
Association for Information Systems
AIS Electronic Library (AISeL)

ACIS 2002 Proceedings Australasian (ACIS)

December 2002

A Peer-to-Peer Associative Memory Network for
Intelligent Information Systems
Asad Khan
Monash University

Vinod Ramachandran
Monash University

Follow this and additional works at: http://aisel.aisnet.org/acis2002

This material is brought to you by the Australasian (ACIS) at AIS Electronic Library (AISeL). It has been accepted for inclusion in ACIS 2002
Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

Recommended Citation
Khan, Asad and Ramachandran, Vinod, "A Peer-to-Peer Associative Memory Network for Intelligent Information Systems" (2002).
ACIS 2002 Proceedings. 6.
http://aisel.aisnet.org/acis2002/6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301352896?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Facis2002%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/acis2002?utm_source=aisel.aisnet.org%2Facis2002%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/acis?utm_source=aisel.aisnet.org%2Facis2002%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/acis2002?utm_source=aisel.aisnet.org%2Facis2002%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/acis2002/6?utm_source=aisel.aisnet.org%2Facis2002%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

 1

A Peer-to-Peer Associative Memory Network for Intelligent Information
Systems

Asad I. Khan

School of Network Computing
Monash University

Melbourne, Australia
Asad.Khan@infotech.monash.edu.au

Abstract

The paper describes a highly-scalable associative memory network capable of handling
multiple streams of input, which are processed and matched with the historical data
(available within the network). The essence of the associative memory algorithm lies with in
its highly parallel structure, which changes the emphasis from the high speed CPU based
processing to network processing; capable of utilising a large number of low performance
processors in a fully connected configuration. The approach is expected to facilitate the
development of information systems capable of correlating multi-dimensional data inputs into
human thought like constructs and thus exhibiting a level of self-awareness.

Keywords

Associative Memory, Content-addressable Memory, Parallel Processing Systems, Intelligent
Agents, Spiking Neurons, Neural Networks, Artificial Intelligence, Nano-sensors, Quantum
Computing

INTRODUCTION
A truly scalable associative memory would be an essential component in the design of
software agents with human-like intelligence. The implementation of an associative memory
system should be such that it may store information from a variety of sources. In the case of
intelligent biological systems the inputs are in the form of somatic stimuli e.g. the sense of
sight, hearing, smell, touch, and taste. These stimuli may be further classified into spatial
and temporal based inputs. When designing an artificially intelligent system we have an
opportunity to add to the inputs provided by nature and thus create systems with a higher
level of awareness.

The earliest implementation of an associative memory system may be traced back to the
Hopfield network. The network was conceptualised in terms of its energy and the physics of
dynamic systems. Primary applications for this sort of network have included associative, or
content-addressable, memories and a range of optimisation problems.

Improvements to the Hopfield model were investigated through the parallelisation of the
code; albeit for the computationally intensive optimisation problems e.g. Di Blas et al. (2000).
More recent work done on the spatiotemporal encoded, or spiking, neurons by Hopfield and
Brody (1998) has drawn upon the properties of loosely-coupled oscillators. Izhikevich (1999)
states though some new capabilities at differentiating between similar inputs have been
revealed however there is no clear evidence to suggest their superiority over the classical
Hopfield model in terms of an overall increase in the associative memory capacity. The
Back-Propagation network provides a scalable associative memory however it is limited by
the excessive computational cost required for adding new patterns. Also, the energy and
error minimisation functions often get trapped inside the local minima for these networks. It
is possible to devise an associative memory system that works with exact matches or
utilises a nearest neighbour approach. However the computation cost would generally tend
to increase non-linearly with the increase in the number of stored patterns for such
implementations. Hence, most of the effort made into the emulation of some of the very
basic biological memory functions has yet to produce comparable performances within the
silicon-based systems. Either the pattern storage capacity does not scale-up too well or the
computational cost becomes prohibitive.

Khan

2

Stapp (1995), while discussing the quantum-mechanical aspects of the consciousness,
presented a highly-parallel model for processing information. The mechanics of vision
discussed by Huth (2002) and the work done on the modelling of consciousness by Baars
(1997) and Franklin (2001) also depict a highly parallel architecture for processing
information.

Hence the objective of this research is to introduce the type of parallelism, which is present
within the biological systems, for implementing a generic associative memory system.

VARIOUS ASSOCIATED MEMORY MODELLING TECHNIQUES

The Statistical Modelling Approach

The Ordination methods such as Principal Component Analysis (PCA) and Correspondence
Analysis (CA), within the Multivariate Techniques, provide a mechanism for implementing an
associative memory (AM) system. These methods rely on the correlation available within the
data patterns to assist with the classification and the subsequent retrieval of these patterns.
PCA requires an explicit and a priori knowledge about the correlated variables where as CA
makes use of non-intuitive techniques such as the Eigen value analysis to determine the
correlations. The issue with PCA is in its dependence on human judgement; to assist with
the classification process. In the case of CA, the Eigen value computations become very
costly for larger data sets.

The Neural Network Approach

The classical neural networks such as Hopfield and Back-propagation depend upon an
energy or an error minimisation function. Generally the accuracy of recall tends to fall with
the increase in the number of patterns. Also, these networks are sensitive to the number of
input and output variables. More recent work with the temporal-spatial encoded (spiking)
neurons has shown a remarkable increase in the pattern recognition capabilities of these
networks. The significant improvement is in the ability of an individual neuron to respond to
complex stimuli. This allows for a much finer grained evaluation, of the input pattern, as
compared with the classical networks. Van Rullen et al. (1998; 1999) and Thorpe (2000)
have shown how these neurons may be used to implement a face recognition algorithm that
follows the same principles as the human vision. However there still remains a question
mark regarding their ability to scale-up to large storage capacities and to deal with generic
data inputs.

Some of the Other Approaches

Wagner and Stucki (2001 in press) have presented a novel approach; using the periodic
unstable orbits of a chaotic attractor for storing content-addressable information. Watta et al.
(1999) proposed the use of a Hamming network to increase the memory storage capacity.

THE GRAPH NEURON APPROACH
In this paper an AM network, named as the Graph Neuron (GN), is being presented. This
approach models the parallelism available within the naturally occurring AM systems and
thus bypasses the deficiencies present in some of the other contemporary approaches. It
may also be noted that the GN algorithm is an inclusive technology; it may be extended to
include spatiotemporal encoded neurons and the evolutionary optimisation techniques such
as the genetic algorithms.

The Graph Neuron (Gn) Rationale

The saying that network is the computer has a distinct meaning when it comes down to
modelling an AM system using the GN approach.

There are ample instances in nature where network architectures are employed within the
evolved systems. Mattick (2001) asserts that the abundance of the un-coded RNA, within
the genetic material, provides the network communication support for the coded DNA.
Hence it is reasonable to assume that the man-made (silicon-based) networks should be
able to provide a similar level of awareness as the natural networks do. In order to

 A Peer-to-Peer Associative Memory Network for Intelligent Information Systems

 3

understand why even the largest man-made network provides no such functionality would
however require a comparison between the two types of networks. The cerebral cortex
within an average human brain comprises 10 billion neurons according to Shepherd. Koch
puts that to 20 billion neurons (Chudler, 2002). Some of the statistics for the human brain
versus the largest man-made network, i.e. the Internet, have been compared in Table 1.

 Neural Data Internet Statistics

Cerebral cortex neurons/ nodes 10-20 billion
neurons

544 million online nodes

Number of synapses/ connections for a typical
node

1,000-10,000 1

EEG frequency range/ typical connection speed 0.5 – 30 Hz 3,500 Hz/ 56 Kbps

Conduction velocity of action potential/ signal
speed

0.6-120 m/s A fraction of the speed of light

Processing capability of a neuron/ CPU Simple and very
low speed
biological
switching

A typical value of 500 MHz may be
assumed for the contemporary Internet
nodes

Table 1: A comparison of the human brain data with some of the equivalent Internet
statistics

The following inferences may be made from the Table. The neural data comprises a very
large number of very low performance processors. These processors are inter-connected
with a very large number of direct (point-to-point) links. Each of these links supports a very
low network bandwidth.

The Internet has fewer processing nodes but each of these nodes has a far superior
processing capability, the network links are much faster but these connect a far fewer
number of nodes directly, and the connections are of much higher bandwidth.

It is evident, from the comparison, that the man-made information processing network is
heavy on the processing side and light on the network connectivity. Hence the network
supports a substantially lower quantum of parallelism, owing to a fewer number of
processing nodes, as compared to the human brain. The comparison again highlights the
highly parallel and connected aspect of the naturally occurring networks. The above is
based upon a cursory examination of the physical topology of the Internet; Hibbard (2001)
discusses the impact of the network diameter on the self-awareness in a greater detail by
taking into consideration the virtual topology of the web.

THE IMPLEMENTATION OF A GN ARRAY
The AM is implemented as a virtual network of processing nodes, where each node
executes the same GN algorithm and thus provides a structure to support parallelism. The
algorithm is best suited for immensely parallel systems such as the futuristic quantum
computers. However the array has been implemented on a classical computer and hence
some underlying assumptions have to be made in order to differentiate between the true
capabilities of the array and the limitation imposed by the contemporary computer
architectures and networks:

1. The current implementation sets each GN node as a Java object where each of
these objects executes the same code, but gets instantiated with a different data
set and port numbers. The objects simulate a SIMD processor array. It is thus
assumed that a very large number of low-performance processors are available
within the implementation.

2. The GN objects communicate with the outside world, and amongst themselves,
using the standard network sockets and ports. Hence a GN object may contact
any other GN object, located within the local computer’s memory or anywhere on
the network, directly by utilising the appropriate network and port addresses. It is
therefore assumed that each of the objects within the array is capable of directly
accessing any other object within the array.

Khan

4

3. The current implementation does not support parallel inputs yet. The outputs
from the array are visually presented to the user and hence provide a basic form
of parallelism. It is however assumed that the array functions with parallel inputs
and outputs; where by each of the GN may be simultaneously accessed for input
and output to/ from the array.

The overall topology of the array, which takes into consideration the above assumptions, is
shown in Figure 1.

Figure 1: A GN array with parallel store (memorisation) and recall

The input to the array is done sequentially within the actual implementation; the array
architecture however is perfectly suited for massively parallel input and output operations.

The proposed architecture draws upon the quantum-mechanical model proposed by Stapp
(1995), and later expanded upon in a private communication. Stapp starts with an example
of a classical-mechanical system and describes it as follows:

“3.2 We introduced a grid of points in the brain. Let these points be represented
by a set of vectors:

x~i~,

where i ranges over the integers from 1 to N. At each point x~i~ there was a set
of fields:

F~j~(x~i~),

where j ranges from 1 to M, and M is relatively small, say ten. For each of the
allowed values of the pair (i,j) the quantity F~j~ (x~i~) will have (at each fixed
time) some value taken from the set of integers that range from -L to +L, where
L is a very large number. There is also a grid of temporal values t~n~, with n
ranging from 1 to T.

3.3 The description of the classical system at any time t~n~ is given, therefore,
by specifying for each pair of value (i,j) with i in the set {1,2,...,N} and j in the set
{1,2,..., M} some value of F~j~ (x~i~) in the set {-L, ..., +L}. We would
consequently need, in order to specify this classical system at one time t~n~, N
x M “registers”, each of which is able to hold an integer in the range {-L, ..., +L}.”

The GN data representation follows a very similar model to the one proposed by Stapp
(ibid). The implementation of the GN algorithm further demonstrates that a generic thought/
concept may be discretely stored within the network by simply manipulating the adjacency
information held within each node of the array.

THE GN DATA REPRESENTATION
The information presented to a GN is in the form of a value, position pair; representing a
data point in a two dimensional space (for multi-dimensional patterns the number of values
per position would increase in order to represent the additional information – the underlying
principle would however remain the same).

The GN array converts the spatial/ temporal patterns into a graph representation and then
compares the elements of the graphs for memorisation and recall operations. The
advantage of having a graph-like representation is that it provides a mechanism for placing

store
recall

 A Peer-to-Peer Associative Memory Network for Intelligent Information Systems

 5

the spatial/ temporal information in a context. Hence not only can we compare the individual
data points but we may also compare the order in which these occur. The drawback to this
approach is in the excessive number of comparisons required for matching a stored pattern
with an incoming sequence – the search domain increases with the increase in the stored
patterns. However this impediment only exists because of the nature of the contemporary
computer architecture; which converts purely parallel operations into a sequential form and
then emulates these operations in a pseudo-parallel mode using elaborate scheduling
algorithms. The proposed algorithm on the other hand utilises the parallelism present within
a processor array. The inter-processor message-passing is implementing using the
communicating sequential process (CSP) model put forth by Hoare (1985).

Hence the data representation for a GN may be summarised as follows:

An input pattern vector P{} is represented as a set of p(value, position) pairs. These inputs
are mapped on to a virtual array of processors by using the adjacency characteristic of the
input. For example, alphabets and numbers would have their inherent adjacency
characteristics. Similarly images would have the frequency bands, intensity, and spatial
coordinates as the adjacency characteristics per pixel etc.

For an input domain R, the GN array represents all possible combinations of P{} in R. Hence
each GN node is initialised with a distinct pair p from the input domain R..

Each GN keeps a record of the number of times it encounters a matching input pair; within
its bias vector. Each element of the bias{} comprises a list of the adjacent GNs relating to a
matched input pair. The bias{} counter is incremented for each new pair matched by the GN.
A new pair is defined as the one which has a different set of adjacent GNs to the existing
elements of the bias{}.

In order for this method to work successfully we need to have a priori knowledge regarding
the size of the input data domain. Or alternatively we may chose our own limits and define
the reality within those bounds. For instance, by defining an input domain which comprises
all the characters in a natural language and the number of characters in the longest word
occurring in that language would be sufficient to represent any word from the language.
Alternatively we could set our own limits for discretising a continuous input domain for this
purpose.

THE PARALLELISM WITHIN THE REPRESENTATION
A Graph Neuron (GN) array may be created where each GN is initialised to a value, position
pair p for every possible position and value within the input domain. The incoming data pairs
simply get mapped to their appropriate locations within the array. For instance a four lettered
word with a choice of two alphabets, say X and O for each position, would require eight GNs
for representing every conceivable combination. It’s easy to show that the total number of
possible combinations in this case would be 2*2*2*2 = 2^4 = 16.

This effectively means that we are assigning a separate search domain for each set of the
possible values of the alphabets and thus halving the search domain in this case. E.g. if we
get a letter X in the first position of the word then letter O can never occur at this position for
this particular word and vice versa. The halved (adjacency) search domains are processed
concurrently, thus the total time for the search is that for one half of the domain in this case.

The number of elements in the bias{} increase with the number of patterns being presented
to the array. However the number of bias{} elements does not increase in proportion to the
number of stored patterns since pairs with the same set of adjacent GNs are treated as
recalls (and thus do not get stored). The store operation requires an increment in the bias{}
index counter.

The process of searching through the bias entries within each GNs takes place concurrently.
This map and search process is broadly illustrated in Figure 2.

The Figure outlines the process of storing patterns P1, P2, P3, and P4 on an array
comprising 8 GNs (labelled as N1, N2, ... N8). Each pattern comprises 4 pairs where the
values may alternate between X and O for each of the four positions.

Khan

6

Assuming P1 is mapped first in this instance. Each GN would records the responses from
the other GNs to form its port sequence list of the adjacent GNs and would allocate an entry
within the bias{} for these pairs (the GNs are adjacent if their position differs by 1 in this
example). Hence, N1 will store the port number, 6, in its bias{} for N6 after encountering
p(X,1). N6 will store the port numbers 1 and 3, for N1 and N3, in its bias{} after encountering
p(O, 2). The process gets repeated for the encounters with the remaining pairs in the pattern
i.e. p(X, 3), and p(X, 4) . The entire process is repeated each time for storing P2, P3, and
P4. The bias{} entries for each of the GN are shown in Figure 2. The GN algorithm may thus
be summarised as follows.

Note: The colouring scheme for interconnects is separate from the scheme used for the patterns

Figure 2: An eight node GN array is in the process of storing patterns P1 (RED), P2 (BLUE),
P3 (BLACK), and P4 (GREEN)

THE GRAPH NEURON ALGORITHM
All GNs have exactly the same logic and code. These are implemented as copies of a self
contained message-passing application. Each instance of the application is initialised to a
distinct p(val, pos) and port values. Hence the GN array keeps all possible values and all
possible positions, for a particular data domain R, mapped as unique p(val, pos) pairs on
each GN.

The patterns are presented as sets of p(val, pos) pairs to the array. Adjacencies are
calculated independently by each GN within the array as part of the store/ recall operations.

A GN on receipt of a p(val, pos) pair checks with all other GNs for adjacent values and notes
the port sequence for that particular pair. The GN then compares the previously stored port
sequences within the bias{} and returns a high bias if a match is found, otherwise the
sequence is added as a new element to the bias{} (partial matches may result in low
confidence bias matches, however this function has not been implemented yet).

Only a single value may be found at a particular position within the array. Thus knowing the
adjacent GN’s number is sufficient to determine the pair it has been programmed to respond
to.

X(1)

O(2)

X(3)

X(1)

O(2)

O(3)

P1 P2

O(4)X(4)

X(2)

X(3)

X(4)

X(1)

O(2)

O(3)

O(4)

O(1)
Port sequence:
6 (bias RED)
6 (bias BLUE)

2 (bias GREEN)

Port sequence:
6,4 (bias RED)

2,8 (bias BLACK)

N1

N2

N3

N4

N5

N6

N7

N8

Port sequence:
3 (bias RED)

Port sequence:
1,3 (bias RED)
1,7 (bias BLUE)

Port sequence:
6,8 (bias BLUE)

2,8 (bias GREEN)

Port sequence:
7 (bias BLUE)

3 (bias BLACK)
7 (bias GREEN)

P1, P2

P1,P2

P1

P1

P2

P2

values X,O positions 1,2,3,4
Possible pairs constituting the Data Domain val x pos = 2 x 4 = 8
Possible unique sequences val pos = 24 (P1 -> P16)

O(1)

X(2)

X(3)

P3

O(4)

Port sequence:
2 (bias BLACK)

Port sequence:
5,3 (bias BLACK)
1,7 (bias GREEN)

X(1)

X(2)

O(3)

O(4)

P4

 A Peer-to-Peer Associative Memory Network for Intelligent Information Systems

 7

The Input Operation

Incoming stimuli (the whole pattern/ sequence) should be sensed by every GN (akin to an
Ethernet broadcast on a shared LAN). Only the GNs with matching values should initiate
action. Doing this would however require interfacing the array to the spiking neurons or a
form of sensory mechanism. Alternatively the use of a multicasting protocol may be
considered.

Pattern Store and Recall Operations

Assuming such an input mechanism is in place, each GN listens on the port that matches its
own unique identity number to store or recall. There is no order as to how a pattern gets
distributed amongst the GNs. The commit to memory operation is done on first-come-first-
served basis. Each GN communicates with the other GNs to identify its adjacent GNs. The
commit to memory operation is only performed if there is no recall within the GN. Hence for
each input pair, a GN checks with its neighbours to decided whether to treat the incoming
pair as a store or to as a recall operation.

The Graph Neuron PDU

An input to the array is in the form of Protocol Data Units (PDUs) comprising the pattern.
Each pattern in-turn comprises a set of value and position pairs. The structure of a PDU is
shown in Figure 3, where ‘pos’ could be a timing relationship or it could be a vector in its
own right comprising contextual values associated with each ‘val’.

In the current implementation the ‘vals’ and ‘pos’ pair determines the contact port and the
direction of search; using the adjacency characteristics of a two-dimensional array. It is
important to note that the data type is only for the human consumption. As far as the array is
concerned, the data type has no bearing on its store and recall operations. The array only
deals with the internal representations, associated with the inputs, in terms of its connectivity
with other the nodes within the array. The connectivity information is kept within the bias{}
vector.

Figure 3: A text string comprising characters ‘X’ and ‘O’ being mapped to the appropriate
nodes within the array using the input PDUs made up of ‘val’ and ‘pos’ pairs

Extending the Array for Storing Concepts

The GN array in its simplest forms provides a Yes or a No answer to the question posed to
the array in the form of an input pattern. If the answer is No then the array will memorise this
pattern for a future reference; otherwise a Yes answer will be returned. However more
meaningful responses may be obtained by simply connecting the arrays in a recursive
manner. The inputs, which are at the lowest level of correlation, progressively get correlated
as the information is passed to the higher-level arrays. The GN algorithm preserves the path
history whilst it concentrates the information through a process of conceptualisation. This is
where the algorithm differs from the statistical and the traditional neural network approaches.
These approaches tend to lose the path history while reducing the dimensionality of the
input information. The GN arrays however maintain the complete path history of the
transitions. The recurrent processing of inputs is shown in Figure 4.

val1 pos1val1 pos1

val2 pos2val2 pos2

val3 pos3val3 pos3

N1000

N1002N1003

X

O

X
X,1

O,2 X,3

Khan

8

The first array is initialised by the user to respond to the input pairs. The outputs from this
array are fed into the second array. This process leads to a collapse in the dimensionality of
the input data. Hence a set of such arrays could store all the words, sentences, paragraphs,
and pages of a book as a single p (val, pos) pair within a top level GN – a thought-like
construct? As stated earlier, the nature of data is not important. The arrays may store textual
information or information collected from a myriad of sources; using a similar mechanism.

Figure 4: A set of GN arrays linked to store temporal-encoded inputs as discreet concepts

REMARKS AND CONCLUSIONS
The initial mapping of the pairs to the GNs requires that each GN must contact every other
GN, at the appropriate locations, within the array. The process requires a high degree of
connectivity between the GNs or the availability of adequate bandwidth if shared
connections are being used.

The communications among the GNs, with adjacent pairs, take place in parallel. The
communication in the previous step would also occur in parallel if a spiking neuron interface
or a multicast protocol was used to input the information.

Each new pattern sequence results in an increase in storage within some of the GNs. Thus
the search domain does not increase proportionately whilst the total memory capacity keep
increasing until it’s exhausted for the particular topology.

There are no constraints or overheads for over estimating the size of the array; in this case
not all the GNs would get utilised.

The current implementation of the GN array assimilates newer patterns and continues to
become more knowledgeable over time.

The later part where several arrays are combined together, in a hierarchical manner to store
concepts, is yet to be implemented in software by the author.

SIGNIFICANCE
The proposed AM system is expected to assist with the development of intelligent
information systems capable of handling complex concepts and being able to act
autonomously. The examples of such systems may include:

A

S
A

D

H
E

R
E

H
E

R
E

I

S

W
S A

ASAD

IS

WAS

HERE

ASAD IS HERE

ASAD WAS HERE

Input Pattern Vectors: {A,S,A,D}, {I,S}, {H,E,R,E} at time t with intervals t1, t2, t3
Input Pattern Vectors: {A,S,A,D}, {W,A,S}, {H,E,R,E} at a later time t’ with intervals t’1, t’2, t’3

1st GN Array is initialised
externally and correlates the
inputs pairs as characters

2nd GN Array gets
initialised by the
1st GN Array and
correlates the
Inputs characters
as words

3rd GN Array
gets
initialised by
the 2nd Array
and
correlates
words into
sentences

 A Peer-to-Peer Associative Memory Network for Intelligent Information Systems

 9

• Autonomous software agents that interact amongst themselves to complete the
tasks assigned by their owners.

• The visualisation of very large structures or impossible to view perspectives. For
instance simultaneously viewing a hollow object from inside and outside or
creating a near 360-degrees spherical vision.

• Conceptualisation of multi-dimensional inputs e.g. where the electromagnetic and
the sonar data sources are combined to form the higher dimensional inputs.

• Interpretation of information gathered through a multitude of nano-sensors.

The above are some of the outcomes this technology may produce in a bid to create
systems that match or even exceed the human perception. More significant but not fully
realisable at this stage is its potential in relation to the nano-technologies; a very large
number of low performance nano-sensors may be deployed in unprecedented ways to
collect and conceptualise information.

REFERENCES
Baars, B. J. (1997) In the Theatre of Consciousness – Global Workspace Theory, A rigorous

scientific theory of consciousness, Journal of Consciousness Studies, 4, No. 4, 292-
309.

Chudler, E. H. (2002) Brain Facts and Figures,
http://faculty.washington.edu/chudler/facts.html, Accessed 05-May-2002.

Di Blas, A., Jagota, A., Hughey, R. (2000) Parallel Implementations Of Optimizing Neural
Networks, Proc. of ANNIE 2000 Conf., 153-158.

Franklin, S. (2001) Conscious Software: A Computational View of Mind, Soft Computing
Agents: New Trends for Designing Autonomous Systems, ed. V. Loia, and S. Sessa.
Berlin: Springer (Physica-Verlag), 1 - 46.
http://www.msci.memphis.edu/~franklin/bbs_target_2.html, Accessed 05-May-2002.

Hibbard, B. (2001) Network Diameter and Emotional Values in the Global Brain, From
Intelligent Networks to the Global Brain Evolutionary Social Organization through
Knowledge Technology, The First Global Brain Workshop (GBrain 0), 3-5 July 2001,
Brussels, Belgium. http://www.ssec.wisc.edu/~billh/gbrain0.html, Accessed 05-May-
2002.

Hoare, C. A. R. (1985) Communicating Sequential Processes, Prentice Hall, London, UK.

Hopfield, J. J., Brody, C. D. (1998) What is a moment? Transient synchrony as a collective
mechanism for spatiotemporal integration, Proc. Natl. Acad. Sci. USA, 98, 1282-1287.
http://www.cshl.org/labs/brody/Papers/Brody/hopfield_brody2.pdf, Accessed 05-May-
2002.

Huth, G. C. (2002) A New Model For Light Interaction With The Retina Of The Human Eye
And The Vision Process, http://ghuth.com/A%20new%20Model.htm, Accessed 05-
May-2002.

Izhikevich, E. M. (1999) Weakly Pulse-Coupled Oscillators, FM Interactions, Synchronization,
and Oscillatory Associative Memory,
http://math.la.asu.edu/~eugene/publications/html/pco/pco/pco.html, Accessed 5-May-
2002.

Mattick, J. S. (2001) Molecular genetic networks and the architecture of
biological complexity, HPC Asia 2001, 25-28 September 2001, Gold Coast, Australia.
http://www.gu.edu.au/conference/hpcasia2001/content4.html#keynote, Accessed 05-
May-2002.

Stapp, H. P. (1995) Why Classical Mechanics Cannot Naturally Accommodate
Consciousness but Quantum Mechanics Can, PSYCHE, 2(5), May 1995.
http://psyche.cs.monash.edu.au/v2/psyche-2-05-stapp.html, Accessed 05-May-2002.

Khan

10

Thorpe, S. J., Delorme, A., VanRullen, R., Paquier, W. (2000) Reverse engineering of the
visual system using networks of spiking neurons. Proceedings of the IEEE 2000
International Symposium on Circuits and Systems, IEEE press. IV: 405-408.

VanRullen, R., Gautrais, J., Delorme, A., Thorpe, S. (1998) Face processing using one spike
per neurone. BioSystems, 48 (1-3) pp 229-239.
http://www.klab.caltech.edu/~rufin/OriginalPapers/VanRullen98BioSystems.pdf,
Accessed 05-May-2002.

VanRullen, R., Thorpe, S.J. (1999) Spatial attention in asynchronous neural networks.
NeuroComputing , 26-27 pp 911-918.
http://www.klab.caltech.edu/~rufin/OriginalPapers/VanRullen99NeuroComputing.pdf,
Accessed 05-May-2002.

Wagner, C., Stucki, J. W. (2001) Construction of an Associative Memory Using Unstable
Periodic Orbits of a Chaotic Attractor, J. Theor. Biol. 2001, in press.
http://www.cx.unibe.ch/~jstucki/papers/upo.pdf, Accessed 05-May-2002.

Watta, P., Ikeda, N., Artiklar, M., Subramanian, A., Hassoun, M. (1999) Comparison
Between Theory and Simulation for the Two-Level Decoupled Hamming Associative
Memory, International Joint Conference on Neural Networks (IJCNN99), CD ROM
Proceedings paper number JCNN0337, Washington D.C. July, 1999.

ACKNOWLEDGEMENTS
The author would like to acknowledge the information provided by Henry Stapp at Lawrence
Berkley National Laboratory regarding the quantum aspect of Mind.

COPYRIGHT
A. I. Khan © 2002. The author assign to ACIS and educational and non-profit institutions a
non-exclusive licence to use this document for personal use and in courses of instruction
provided that the article is used in full and this copyright statement is reproduced. The author
also grants a non-exclusive licence to ACIS to publish this document in full in the
Conference Papers and Proceedings. Those documents may be published on the World
Wide Web, CD-ROM, in printed form, and on mirror sites on the World Wide Web. Any other
usage is prohibited without the express permission of the author.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 2002

	A Peer-to-Peer Associative Memory Network for Intelligent Information Systems
	Asad Khan
	Vinod Ramachandran
	Recommended Citation

	Microsoft Word - 1-26_Khan.doc

