning situations
are necessarily different experiences.  A subject may,
therefore, prefer one style in one situation (task) and a
different style in another.  This points to the possibility of
interaction effects of these two variables.

End-user Satisfaction Measures
The instruments used to measure user satisfaction

as articulated in Bailey and Pearson (1983) and Ives et al
(1983) measured impact through semantic differential
scales (Melone, 1990).  Galletta and Lederer (1989) have
reported some problems with these instruments.  Doll and
Torkzadeh (1988) proposed an end-user computing
satisfaction instrument.  This instrument emphasizes the
cognitive or belief aspects of attitudes in a short, easy-to-
use, application specific instrument using Likert-type
scales.  The twelve questions in this instrument cover five
dimensions -- content, accuracy, format, ease of use, and
timeliness.  While these instruments measure end-user
satisfaction with the use of information systems
applications, our focus in this research is in measuring
end-user satisfaction with the process of providing
software training.

Efficiency Measures
Efficiency measures the speed of learning a

particular concept or feature pertaining to software.
Sometimes, the terms -- productivity and efficiency are
used interchangeably.  Productivity can be measured in
terms of the time taken to complete a given task.
Conversely, it can also be measured in terms of the amount
of task completed in a given amount of time.

Performance Measures
Instructors in schools, colleges, and universities

have been struggling to determine the approaches to test
computer software knowledge. For example, the Computer
Science and Telecommunications Board (CSTB) of the

National Research Council (NRC) is currently working on
a task to explicate the various dimensions of what may be
called Information Technology literacy i.e., what everyone
needs to know about IT.

Instructors have typically used true or false,
multiple choice, and short descriptive type questions to test
the knowledge and skills about software.  Students have
complained that they can perform better if they are tested
directly on how to use computer software.  Several
instructors have instituted software use "performance" tests
to gauge students' software use skills.  These tests may
include: a) creating a professional document using a word
processing software like MS-Word or WordPerfect, or b)
building a worksheet using spreadsheet software like Lotus
or Excel, or c) creating a database and formulating queries
using a database software like Paradox or Access.
Perhaps, such tests of proficiency in the use of a software
can be called tests of computing (how to use the
computer?) literacy skills.  Then, what do we call the
traditional paper and pencil/pen tests?  Should those tests
be completely done away with in light of the more popular
expeditious computing literacy tests?.

A computing literacy test measures just
computing skills – ability to tinker with different keyboard
buttons, click the two mouse buttons on different icons and
menu options, and the ability to persevere and persist by
experimenting and exploring to solve problems and
achieve the goals using myriad HELP routines and options.
But whether one has grasped the fundamentals of software
along with its important nuances is a totally different
matter.  That grasp of fundamentals is in the domain of
knowledge as opposed to skills. That knowledge can be
effectively tested with the traditional paper and pencil
mode.  This testing is what we can call a knowledge test or
computer literacy test.  This test can be further broken
down into two components: memory recall and
comprehension.  Memory recall questions generally
include -- true/false, fill-in-the-blanks, match answers with
statements, and multiple choice type questions.  Such tests
lack the rigor of testing deep knowledge – knowledge that
helps in critical thinking.

As students become mature in their junior and
senior years, instructors have resorted to testing this deep
knowledge by asking students to:
• answer complex multiple choice questions
• answer short essay type questions;
• analyze a situation (case study), provide diagnostic

and prognostic analysis, and suggest solution(s);
• solve mathematical or logical problems by applying

learned techniques and algorithms in unique ways.
There is considerable literature support for this

dichotomy (computing or computer literacy) or really a
taxonomy of three levels (computing, memory recall, and
critical thinking) of learning and testing knowledge
accordingly.

Bloom's well known hierarchical taxonomy
(Bloom, 1956/1984) of six cognitive learning objectives



380

has a bearing on the classification scheme for software
learning.  Bloom's taxonomy was developed to be used in
the context of existing educational units and programs, to
be logical and internally consistent, to be consistent with
current understanding of psychological phenomena, and to
be neutral and free from value judgements. These six
objectives arranged in the sequence of lower-to--higher
types of learning are (Bloom, 1956/1984):
a. Knowledge: learners have knowledge of and ability to

recall or recognize information.
b. Comprehension: learners understand and can explain

the knowledge in their own words.
c. Application : learners are able to use knowledge in

real situations.
d. Analysis: learners are able to break down complex

concepts or information into simpler, related parts.
e. Synthesis: learners are able to combine elements to

form a new, original entity.
f. Evaluation: learners are able to make judgements.

Boom's taxonomy has been a widely accepted
logical explanation of learning levels.  How do we go from
"no knowledge" about a domain to "eureka" feeling about
that domain?  While learning a new concept, most of us go
through several stages of learning:: the first stage involves
some kind of cramming or rote memorization, while the
last stage (that may happen in weeks, months, or years)
may suddenly create an awareness of the understanding of
the fundamentals of that topic (so called "eureka" feeling)
freeing the person of the need to memorize.  Bloom's
taxonomy essentially provides us with a six-layers or
levels of learning between these two extremes of "no
knowledge" and "eureka knowledge."

Testing the Model for Computer Software
Education in Group Settings

This research focuses on learning in group settings.
There are two dimensions on which one can classify
teaching computer software in group settings.  Dimension
One is students having or not having computers at the time
of instruction for immediate practice.  Dimension Two is
instructor having or not having computer (for immediate
demonstration) at the time of instruction.  The
classification below (Exhibit-3) can be described as
follows:

• Traditional:  Instructor teaching in a traditional mode
lecturing and using chalkboard (or easel board) as
necessary and students listening and taking notes so
that they can practice immediately after teaching.

• Delayed: Instructor teaching with computers and
students listening and taking notes so that they can
practice immediately after teaching.

• Asynchronous: Instructor teaching in a traditional
mode lecturing and using chalkboard (or easel board)
as necessary and students practicing concurrently
using computers.

• Synchronous: Instructor teaching with computers and
students practicing concurrently using computers.

Research Hypotheses
This paper explores if the "synchronous" learning

mode is superior in terms of efficiency, performance, and
satisfaction compared to the "traditional" learning mode.
The synchronous learning mode allows both the instructor
and students to have computers in front of them for online
demonstration and concurrent practice respectively.  In
contrast, in the "traditional" learning mode, neither the
teacher nor the students have access to computers during
the delivery of the lesson.

The synchronous mode will be used as an anchor
for hypotheses generation. According to the conventional
wisdom among IT educators and professionals, online
demonstration and presentation of a computer software
with students practicing what is being taught concurrently
is the best way to impart computer software education.
Given this context, the hypotheses to be tested are:

1. Improvement in Memory Recall score using the
synchronous mode is significantly greater than that using
the traditional mode.
      Two additional implicit hypotheses are:

a. The traditional mode of instruction and learning
improves Memory Recall score significantly.

b. The synchronous mode of instruction and learning
improves Memory Recall score significantly.

2. Improvement in Computer Software Critical Thinking
(Comprehension) using the synchronous mode is
significantly greater than that using the traditional Mode.

Two additional implicit hypotheses are:
a. The traditional mode of instruction and learning

improves Software Critical Thinking score
significantly.

b. The synchronous mode of instruction and learning
improves Software Critical Thinking score
significantly.

3. Improvement in Software Computing Literacy using the
synchronous mode is significantly greater than that using
the traditional Mode(alternative hypothesis).

Two additional implicit hypotheses are:
a. The traditional mode of instruction and learning

improves Computing Literacy score significantly.
b. The synchronous mode of instruction and learning

improves Computing Literacy score significantly.

4. Use of synchronous mode of software education is
significantly more satisfying to the students than the use of
traditional mode.

Research Methodology, data analysis and
conclusions will be provided by the author to those
requesting.


	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 1999

	Learning Spreadsheet Software in the Traditional & Synchronous Modes: A Model and A Pilot Study to Investigate End User's Performance & Satisfaction
	Shailendra Palvia
	Recommended Citation



