
Association for Information Systems
AIS Electronic Library (AISeL)

ACIS 2002 Proceedings Australasian (ACIS)

December 2002

National Culture Influences in Cross-Cultural
Software Development Teams: an analysis of social
networks
Regit Young
University of Western Australia

Nick Letch
University of Western Australia

Follow this and additional works at: http://aisel.aisnet.org/acis2002

This material is brought to you by the Australasian (ACIS) at AIS Electronic Library (AISeL). It has been accepted for inclusion in ACIS 2002
Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

Recommended Citation
Young, Regit and Letch, Nick, "National Culture Influences in Cross-Cultural Software Development Teams: an analysis of social
networks" (2002). ACIS 2002 Proceedings. 59.
http://aisel.aisnet.org/acis2002/59

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301352884?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Facis2002%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/acis2002?utm_source=aisel.aisnet.org%2Facis2002%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/acis?utm_source=aisel.aisnet.org%2Facis2002%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/acis2002?utm_source=aisel.aisnet.org%2Facis2002%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/acis2002/59?utm_source=aisel.aisnet.org%2Facis2002%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

 1

National Culture Influences in Cross-Cultural Software Development
Teams: an analysis of social networks

Regit Young

Nick Letch

Department of Information Management and Marketing
The University of Western Australia

Western Australia, Australia
ryoung@ecel.uwa.edu.au

Abstract

Team dynamics and ingroup behaviour are critical factors in software development projects.
In Western organisations, software development cultures promote rational values to be
pursued at industry, development, and team levels of analysis. While Western values
dominate the culture of software teams, increased globalisation has led to more IS being
developed by teams with a cross-cultural make-up. In this paper, propositions regarding the
interactions of software teams comprising members from Western and Chinese cultures are
developed. These propositions highlight potential conflicts that may arise within cross-
cultural development teams. A social network analysis of a small software development
team is presented in order to investigate these propositions.

Keywords

Software development, National culture, Social network analysis

INTRODUCTION
Software development is essentially a group activity involving interaction between various
stakeholders including users, analysts, programmers and senior management. As
globalisation continues and organisations develop and integrate their information systems
worldwide, the workgroups and teams that form to develop information systems will
increasingly involve members from different cultural backgrounds. During systems
development, interactions among team members can highlight the cultural commonalities
and differences that can often impact the group processes and outcomes (Punnet and
Shenkar, 1995).

Research on cross-cultural workgroups has identified several issues that can impact group
processes. For example, in group dynamics there is “an apparent universal tendency to view
one’s own group as superior and more trustworthy than another group (Brewer, 1986);
intragroup anxiety may occur resulting in interaction avoidance or excessive politeness
(Stephen, 1994). Even racism, often expressed in beliefs that the distribution of resources
are uneven between groups (McConahay, 1986); or symbolic racism that emphasises
ingroup values to justify unequal treatment of the outgroup (Kinder and Sears, 1981) have
been identified at a time where blatant prejudice and discrimination are socially
unacceptable. Foreign consultants working in local cultures with which they are unfamiliar
may find differences in IS practices to be problematic (Thanasankit and Corbitt, 1999; Kumar
and Bjørn-Andersen, 1990; Dagwell and Weber, 1983). Differences in IS practices which are
contingent on the diversity of national culture need to be managed (Shore, 1996).

Despite being recognised as an important issue, culture, like many organizational issues, is
usually given a low priority and only “lip service” is paid to its treatment (Doherty and King,
1998). In this paper, propositions regarding the interactions of software teams comprising
members from Western and Chinese cultures are developed. These propositions highlight
potential conflicts that may arise within cross-cultural development teams that may need to
be addressed to facilitate project success. These propositions are investigated through the
interpretation of the social networks of a small software development team.

Young and Letch

2

SOFTWARE DEVELOPMENT TEAMS
Software development projects frequently face a variety of problems including cost overruns,
buggy releases, maintenance underestimations and delays in proposed release dates (e.g.
DeMarco, 1995; Brooks, 1987). While software developers have since the 1960s been
inundated with technological innovations that are intended to boost their productivity (e.g.
CASE tools, framework designers, code generators, etc.), there is little evidence to suggest
that there is a silver bullet that will deliver productivity boosts or improve the quality of the
software (Guinan et al., 1997; DeMarco, 1995; Kane, 1992; Brooks, 1987). In addition, the
effects of management techniques such as Total Quality Management to address software
productivity have ranged from modest improvements to complete abandonment of projects
(Anthes, 1997; Williamson, 1997; Paulk et al., 1993). Rather than the use of advanced tools
and practices, it has long been recognised that the critical factors in software development
productivity relate to the attributes and interactions of development team members (Carmel
and Sawyer, 1998; Krishnan, 1998; Brooks, 1993; Boehm, 1981).

Team size is often cited as a factor in the productivity of software development teams with
small teams not necessarily being more effective, but large teams being more likely to have
lower productivity (Brooks, 1993). This is due to complexity and communication cost of a
project rising with the square of the number of developers, while actual work performed rises
linearly (Brooks, 1993). However, the success of Linux indicates that large teams can also
be effective (Raymond, 1999) and rather than team size, it is the attitude of the developers
that is critical. This has prompted research aimed at identifying the drivers of “good attitudes”
among software developers (Carmel and Sawyer, 1998) and the effect of differences among
developers in a software project (Krishnan, 1998; Kemerer and Patrick, 1993). In particular,
Krishnan (1998) identified, personal abilities and experiences of individual team members,
facilities in support of effective communication, team composition, team member
commitment, and the ability to build a shared vision as critical factors in successful
development teams.

Some studies of software development teams have considered how the organisational
culture of software development teams influences productivity. Carmel and Sawyer (1998)
examine packaged software development teams in terms of different levels of analysis
contributing to the cultural milieu. In their analysis, the packaged software industry is marked
by immense time-to-market pressures and success is measured by profit and market share.
The development environment is characterised by the unique positions that the developers
hold. Developers in packaged software project typically tend work in a highly unstructured
setting, working on small parts of the project relying on frequent coordination to “piece things
together”. Packaged software developers work in a bizarre style (Raymond, 1999) and
would readily reject the custom software industrial-engineering-oriented notion of software
development as being bureaucratic, boring, and stifling of critical innovation (Carmel and
Sawyer, 1998). The development teams of packaged software are more cohesive, motivated
and jelled in comparison. To some extent, this is due to the large rewards commonly
associated with package software projects. The work culture of packaged software
developers is entrepreneurial and highly individualistic. They are deeply influenced by the
hacker culture that values the intangible of their own ego satisfaction and reputation among
other hackers (Raymond, 1999).

While analyses such as these assist in characterising the organisational culture in which
packaged software developers work, they do not address how the national cultural
background of individual team members can impact the dynamics of the development team.

NATIONAL CULTURE AND SOFTWARE DEVELOPMENT TEAMS
Culture can be broadly conceptualised as a complex web of norms, values, assumptions,
attitudes and beliefs that are characteristic of a particular group and these are reinforced and
perpetuated through socialisation, training, rewards, and sanctions (Lytle et al., 1993).
Hofstede (1991) describes culture as patterns of thinking, feeling, and acting. At the national
culture level of analysis, Hofstede’s individualism/ collectivism dimension for differentiating
cultures is of particular significance for cross-cultural software development teams. This
dimension can be used to understand the behaviour of social groups in software

 National Culture Influences in Cross-Cultural Software Development Teams

 3

development, as well as reflecting the differences in symbolic codes (or values) across
cultures.

Individualism versus collectivism refers to the tendency of people to look after themselves
and their immediate family or “ingroups” and neglect the needs of the society (Hofstede,
1991; Robertson and Hoffman, 2000). The concept of ingroup is highly relevant to the
activities of software development teams. An ingroup is simply a social group. In a
collectivist culture, there is normally one stable ingroup (e.g. family, band, tribe, etc) while in
an individualistic culture, there are many more ingroups (e.g. family, clubs, motorcycles
gangs, etc.). The concept of an ingroup means very different things in different cultures. The
biggest difference between the ingroups of two cultures is the quality of relationships
between the members within an ingroup (Triandis et al., 1988). Differences in the quality of
relationships are a good indication of the degree of acceptance by group members of
symbols like loyalty and trust. While a software development team forms a group of co-
workers, the loyalties of individual team members may lie with their ingroup that is outside of
the development team, with subsequent impact on their behaviour within the team. The
influences on ingroup behaviour of collectivist and individualist cultures (Triandis et al.,
1985) are summarised in Table 1.

Collectivism Individualism

Ingroup regulation of behaviour Individual regulation of behaviour

Interdependence Self-sufficiency

Subordination of personal goals to goals of
ingroup

Ingroup and personal goals are unrelated

Ingroup harmony is important Confrontation within ingroup may be good

Shame control Guilt control

Sense of common fate with ingroup Person fate

Ingroup is centre of psychological field Person is centre of psychological field

Ingroup is extension of the self Self is distinct from ingroup

Table 1. Collectivist vs. Individualist cultures: Ingroup behaviours (Triandis et al., 1985)

WESTERN AND CHINESE CROSS-CULTURAL SOFTWARE
DEVELOPMENT TEAMS
To further investigate how a mix of individualist and collectivist cultures can influence
behaviour within cross-cultural software development teams, this section briefly examines
the values or “symbolic codes” (Luhmann, 1982) that pervade, on the one hand Chinese
culture (collectivist), and secondly “Western” culture (individualist). From these analyses,
three propositions with respect to Chinese/ Western software development teams are put
forward. These propositions are then examined through an interpretation of events in a small
cross-cultural software development team.

Symbols of Chinese Culture

In Chinese culture, philosophy has become profoundly inseparable with life, theory and
practice. The most important basic principles of Chinese philosophy, as identified by Moore
(1967), are summarised below.

Firstly is the notion of achieving “sageliness within and kingliness without”. That is, striving
for superiority through interests for all. Secondly, in Chinese culture the predominance of
ethical consciousness (both inner and outer) is the highest goal for man. When one
achieves the fullest possible development of ethical characteristics and innate goodness,
one is deemed to attain spirituality. Similarly, the classical Confucian notion that “the
investigation of things begin with sincerity of will, leading to personal moral integrity, the well-
established family, the well-ordered state, and peace in the world”, sees ethical
consciousness as the lens through which Chinese view the path to the ideal world. Finally,

Young and Letch

4

the doctrine of filial piety possibly represents the very essence of Chinese ethical and social
life. The respect of immediate elders illustrates the power perception that is rooted in the
family structures.

The pervasiveness of principles such as filial piety and the notion of ethical precedence over
of self, family, nation and world suggest that Chinese culture is collectivist since Chinese
would readily consider the immediate family’s welfare as part of their own ethical
development. Therefore, values of trust and loyalty can be seen as strong influences on the
behaviour of Chinese software developers.

Symbols of Western Culture

“Western” culture has undergone many transformations from the ancient Mediterranean
cultures, through medieval Europe and the Renaissance and on to modern history. It is
therefore difficult to epitomise. However, the root of Western philosophy can be traced to
“Theocentricism” – meaning that God is at the centre of all viewpoints (Bourke and Kelkel,
1992). Laws, values, definitions of all sorts are established according to what God views as
important. Coupled with the classical Christian view that humans are incapable of reaching
perfection, there exists an inherent need to guide people in differentiating between (divine)
good and evil. That is, there is an inherent need for rules governing peoples’ actions.

From the early formation of monarchy and despotism through to the later developments of
corporatism and bureaucracy, together with the agriculture (over environment), industrial
(over machinery) and management (over people) revolutions, power and status have
become inseparable with Western idealism.

Power endows the ruling classes with the ability to formulate roles that humans fulfil to
ensure the survival of society. Through the establishment of multiple interrelated abstract
systems (e.g. legal, financial, etc.), whereby humans are “specialised” into activities in
exchange for recognisable returns (e.g. money), Western culture is somewhat more
functionalistic when compared to others. However, through the proliferation of sub-systems,
humans within Western culture are also presented with more choices of systems for
interaction and the investment of deep, personal emotion is often not required. Western
culture therefore has more freedom and flexibility for people in their dealing of daily lives
(Triandis et al., 1988; Luhmann, 1982).

PROPOSITIONS FOR CHINESE/ WESTERN DEVELOPMENT TEAMS
Given that Chinese and Western cultures promote different symbols and value systems, this
section puts forth three propositions regarding behaviour in Chinese/ Western software
development teams.

Proposition 1: The absence of deep, personal relationships amongst Western development
teams will prevent Chinese developers from sharing their knowledge openly
The wider societal legal framework can affect developers individually. Copyrights, software
rights and intellectual property rights for instance promote and protect an individualist and
ego-laden style of programming. However, the same may not have an impact on Chinese
programmer. Their inherent collectivist background suggests that Chinese software
developers might be more willing to share code and algorithms. According to Gerald
Weinberg (1971) in “The Psychology of Computer Programming”, a Chinese programmer
may practice what is termed “egoless programming”, in that they are not territorial about
their code and would encourage sharing and collaboration. However, while they may be
more willing to share, they will be highly selective of the people they share with. Of the many
reasons for this selectivity, the most important one is to improve the relationships with these
people. Hence, Chinese developers often try to invest a personal stake with the people they
work with. This may be problematic because while Chinese developers tend to be generous
with team members who relate closely with them, the lack of relationship-cultivation
mechanisms within Western organisations (since Western developers often do not invest in
personal relationships) may prevent them from wider sharing. Such behaviour is also noted
by Triandis et al., (1988) who states that while cooperation is high in ingroups of a collectivist
culture, it is unlikely when with other people.

 National Culture Influences in Cross-Cultural Software Development Teams

 5

Proposition 2: Communication within a cross-cultural software development team is
handicapped since the symbolic codes used in communication are different
While they may not invest personal emotion, Western developers are also said to be
cohesive, motivated and jelled (Carmel and Sawyer, 1998). The two driving factors are
financial incentives and commitment. Financial incentives are highly generalised symbolic
codes that are inherited from the wider societal system and used to integrate subsystems.
The financial rewards for high quality software developers are enormous and are used to
promote and maintain hard work and dedication of developers and “glue” (or integrate) team
members together in a particular project.

Another form of incentive pervasive amongst software developers is status. Being “the best”,
“the first”, “the one”, etc., is deeply influenced by the hacker sub-culture. Both financial
incentives and status can be considered as universal symbols since their values are
acknowledged on a wider societal context. However, these symbols may only be able to
motivate Western developers, in that Chinese may not always value them. Because of the
Chinese strong ethical consciousness, Chinese developers may be quite ready to abandon
money, power and status for symbols like trust, loyalty and morality. Trust, loyalty and
morality are particular symbols in that their values are subjective. This can be problematic
for a cross-culture software development team as it may prevent effective communication.
According to Luhmann (1982), symbols are transmitted via communication to guide the
selection of complexity reduction mechanisms. The different views on valid symbolic codes
may potentially distort communication. For example, one developer may not wish to
communicate with another if the topic is of little significance to him.

Since coordination and communication are important in distributed-style development
projects, the failure to communicate will create difficulties in reducing the complexities of
projects and hence be detrimental to their success.

Proposition 3: To Chinese developers, having a closely tied ingroup is more important than
having a high performance team
Another important factor for a successful development team is the team composition. Teams
with talented members having strong application domain and computer language experience
are said to increase the success rate of a project. However, following the first previous
propositions, Chinese developers’ high propensity for particular resources is likely to
undervalue those members with valuable universalistic resources. With their strong
inclination toward ingrouping, team composition should perhaps focus on personal
relationships rather than skill sets.

A SOCIAL NETWORK ANALYSIS OF A CROSS-CULTURAL SOFTWARE
DEVELOPMENT TEAM
This section investigates these propositions for Chinese/ Western cross-cultural
development teams by interpreting the behaviour of a Chinese developer working in a
predominantly Western software development environment. The data for this study was
collected primarily through participant observation and interviews with key actors over a
twelve-month period (June 2000 to June 2001). Secondary data is drawn from
documentation including the project development diary, group emails and memos.

In order to aid interpretation of the case, our analysis uses techniques for mapping and
analysing the social networks related to the software development team. Social Network
Analysis (SNA) is widely used in the social and behavioural sciences to examine
relationships among social entities. SNA techniques have been applied in a variety of
research contexts including communication among group members, transactions between
corporations and treaties among nations (Burt and Minor, 1983; Wellman and Berkowitz,
1988; Wasserman and Faust, 1994). In relation to information systems, SNA techniques
have been applied in the study of the computer-mediated communication, diffusion of
innovations, IS implementation, and the study of the social influences of communications
and information technologies (Rice and Aydin, 1991; Wellman et al., 1996; Graham, 1998;
Hislop et al., 1998; Zack, 2000). Rather than examining the attributes of individual agents
within the social system, SNA pays attention to the ties, contacts and meetings between
agents that connect them in the larger relational systems (Scott, 1991). Sophisticated

Young and Letch

6

quantitative techniques for the analyses of network structures have been developed and
concepts such as “structural holes” and “network social capital” have emerged through their
application.

In this paper, we borrow some principles and analytical techniques from SNA rather to
support our interpretation, rather than performing a detailed structural analysis of the social
networks. Specifically, we examine three networks of relations. Firstly, the network of
relations directly associated with the project-related tasks of team members is investigated
in order to study communication patterns between team members. Secondly, a social status
network is constructed to provide an indication of how network members are perceived by
others. Finally, the ingroup or personal network of the central actor in this case is examined.
By focusing our interpretation on these three networks, the cross-cultural for software
development team propositions are investigated.

Case Background

The software development project was conducted as part of a research initiative within an
academic department of an Australian university. The project involved developing a generic
research facility for tracking the choices and online behaviour of users of web-based
systems. The team that was formed to develop the system drew upon expertise available
within the department, the faculty-wide IT support group, and an external contractor. The
development team consisted of five core members:

Name Role Description

James Project designer and manager The project owner; a department member; controls the project
budget and all key decisions; a Westerner (USA)

Freddy IT System administrator;
programmer

Provided network and infrastructure advice; Faculty-wide IT
support member; Westerner (Australian)

Fang Software programmer Involved in technical design; software selection; interface
programming; Chinese (Singapore)

Kelvin Programmer Contracted for programming; Westerner (Australian)

Added later to the project.

Charles Project Sponsor Funded the project; interested in project as part of longer term
applications; Westerner (USA)

Table 2. Project Team Members

These actors are the central players in this case. However, in order to address the wider
social networks of team members, additional actors are also considered in this analysis.
Those actors who provided project-related advice to one or more of the team members are
included, as well as, those actors who are associated with team members by virtue of
organisational and social relations that are not directly related to the project.

James was both the manager of the project and the client. The impetus and funding for the
project were derived from his particular research interest in the behaviour of online game
players. It was further envisaged that the software developed for this project would have
wider application in other research areas related to online behaviour. Initially, only James
and two other actors (Fang and Freddy) formed the core development team. During the first
four months, the project proceeded smoothly and beyond expectations. Various software
modules and interface implementations were ready for beta testing months ahead of
schedule. At some point however, Fang began to show signs of disinterest in the project and
withheld knowledge relating to the technical viability of the project. He also withheld
knowledge relating to possible solutions to technical problems that arose. Fang’s behaviour
significantly slowed the progress of the project and subsequently, Kelvin was contracted by
James to assist in the programming effort.

As the only non-Western team member and the apparent cause of the slowed productivity,
Fang becomes the central figure in this analysis.

 National Culture Influences in Cross-Cultural Software Development Teams

 7

Software Development Team Social Network

Effective communication is regarded as a critical factor to both software development
(Krishnan, 1998) and knowledge management (Gold et al., 2001). The key to effective
communications is the interaction of group members (McGrath, 1991). Therefore, in
assessing communication among the development team members, a social network based
on the affiliation of actors with software development tasks and the frequency of their
interactions was constructed. Affiliations between actors were based on their joint
involvement in software development tasks such as code design, project management,
software testing and results in connectivity between ten members of the wider social network
(Figure 1a).

Figure 1a: Connectivity – Adjacency Diagram Figure 1b: Centrality – Closeness Diagram

The core team members (Fang, James, Freddy, Kelvin and Charles) are all closely
connected through the project related tasks, suggesting that there are no structural
constraints on the interaction of team members. The centrality-closeness diagram (Figure
1b) emphasises the close task-related relationship between the core team members. This
analysis indicates that project failure was not due to a lack of interaction between group
members.

Status Social Network

Status is identified as an important source of motivation in software development (Raymond,
1999) and knowledge management (Huber, 2001). A status social network based on the
extent to which actors recognise the capabilities and expertise of members within the
development team can provide some indication regarding how individual team other actors
perceive member’s competence in the wider network. For the purposes of this study, the
focus is on Fang’s perceived status within the network.

The analysis shows that Fang has the highest “out-degree” score (8) of all network actors.
That is, Fang is perceived to be competent in relation to his software development duties by
eight other network actors. Thus his status as a competent software developer is widely
recognised within the network. Furthermore, throughout interviews with various network
actors, team members acknowledged his expertise by citing him as the “guru”, “the man”
and “he’s the one to look for” in getting the job done. Under this analysis, Fang’s behaviour
that led to the stalling of the project cannot be attributed to other team members failing to
acknowledge his skills, expertise and contribution to the project.

Ingroup Social Network

Ingroup behaviours are dependent on the cultural variations across Hofstede’s (1991)
individualism/ collectivism dimension (Triandis et al., 1985). Given that Fang is the only non-
Western member of the development team, his ingroup behaviour is examined in a network

Young and Letch

8

that represents the strength of personal ties between the team members. This network is
constructed based on whether actors in the network had personal affiliations with each other
rather than task related affiliations.

A “clique” and “subgroup” analysis of this network shows that Fang is a member of three

cliques (K1, K2 and K3 in Figure 2a).

Figure 2a: Subgroup-Cliques Diagram Figure 2b: Centrality-Closeness Diagram

However, his relationships with the members of the three cliques are not uniform. From the
centrality-closeness analysis, actors who are likely to be ingroup members can be identified
from within the inner circle of Figure 2b (Abel, John, Ling and Mike). During interviews with
network actors, a strong negative relationship between one of Fang’s close ties (Abel), and
the key project owners (Charles and James) was identified. The animosity between these
actors was not directly related to the software development project. Working from the
premise that the behaviours exhibited by members of an ingroup is group regulated rather
than self-regulated (Triandis et al., 1985) Fang’s negative behaviour toward the project can
be attributed to the influence of Abel. It was not through any direct experiences that Fang’s
relationships with other team members were soured. However, given the collective opinions
of respected peers (Abel and John) and some negative “stories” he was told by friends (Ling
and Mike), Fang’s attitude toward the project was coloured. Consequently, Fang’s ingroup
behaviour represents a plausible explanation for his detachment from the project.

PROPOSITIONS FOR CHINESE/ WESTERN SOFTWARE DEVELOPMENT
TEAMS REVISITED

Proposition 1: The absence of deep, personal relationships amongst Western development
teams will prevent Chinese developers from sharing their knowledge openly
While there was a high degree of interaction among team members, their interactions were
restricted to project-related tasks and not of a personal nature. The collectivist culture of
Chinese programmers suggests that they are inclined to share code and algorithms with
people with whom they have developed strong team relationships. In this case, no
mechanisms were in place to develop strong team relationships and no effort was made on
behalf of the project owners to cultivate a team environment.

Proposition 2: Differences in the recognition of symbolic codes can undermine the
effectiveness of management practices based on universal symbols and norms
Status is a universal symbol since its value is acknowledged in a wider societal context.
However, Chinese developers may not always value status and may be quite ready to
abandon money, power and status for symbols like trust, loyalty and morality. These are
particular rather than universal symbols in that their values are subjective. Differences

K3

K2

K4

K1

 National Culture Influences in Cross-Cultural Software Development Teams

 9

between team members about which symbolic codes are viewed as important may therefore
affect team member practices.

In software development, driven by the influence of the hacker sub-culture (Raymond,
1999), being “the best”, “the first”, “the one”, etc., can instigate an individual to put in extra
effort. Similarly, in knowledge management, being the “thought leader” may be “enough to
incent an individual to contribute to a knowledge base” (Rappleye, 2000). In the case
described above, Fang was widely acknowledged by network actors as being highly
competent and his status as a software developer was never questioned. However,
recognition and monetary reward for this level of status did not ensure Fang’s dedication to
the project.

Proposition 3: To Chinese developers, having a closely tied ingroup is more important than
having a high-performance team
Although team composition is an important factor in successful development teams
(Krishnan, 1998) and having members with appropriate skill sets increases the degree of
knowledge sharing and dissemination (Zack, 1999), the Chinese software developers’
inclination to particular rather than universal symbols suggests that they are likely to dismiss
those members who value universal resources. In this case, while Fang worked within an
environment with high degree of shared contextual knowledge, it was the regulation of his
ingroup members that dictated his willingness to share and disseminate his knowledge.

CONCLUSION
This paper has highlighted potential problems that can arise in cross-cultural software
development teams. As organisations increasingly adopt global strategies and source
software development expertise from different countries, software development teams
comprising members from different cultural backgrounds are likely to increase. This paper
has specifically focussed on potential problems that could arise in teams with a mix of
Chinese and Western developers. Our aim has been to illustrate that cultural factors can
play a role in the effectiveness of software development activities. Furthermore, we have
investigated the utility of adopting a social network approach to interpreting team member
interactions and behaviour. By identifying different underlying cultural values and symbols of
Chinese and Western cultures, three propositions have been put forward regarding the
behaviour of Chinese/ Western software development teams. These propositions have been
investigated in an interpretive analysis of a small software development team with a
Chinese/ Western composition using social network analysis techniques. This analysis did
show some support for the propositions that were put forward but we do not wish to rule out
that alternative explanations of Fang’s behaviour are possible. Our limited application of
social network analysis techniques also shows some promise as a methodological tool for
further investigation of cultural influences in software development environments.

Managers of software development projects that use cross-cultural teams cannot assume
that the typically Western-oriented management practices and structures will guarantee
project success. Further research needs to be conducted in order to investigate the forms of
rewards, structures and practices that will facilitate teams with a cross-cultural composition.

REFERENCES
Anthes, G. H., (1997). Quality? What’s That? Computerworld, October 13, 1997, pp. 75.

Boehm, B. W., (1981). Software engineering economics. Prentice-Hall, Inc. Englewood
Cliffs, NJ.

Bourke, V. J. and Kelkel, A., (1992). Augustine’s Love of Wisdom: An Introspective
Philosophy. Purdue University Series in the History of Philosophy, Purdue University
Press

Brewer, M. B., (1986). The role of ethnocentrism in intergroup conflict. In Worchel, s. and
Austin, W. G., Psychology of intergroup relations. Nelson-Hall, Chicago.

Brooks, F., (1987). No silver bullet: essence and accidents of software engineering.
Computer, Vol. 19, No. 5, pp. 10-19.

Young and Letch

10

Brooks, F., (1993). The mythical man month. Addison-Wesley, Reading. MA.

Burt, R.S. & Minor, M.J. (1983) Applied Network Analysis. Sage Publications, London.

Carmel, E. and Sawyer, S., (1998). Packaged software development teams: what makes
them different? Information Technology and People, Vol. 11, No. 1, 1998, pp. 7-19.

Dagwell, R. and Weber, R., (1983). System Designers’ User Models: A Comparative Study
and Methodological Critique. Communications of the ACM, Vol. 26, No. 11, November
1983, pp. 987-997.

DeMarco, T., (1995). Why does software cost so much? And other puzzles of the
Information age. Dorset House Publishing, NY.

Doherty, N. F. and King, M., (1998). The importance of organizational issues in systems
development. Information Technology and People, Vol. 11, No. 2, pp. 104-123.

Gold, A. H.; Malhotra, A. and Segars, A. H., (2001). Knowledge Management: An
Organizational Capabilities Perspective. Journal of Management Information Systems.
Vol. 18, No. 1, pp. 185-214.

Graham, I. (1998). The Construction of a Network Technology: Electronic Livestock Auction
Markets. International Journal of Innovation Management. Vol.2(2), pp. 183-199.

Guinan, P., Cooprider, J. and Sawyer, S., (1997). The effective use of automated application
development tools. IBM Systems Journal, Vol. 36, No. 1, pp. 124-39.

Hislop, D., Newell, S., Scarborough, H. & Swan, J. (1997). Innovation and Networks: Linking
Diffusion and Innovation. International Journal of Innovation Management. Vol.1(4),
427-448

Hofstede, G., (1991). Cultures and Organizations: Software of the mind. McGraw-Hill,
London.

Hofstede, G., (1998). Attitudes, Values and Organizational Culture: Disentangling the
Concepts. Organizational Studies, Vol. 19, No. 3, pp. 477-492.

Huber, G. P., (2001). Transfer of knowledge in knowledge management systems:
unexplored issues and suggested studies. European Journal of Information Systems,
No. 10, pp. 72-79.

Kane, E. J., (1992). Implementing TQM at Dun and Bradstreet Software. National
Productivity Review, Vol. 11, No. 3, Summer 1992, pp. 405-416.

Kemerer, C. F. and Patrick, M. W., (1993). Staffing factors in software cost estimation
models. In Keyes, J., Software Engineering Productivity Handbook. McGraw-Hill.

Kinder, D. R. and Sears, D. O., (1981). Prejudice and politics: Symbolic racism versus racial
threats to the good life. Journal of Personality and Social Psychology, 40, 414-431.

Krishnan, M. S., (1998). The role of team factors in software cost and quality. Information
Technology and People, Vol. 11, No. 1, 1998, pp. 20-35.

Kumar, K. and Bjørn -Andersen, N., (1990). A Cross-Cultural Comparison of IS Designer
Values. Communications of the ACM, Vol. 33, No. 5, May 1990, pp. 528-538.

Luhmann, N., (1982). The Differentiation of Society. Columbia University Press, NY.

Lytle, A. L., Brett, J. M., Barsness, Z. L., Tinsley, C. H. and Jansen, M., (1993). A paradigm
for confirmatory cross-cultural research in organizational behaviour. Research in
Organizational Behaviour, 17., 167-214.

McConahay, J. B., (1986). Modern racism, ambivalence, and the modern racism scale. In
Dovidio, J. F. and Gaertner, S. L., Prejudice, discrimination, and racism. Hardcourt
Brace Jovanovich, Orlando.

McGrath, J. E., (1991). Time, Interaction and Performance (TIP): A Theory of Groups.
Small Group Research, Vol. 22, No. 2, pp. 147-174.

Moore, A. C., (1967). The Chinese Mind. East-West Center Press, Honolulu.

 National Culture Influences in Cross-Cultural Software Development Teams

 11

Paulk, M. C., Weber, C. V., Garcia, S. M., Chrissis, M. and Bush, M., (1993). Key practices
of the capability maturity model, version 1.1, Technical Report, CMU/SEI-93-TR-25,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA.

Punnett, B. J. and Shenkar, O., (1995). Handbook for international management research.
Cambridge, MA.

Rappleye, W. C., (2000). Knowledge Management: A force whose time has come. Across
the Board: The Conference Board Magazine. January, pp. 59-66.

Raymond, E. S., (1999). The Cathedral and the Bazaar. O’Reilly, New York.

Rice, R & Aydin, C., (1991). Attitudes toward New Orgnizational Technology: Network
Proximity As a Mechanism for Social Information Processing. Administrative Science
Quarterly. Vol 3, pp. 219-244.

Robertson, C. J. and Hoffman, J. J., (2000). How Different Are We? An Investigation of
Confucian Values in the United States. Journal of Managerial Issues, Vol. 12, No. 1,
pp. 34-47.

Scott, J., (1991). Network Analysis: A Handbook. Sage, CA.

Shore, B., (1996). A Conceptual Framework to Access Gaps in Information Systems
Cultures Between Headquarters and Foreign Subsidiaries. In Palvia, P. C., Palvia, S.
and Roche, E. M., 1996. Global Information Technology and System Management:
Key Issues and Trends. Ivy League Publishing, Westford.

Stephen, W. G., (1994). Intragroup anxiety. Proceedings at Society of Experimental Social
Psychology, Lake Tohoe, CA.

Thanasankit, T, and Corbit, B., (1999). Towards an Understanding of the Impact of Thai
Culture On Requirements Elicitation. Conference on Information Technology in Asia:
CITA ‘99. The Asian Regional Conference of IFIP WG 9.4.

Triandis, H. C., Leung, K., Villareal, M. J. and Clack, F. L., (1985). Allocentric versus
Idiocentric Tendencies: Convergent and Discriminant Validation. Journal of Research
in Personality, 19, 395-415, 1985.

Triandis, H. C.; Bontempo, R. and Villareal, M. J., (1988). Individualism and Collectivism:
Cross-Cultural Perspectives on Self-Ingroup Relationships. Journal of Personality and
Social Psychology, Vol. 54, No. 2, pp. 323-338.

Wasserman, S. & Faust, K. (1994) Social Network Analysis: Methods and Applications.
Cambridge University Press, Cambridge.

Wellman, B. & Berkowitz, S.D. (1988) Social Structures. Cambridge University Press,
Cambridge.

Wellman, B., Salaff, J., Dimitrova, D., Garton, L., Gulia, M. & Haythornthwaite, C., (1996).
Computer Networks as Social Networks. Annual Review of Sociology, Vol. 22: 213-
38.

Williamson, M., (1997). Quality Pays. Computerworld, August 18, 1997, pp. 78-81.

Weinberg, G., (1971). The Psychology of Computer Programming. Van Nostrand Reinhold
Press.

Zack, M. H., (1999). Managing Codified Knowledge. Sloan Management Review, Vol. 40,
pp. 45-58.

Zack, M. H., (2000). Researching Organisational Systems using Social Network Analysis.
Proceedings of the 33rd Hawaii International Conference on System Science.
January, 2000.

COPYRIGHT
Young, R. & Letch, N. © 2002. The authors assign to ACIS and educational and non-profit
institutions a non-exclusive licence to use this document for personal use and in courses of
instruction provided that the article is used in full and this copyright statement is reproduced.
The authors also grant a non-exclusive licence to ACIS to publish this document in full in the

Young and Letch

12

Conference Papers and Proceedings. Those documents may be published on the World
Wide Web, CD-ROM, in printed form, and on mirror sites on the World Wide Web. Any other
usage is prohibited without the express permission of the authors.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 2002

	National Culture Influences in Cross-Cultural Software Development Teams: an analysis of social networks
	Regit Young
	Nick Letch
	Recommended Citation

	Microsoft Word - 1-16_Young.doc

