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Abstract 

A model is developed to study how the code architecture affects open source software 
(OSS) development. The model incorporates the resource heterogeneity and diverse 
motivations of various groups of programmers as well as the strategic interactions 
among them. We argue that the major advantage brought by a modular architecture of 
OSS code base is that it reduces both the cognitive cost and the coordination cost 
associated with OSS development, thus allowing programmers more easily to locate, 
manage, and contribute to the code base. We show that in OSS development, while 
modular architecture can potentially increase code contribution, it does not necessarily 
reduce free-riding; in fact it may well increase free-riding due to the strategic 
interactions among the programmers. We further empirically test the predictions using 
the SourceForge OSS development data, and the results confirm our theoretical 
predictions. The findings bear important theoretical as well as practical implications 
and provide guidelines for practitioners of OSS development and the collective 
innovation in general. 
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Introduction 

Open source software (OSS) is generally considered to be public goods since the software can be 
distributed and further incorporated freely into any other software through OSS licenses (e.g., von Hippel 
and von Krogh 2003; Baldwin and Clark 2006). The huge success of OSS projects like Linux, Apache, 
MySQL, Perl, PHP, and Mozilla has made many believe that the OSS development model could potentially 
revolutionize the innovation process in much broader research areas (e.g., von Hippel and von Krogh 
2003; Rai 2005; Shah 2006; Fleming and Waguespack 2007).  

However, successful application of OSS model still faces many challenges (von Krogh and von Hippel 
2006; von Krogh and Spaeth 2007). One of the puzzling questions is the motivation for programmers to 
contribute to the code base. Under traditional software development model, programmers are hired and 
collocated to code the software projects. But in OSS model, programmers are not paid and moreover, the 
software is available to anybody for free use (Raymond 1999), thus why programmers are willing to 
participate in the development of OSS has puzzled many researchers. However, recent studies have 
revealed that programmers do not really contribute for free; rather they contribute out of a set of complex 
and intertwined motivations, and they recoup certain private benefits as well as contributing to the 
success of OSS projects as a whole (e.g., Roberts et al. 2006; Bagozzi and Dholakia 2006). Consequently, 
researchers have proposed that OSS model is a private-collective innovation model and represents a very 
rich and fertile middle ground where incentives for private investment and collective action can coexist 
(von Hippel and von Krogh 2003; Haefliger et al. 2008).  

A related problem is free-riding or inequality of code contribution to OSS development: although many 
projects can potentially attract large number of programmers, quite often only a small number of 
individuals code the software (Fitzgerald 2004; Kuk 2006). If not properly addressed, free-riding can 
derail the development of OSS projects (e.g., Raymond 1999; Baldwin and Clark 2006), and will endanger 
the application of OSS model to other areas as well. Thus how to promote participation and reduce free-
riding is of strategic importance not only to OSS development but also to the success of open innovation 
in general (Chesbrough 2003; 2007).   

Recent studies proposed that modular code architecture can potentially reduce free-riding in OSS 
development (e.g., Johnson 2002; Baldwin and Clark 2006). In a modular design, the whole software 
code base is divided into several loosely coupled modules, and consequently the code structure is 
transformed from a monolithic architecture into a modular architecture (Parnas 1972). The responsibility 
for developing each module is delegated to specific individuals (Mockus et al. 2002), so participation 
tends to be equalized under the modular architecture (Johnson 2002; Baldwin and Clark 2006). 
However, prior studies on modular OSS architecture have several limitations. First, OSS is typically 
considered as a pure public good (e.g., Johnson 2002; Baldwin and Clark 2006), and virtually none have 
incorporated the private aspect of OSS development. Second, code contribution by participants is studied 
as a binary variable, i.e., programmers either contribute or not contribute to the software, and none have 
considered the differences in the quantity of contribution. However, in reality, contribution can be better 
quantified as a continuous variable not a binary variable. Third, prior studies do not incorporate 
participants’ diverse motivations and the resource endowments, which play a critical role in their reaction 
to the design of code structure. Fourth, there is virtually no empirical evidence to support the effect of 
modular architecture on OSS development. In this study we intend to fill these research gaps. 
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Research Context 

Innovations are critical for the competitiveness of firms and nations (Cooper 1993; Dougherty and Hardy 
1996; Penrose 1995). Traditionally, two models of innovation have been practiced: private model and 
collective model. In the private model, innovators invest private resources to develop the innovation, and 
in return, they own the innovation produced and collect private returns typically through property rights 
(Dam 1995). In the collective innovation, the innovators usually are subsidized to develop the innovation 
and they relinquish control of innovation developed and make it a public good by unconditionally 
supplying the innovation to a “common pool” (Liebeskind 1996; Osterloh and Rota 2007). However, OSS 
model deviates from both these two models in that innovators invest their own private resource for the 
development of a public good, thus OSS model potentially represents a new type of innovation (von 
Hippel and von Krogh 2003). As commented by prior studies that contributions to open source software 
development are not pure public goods—they have significant private considerations even though the 
innovation will be freely revealed, thus OSS has been termed as a private-collective model of innovation 
(von Hippel and von Krogh 2003).  

Over time, researchers have proposed a series of inter-related intrinsic and extrinsic motivations for OSS 
contribution from different perspectives such as self use or “personal itch” (Raymond 1999; von Hippel 
and von Krogh 2003), affiliation and identity (Hertel et al. 2003), signaling and career concern (Lerner 
and Tirole 2002), peer recognition (Hars and Ou 2002; Lakhani and von Hippel 2003), reputation and 
status (Roberts et al. 2006), and hedonic motives such as enjoying programming (Hertel et al. 2003; Shah 
2006), etc. Three observations from these facts can be derived. First, rather than contributing for free, 
programmers do derive benefits from OSS code contribution. Even though programmers do not gain 
immediate benefits, they potentially gain delayed benefits in the future (Lerner and Tirole 2002). Second, 
although OSS developers derive a variety of benefits, they are either private benefits such as fun, 
knowledge, and career concern, etc., or public benefit, i.e., the delivery of the final OSS projects. Third, 
whether participants derive private benefits or public benefits depends critically on the roles they play 
during the OSS development process. 

Literature suggests that participants in OSS community mainly fall into two types, the hobbyists who 
derive benefits from its own coding activities, and the need-driven participants who use the OSS for their 
own purposes (e.g., Shah 2006). Hobbyists are also referred as hackers in literature (von Hippel and von 
Krogh 2003), and we will use this name hereafter. By contributing to OSS code, hackers derive fun and 
knowledge from their contribution, and gain peer recognition and reputation (Raymond 1999; Stewart 
2005), and even signal their talents to attract prospective employers and venture capital (Lerner and 
Tirole 2002).  

A closer examination of the roles played by the need-driven participants reveals that they can be further 
divided into two subtypes: project leaders and onlookers. Project leaders are typically those who initiate 
the projects trying to solve their own problems (von Hippel and von Krogh 2003), and they set up virtual 
workspace and provide initial code bases for project development (Shah 2006). The primary motivation 
for leaders is the delivery of the final software (Raymond 1999; von Hippel and von Krogh 2003). 
Onlookers are the programmers who join the projects after the project is initiated. Similar to the leaders, 
their primary concern is also the final software, but different from the hackers they do not want to 
contribute unless they have to, e.g., when the OSS project is in slow progress or to be abandoned due to 
lack of contribution. This type of programmers corresponds to the “triangle contributors” in the provision 
of public goods (Fischbacher and Gachter 2010). 
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One of the noticeable trends for OSS development is that the code architecture becomes increasingly 
modular. Although modular architecture is well-known in software development, the concept of modular 
design extends beyond software industry. In fact, modular code architecture falls under the larger picture 
of modular product design. In general, in a complex system which is made up of large number of 
components that interact in a non-simple way, a modular design can group the components into a smaller 
number of subsystems so to reduce the interdependency between each component (Langlois 2002). 
Software development is one of the areas that have witnessed the most mature application of modular 
product design (Fixson 2007). A software module captures a set of design decisions which are hidden 
from other modules, and modules interact with each other primarily through their interface, thus modular 
design promote encapsulation or information hiding by separating a module’s interface from its 
implementation (Parnas 1972). The benefits of modular architecture include concurrent development, 
robust to interruption of the production process, reduced communication cost, recombination of source 
code, code reuse, and increased quality, etc. (Gershenson et al. 2003; Haefliger et al. 2008). In addition to 
the above-mentioned benefits, researchers have also proposed that modular code architecture is an 
effective mechanism to alleviate free-riding in OSS development, and in this regards, two most important 
studies are Johnson (2002) and Baldwin and Clark (2006), who argue that modular code architecture can 
significantly reduce free riding.  

While path-breaking and insightful, the work of Johnson (2002) and Baldwin and Clark (2006) leave 
room for improvement. We feel that some of the important and unique aspects of OSS development need 
to be incorporated when studying the impact of code architecture: First, as discussed earlier, contributors 
are heterogeneous in terms of their motivations and resource endowment, which will play critical roles 
when contributors react to the design of the code architecture (Raymond 1999). Second, code contribution 
is a collective effort, thus OSS code contribution model should be flexible enough to accommodate 
contribution made concurrently and differently in quantity, not as assumed that a single module is coded 
only by one programmer and only once (Johnson 2002; Baldwin and Clark 2006). Third, we believe that 
it is important to distinguish between two concepts in studying OSS development: code participation and 
code contribution. Code participation is measured as a binary variable, either to code the project or not 
(Baldwin and Clark 2006). In contrast, code contribution is a continuous variable, and it measures how 
much one codes the projects in terms of lines of code (LOC) or commits made to the code base. In other 
words, code contribution is a more accurate measurement of free-riding than merely participating in the 
coding activities. Incorporating the above aspects will shed new light on how code architecture affects 
code contribution in OSS development. 

The Model 

Programmers working on an OSS project incur a variety of costs. By engaging in an OSS project, 
programmers lose their time to work on other programming tasks, such as their own proprietary projects 
(Lerner and Tirole 2002; Shah 2006).1  

Suppose there is one OSS project which enrolls N programmers, including leaders, onlookers, and 
hackers. Beside the OSS project, programmers also engage in their own proprietary projects. Programmer 

i, i=1,2,...,N, is endowed with a total available work time of 
i

w . Programmer i will produce code  ( )
i i

p x  if 

she spends 0
i

x ≥  units of time on her proprietary projects, and produce code ( )
i i

o g  if she spends 0
i

g ≥  

units of time to develop the OSS project. The total supply of time to the OSS project by all programmers is 

denoted by i

N

G g=∑ . Further assume that the codes provided by each programmer to the OSS project 

are additive, i.e., the total amount of code provided by all the programmers is given by ( )i i

N

O o g=∑ , 

which will be shared by all programmers despite their actual levels of contribution. As discussed earlier, 
depending on their types, programmers possibly derive utilities from three sources: code contribution to 

                                                             

1 A proprietary project a programmer works on can be either for work use or for personal use. 
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their own projects ( )
i i

p x , their own parts of OSS contribution ( )
i i

o g , and the whole OSS code O , thus 

the utility function of programmer i is given by  [ ( ), ( ), ]
i i i i i

v p x o g O , where  
i

v  is the utility function 

increasing in all three parameters. To simplify the analysis, assume the code production function for all 

programmers are the same, i.e., ( ) ( )
i i i

o g o g= , and ( )
i

o g  is linear and increasing in 
i

g , then 

[ ( )] ( ) ( ) ( )i i i

N N N

O o g o g o g o GO= = = =∑ ∑ . Since programmers maximize their utilities, programmer i 

will solve the following problem: 

,
max  ( , , )

. .     

         

         0

i i

i i i
x g

i i i

i i

i

u x g G

s t x g w

G g G

g

−

+ ≤

+ =

≥

                                                                                (1) 

where 
i

u  is the transformed utility function and 
i

G−  is the total contribution by all other programmers 

except programmer i . It can be verified that 
i

u  is non-decreasing in all three parameters as well. 

Equation (1) shows that there is a tradeoff between time allocated for programmer i’s propriety project 
and the OSS project: the same amount of time devoted for propriety project will be sacrificed for 
developing the OSS project. 

Equation (1) has several advantages over the model presented in prior studies. First, it extends the scope 
of prior studies from merely code participation to code contribution. Second, it allows multiple 
programmers to code the same module thus more closely reflect real programming practices. Third, it 

incorporates the facts that individual programmers are constrained by their resource endowment (
i

w ), 

and, when considering code contribution, they need to allocate resources between two alternative 
activities. As in Johnson (2002) and Baldwin and Clark (2006), the model retains the strategic 
interactions among programmers when deciding on their own contribution level. 

In OSS development, modular code architecture can induce or facilitate code contribution through 
various mechanisms: First, a modular structure reduces the cognitive cost of the potential contributors. 
Modular design splits the whole project into loosely coupled components, which have less complexity (von 
Hippel 1990), and can be more easily identified and managed. Thus smaller and less complex code 
components decrease the quantity of information needs to be processed. Indeed, modular design is 
consistent with the “divide-and-conquer” philosophy in software engineering (e.g., Bentley 1980; Lenat 
1995). Second, a modular structure reduces the coordination cost among the project participants. Due to 
the less tightly-coupled nature, a modular design allows one to contribute with less concern of the codes 
in other modules, thus different modules can be developed concurrently and then integrated later 
(MacCormack et al. 2006). Consequently, a modular design significantly cut down the coordination cost. 
Third, because modules within the code base do not talk to each other directly, code modifications made 
within one module do not interfere the functioning of other modules, and code produced using modular 
architecture tends to have less bugs and higher quality. Fourth, a modular architecture makes it easier for 
potential contributors to identify the code components that are most interesting to them, thus can 
facilitate the code development. This is particularly important for OSS development, since programmers 
usually assign themselves to the tasks rather than being assigned by the project leaders as in proprietary 
software development teams (Shah 2006).  

However, modular code architecture has its negative side as well. As discussed earlier, some of the most 
cited reasons for OSS contributions are reputation and status, peer recognition, careen concern, etc., all of 
which will be more easily achieved when a larger group of peers are involved. However, a modular 
architecture may run counter to this goal. Prior literature on modular design has shown that there exists a 
mirroring or mapping between the product architecture and the team or organizational structure that is 
adopted to manufacture the product (Henderson and Clark 1990; Schilling 2000). Thus a modular code 
architecture tends to lead to a modular team structure that consists of multiple self-contained and 
independent groups of programmers who will end up interact with few peers in smaller groups. Therefore, 
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as code architecture gets increasingly modular, ceteris paribus, programmers will have less incentive to 
contribute to the code base due to reduced number of observable peers.  

To incorporate the effect of modular code architecture, we use variable 0m ≥  to measure the level of 

modularity of the code structure: a higher m corresponds to a more modular design and vice versa. Thus, 
Equation (1) can be modified as the following: 

,
max  ( , , , )

. .     

         

         0

i i

i i i
x g

i

i i

i i

i

u x g G m

g
s t x w

m

G g G

g

−

+ ≤

+ =

≥

                                                                              (2) 

Since ( )
i i i

g w x m≤ − , variable m in fact determines the effective time that can be spent on the OSS 

project for any units of time taken away from developing the proprietary project. If m = 1, then Equation 
(2) is the same as Equation (1). However, if m>1, then for any units of time taken away from developing 
the proprietary project, more effective units of time can be devoted for the OSS project. This is what we 
would expect from a modular design: as the OSS code architecture gets more modular, code contribution 
will be more efficient and less costly. The situation will be reversed if m<1. Thus, parameter m captures 
the code architecture for this code contribution game. The negative side of a modular architecture is 

captured in the utility function. As before, 0/u gi i∂ ∂ ≥ , however, we further specify that 

2
0/ ( )u g mi i∂ ∂ ∂ <  to reflect that as code architecture gets increasingly modular, the marginal utility of 

code contribution decreases. 

Next we incorporate the three types of OSS programmers discussed earlier and study how a modular 
design could potentially affect their respective code contributions. As discussed earlier, leaders, onlookers, 

and hackers attach different importance to individual contribution 
i

g  and the whole OSS source code G . 

First, prior literature has shown that project leaders attach more importance to the OSS project than 
others (Lerner and Tirole 2002). In contrast, hackers derive utilities mainly from their own fun, 
knowledge, and reputation gained from coding their parts of OSS source code, as well as their own 

proprietary projects. Thus, we use parameter 
i

α  to differentiate these three types of programmers, and 

correspondingly, we modify Equation (2) to take the following form: 

 

,
max  ( , ) (1 ) ( )

. .     

         

         0

i i

i i i i i
x g

i

i i

i i

i

u S g m T G x

g
s t x w

m

G g G

g

α α

−

= + − +

+ ≤

+ =

≥

                                                     (3) 

where ( )S ⋅  is the utility function from private benefits and ( )T ⋅  is the utility function from public 

benefits. We specify 0 1
i

α< ≤ , so if 
i

α  is small (yet not zero), it’s a leader; if 
i

α  is large (yet not one), it’s 

an onlooker; if 1
i

α = , it’s a hacker. As before, 0
igS > , 0

G
T > , while 0

i ig gS <  and 0
GG

T < . However, 

0
ig mS < , 0

ig mmS < , and 0
i ig g mS < .  

Equation (3) can be further simplified as: 

max  ( , ) (1 ) ( ) ( )
i

i

i i i i i i i
g

g
u S g m T g G w

m
α α −= + − + + −                                        (4) 

Then we can obtain the following propositions from Equation (4). 
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Proposition 1: For the code contribution game in Equation (4), there exists a unique Nash Equilibrium. 

 

Proof: From Equation (4), we have ( , ) (1 ) ( ) ( / )
i i i i i i i i

u S g m T g G w g mα α −= + − + + − . The FOC is 

/ (1 ) 1 / 0
ii i i g i Gu g S T mα α∂ ∂ = + − − = . Suppose we have inner solutions, and the total contribution 

at equilibrium is 
*

G , then at equilibrium, programmer i’s optimal contribution 
*

i
g  is determined 

implicitly by:  

*

*

1/ (1 )

i

i G

g

i

m T
S

α

α

− −
=

*

*

1/
G

G

i

m T
T

α

−
= +                                            (5) 

Suppose Equation (5) can be solved explicitly, so 
*

( , , )
i i i

g r G m α= , then it follows from Equation (5) 

that 
i

r  is decreasing in 
*

G . Let ( , , ) i

i

G R G m rα= =∑ , then R  is decreasing in 
*

G as well. 

Graphically, the equilibrium will be reached when R  intercepts with the 45
o
 line as shown in Figure 

1, and this is unique. Thus there is a unique equilibrium for this code contribution game. □ 

        

Figure 1. Existence of Unique Nash Equilibrium 

 

Proposition 2: Let 
*

i
g  be the code contribution of a current contributor i at equilibrium, then 

*

i
g  is 

increasing in the order of leaders, onlookers, and hackers. 

 

Proof: Again, this follows from Equation (5). Since 
igS  and 

G
T  are decreasing functions ( 0

i ig gS <  and 

0
GG

T < ), therefore, for a given total contribution at equilibrium 
*

G , 
*

i
g  increases in 

i
α . In other 

words, in terms of contributions to the OSS development, leaders < onlookers < hackers. □ 

 

This finding is very interesting: the ones who hold the most interests in the project contribute 
nevertheless the least. The leaders, anticipating the contributions from the hackers and the onlookers who 
derive more private utility from their contribution, strategically hold back their efforts in this code 
contribution game. 

 

Proposition 3: Let m be the number of modules an OSS project has, then there exists a threshold m*, 

such that 
*

0idg

dm
>  if m<m*, i.e., modular architecture will increase the individual 

G 

R(G) 

45º 
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contributions from all programmers if m<m*. In parallel, if 
*

G  is the total code 

contribution from all programmers, then it follows 
*

0
dG

dm
>  if m<m*, i.e., modular 

architecture will increase the total contributions from all programmers to the extent that 
m<m*.     

 

Proof:  From Equation (5), we have * *( , ) 1 / ( ) (1 / 1) 0
j

i i i G g
y g m m T Sα α= − − − = , so: 

*

* * * *

2

*

*

1/ ( )/
/

/ (1 / 1)

i

i i

i g m

i

i ig g G G

m Sy m
g m

y g S T

α

α

− −∂ ∂
∂ ∂ = − = −

∂ ∂ − − −

*

* * * *

2
1 /

(1 )

i

i i

i g m

i ig g G G

m S

S T

α

α α

+
=
− − −

                         (6) 

Since the denominator * * * *(1 ) 0
i i

i ig g G G
S Tα α− − − > , then 

*
/ 0

i
g m∂ ∂ >  only if *

2
1/ 0

i
i g m

m Sα+ > , from 

which we obtain *

1/2* min{ * 1/ ( ) }
i

i g m
S

i
m m α= = − , and it follows that 

*
/ 0

i
g m∂ ∂ > for all programmers if 

m<m*. As i

N

G g=∑ , it follows that 
*

0
dG

dm
>  as well if m<m*. □ 

Corollary 1: Let Pert be the percentage of positive contributors in an OSS project, then 
*

0idPert

dm
>  if 

m<m*, i.e., as the code structure becomes more modular, the percentage of programmers who 
contribute positively to the code base will increase if m<m*. But as m increases above m*, the 
percentage will decrease: first the hackers will stop contributing, followed by the onlookers, and 
finally the leaders.  

 

Corollary 1 follows directly from Proposition 3, since 
*

i
m  increases in the order of hackers, onlookers, and 

leaders. Proposition 3 and Corollary 1 reveal that modular code architecture can potentially reduce 
inequality in coding activities in terms of both the actual codes contributed and the number of 
programmers who participate in the coding activity. This is consistent with the finding of Baldwin and 
Clark (2006).  

Proposition 2 and 3 reveals the effects of modular architecture on the actual levels of code contribution for 
the OSS projects, but not on free-riding per se, which is a measure of relative inequality of contribution. 
However, as discussed earlier, free-riding is better measured by contribution rather than participation. To 
be specific, we refer free-riding in our study as inequality of code contribution, not merely code 
participation as in prior studies (e.g., Johnson 2002; Baldwin and Clark 2006). There are various 
measures for inequality of resources or contributions in literature, and probably the best known is Gini 
coefficient, which is widely used to measure income inequality and is defined as one-half of the relative 
mean difference, the arithmetic average of the absolute values of differences between all pairs of values 
(Sen 1973). Consistent with prior studies on OSS code contribution (e.g., Kuk 2006), we use Gini 
coefficient to measure the extent of programmers’ free-riding within a project:   

 

1 1

2
2

N N

i j

i j

g g

Gini
N g

= =

−

=

∑∑
                                                                         (7) 
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where 
i

g (or jg ) is the contribution made by programmer i (or j), g  the average contribution made by all 

programmers, and N  is the number of programmers on the project (no matter they contribute or not).2 It 

can be shown that [0,1]Gini∈ , and the higher the value of Gini, the more severe the free-riding in a 

group (Sen 1973). If Gini = 0, then every programmer contributes the same, and if Gini = 1, only one 
programmer contributes and the rest do not. Next, we introduce a proposition about how modular code 
architecture affects free-riding: 

 

Proposition 4: Let Gini coefficient be the measurement of free-riding, then 0
dGini

dm
≥  if *m m<  and 

0
dGini

dm
<  if *m m≥ , i.e., modular code architecture has a curvilinear relationship 

with free-riding. 

 

Proof: If we order 
i

g  in ascending order, then it can be shown that Equation (7) is equivalent to the 

following: 

2
1

2
( )

N

i

i

Gini i g g
N g =

= −∑                                                                     (8) 

From Proposition 2, at equilibrium, programmers contribute in the order of leaders, onlookers, and 

hackers. Thus a sufficient condition for Proposition 4 to be true is that, for *m m< , 
*

i
g  increases fastest 

for hackers, followed by the onlookers, and then the leaders as code architecture becomes increasingly 

modular; and this trends, however, is reversed for *m m≥ . This is equivalent to say that for *m m< , 

3 *

2
0i

i

g

m α

∂
>

∂ ∂
                                                                              (9)  

and it is the opposite for *m m≥ . To proceed, from equation (6), we obtain: 

* * * * * *

* * * *

3 2
2 *

* *

2 2

(2 / )[ (1 ) ] (1 / )

[ (1 ) ]

i i i i i i

i i

i i i G G i ig mm g g g m g g mi

i ig g G G

m S S T m S Sg

m S T

α α α α α

α α

− + − + +∂
=

∂ + −
                        (10) 

It follows from Proposition 3 that *

2
1/ 0

i
i g m

m Sα+ >  if *m m< . Therefore 
*

0ig

m

∂
>

∂
 and 

2 *

2
0ig

m

∂
<

∂
 if 

*m m< , and 
*

i
g  is a concave and increasing function of m . It can be further shown that given 
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i
g  increases fastest for the hackers, then the onlookers, 

and last the leaders. Therefore, it follows 0
dGini

dm
≥  if *m m< . However, from Corollary 1, once m  

passes the critical level of *m , hackers will start to decrease their contribution while onlookers and 
leaders still increase their contribution; this will narrow down the gaps between code contribution, and 

therefore it follows from Equation (8) that Gini will start to decrease for *m m≥ . □ 

                                                             

2 In this study, we use two measures of code contribution to calculate Gini coefficient: the commits made 
and the lines of code (LOC) contributed by programmers.  
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Therefore, Proposition 4 shows that Gini is a concave function of m  overall, and contrary to what was 
believed that a modular architecture will always reduce free-riding, modular architecture could potentially 
increase free-riding due to the strategic interactions among the programmers.  

Empirical Evidence 

To test the effect of code architecture on OSS development, we make use of a dataset obtained from 
SourceForge.net, the world’s largest OSS project-hosting website. At SourceForge, project leaders recruit 
other members and grant them access to code base so they can contribute source code to the projects. 
SourceForge provides rich information about the software project such as project characteristics, 
developer characteristics, developer roles, and activities at project forums and bug tracking service, etc. 
To study how code structure affects code contribution, we make use of the projects’ CVS log file. At 
SourceForge, programmers make changes to the source code through the Concurrent Versioning Systems 
or CVS (Fogel 2006), and each batch of changes made to the source code is called a commit, and is 
recorded in the CVS log file. Within each commits, the CVS also records the lines of code (LOC) that are 
changed.  The CVS log file provides an excellent source of data to study the software development 
activities, since it enables us to trace exactly who contribute what to which module of the project and 
when.  

At SourceForge, projects are categorized into foundries, or groups of projects that share a common 
programming language. As of May 2006, there are over 80,000 projects registered at SourceForge, thus 
we restrict our sample only to the Java foundry (Grewal et al. 2006). We further restrict our samples to 
the projects that have at least two programmers so to study the free-riding problem. To avoid left 
censoring problem, we only examine projects registered on and after January 1, 2003, so we can observe 
the complete coding history for each of these projects until May 2006. This leaves us 517 projects in the 
final sample.  

For each of the project, we identify the number of modules a project has, the age of the project (in 
months) till May 2006, the programmers in each project, and coding activities of each programmer, as 
well as other project characteristics such as intended audience, operating systems, and topics. In addition, 
we record the number of commits and LOC made by each programmer within a project. The variable 
definitions are provided in Table 1. 

We first examine the descriptive statistics and correlation matrix (omitted due to page limitation). The 
two measures of Gini coefficient are highly correlated, indicating good internal validity of both measures. 
The same is true for the two measures of code contribution.  

Table 1.  Definition of Variables 

Variables Definition 

Gini_commit Gini coefficient for measuring free-riding for code contribution as calculated 
by Equation (7). It is based on commits made by each programmer. 

Gini_LOC Gini coefficient for measuring free-riding for code contribution as calculated 
by Equation (7). It is based on LOCs made by each programmer. 

Code_commit The log of the total number of commits programmers contributes to the 
source code within an OSS project. 

Code_LOC The log of the LOCs programmers contributes to the source code within an 
OSS project. 

Pert The percentages of the positive contributors among all programmers enrolled 
for an OSS project. 

Module The number of modules a project has, divided by 100. 

Project size  The total number of developers on the project. 
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To examine the coding activities of programmers, we need to identity the leaders, onlookers, and the 
hackers. SourceForge dataset only identifies the leaders, not onlooker and hackers. However, SourceForge 
had a survey for all programmers in January 2003. Three questions are helpful to identify the likelihood 
that participants are willing to help others. They are: 1) “How strongly do you believe in Open Source 
Software?”, 2) “How willing are you to answer support questions about open source project?” and 3) “If 
your skills match, how interested are you in helping developers from other projects?”. Each of the 
questions is scored from 1 to 5. We consider those having an average score of 4 or higher as hackers if they 
are not leaders. Then we list the contribution from the three types of programmers in Table 2. It shows 
that leaders contribute less than the onlookers who further contribute less than the hackers, thus we 
conclude that Proposition 2 is supported. 

Table 2. Programmer Constituents and Average Code Contribution 

 Average Number percentages Average commits  Average LOC  

Leaders 1.63 44% 98.65 5,732 

Onlookers 1.28 35% 265.18 32,222 

Hackers 0.76 21% 515.85 16,515 

 

Proposition 3 predicts that as the code architecture gets more modular, total contribution will first 
increase and then decrease. We use the following OLS model to test Proposition 3: 

2

1 2 3
Contribution Size Module Module Characteristicsα α α ε= + + + +β                          (11) 

where Contribution  is the total code contribution of a project team, α s are scalars, β is a vector, and ε  

is the error term. The heteroskedasticity robust results are shown in Table 3. Model 1 and 3 do not include 
the research variables Module and Module2. However, the explanatory power increases significantly in 
Model 2 and Model 4 when Module and Module2 are included. Moreover, in both Mode 3 and 4, the 
coefficient on Module is positive and significant, while that on Module2 is negative and significant. These 
results show strong support for Proposition 3.  

 

Table 3.  Estimation Results for Proposition 3 

Independent Variables Model 1 Model 2 Model 3 Model 4 

Project size 
0.262*** 

(0.026) 

0.100*** 

(0.019) 

0.269*** 

(0.027) 

0.106*** 

(0.023) 

Module  
4.913*** 

(0.499) 
 

4.920*** 

(0.532) 

Module2  
−1.392*** 

(0.332) 
 

−1.384*** 

(0.324) 

 R2 0.350 0.641 0.308 0.523 

Notes: N=517. ***p<0.01. Dependent variable is the Code_commit in Model 1 and 2, and 
Code_LOC in Model 3 and 4. Estimated coefficients and their associated standard errors 
(in parentheses) are listed under each equation. Other control variables include 34 
dummies for project characteristics such as development stages, intended audience, 
operating systems, and project topics. 

Corollary 1 predicts that as code architecture becomes increasing more modular, the percentage of 
contributors out of all the enlisted programmers will increase first and then decreases afterward. We test 
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this prediction and show the results in Table 4. As shown in both Model 1 and Model 2, the coefficient on 
Module is positive and significant and that on Module2 is negative and significant, thus Corollary 1 is 
supported.  

Table 4.  Estimation Results for Corollary 1 

Independent Variables Model 1 Model 2 

Project size 
−0.032*** 

(0.004) 

−0.031*** 

(0.004) 

Module 
0.207*** 

(0.057) 

0.201*** 

(0.060) 

Module2 
−0.057** 

(0.029) 

−0.053** 

(0.031) 

R2 0.295 0.344 

Notes: N=517. Dependent variable is Pert, the percentage of positive 
contributors among all programmers within a project. **p<0.05, 
***p<0.01. Model 2 includes 34 dummy variables as in Table 3.  

 

Next we test how modular architecture will affect free-riding. Proposition 4 predicts that, overall, the 
extent of free-riding within a team is a concave function of total modules a project has.  We test the 
following OLS model: 

2

1 2 3
Gini Size Module Module Characteristicsγ γ γ ε= + + + +θ                                    (12) 

where Gini  is calculated from Equation (7) based on commits and LOC respectively. We show the test 

results in Table 5. Model 1 and Model 2 are based on commits and Model 3 and Model 4 are on LOC made 
by programmers. The results show that coefficient on module is positive and significant while that on 
Module2 is negative and significant, thus confirming Proposition 4.  

Table 5. Estimation Results for Proposition 4 

Independent Variables Model 1 Model 2 Model 3 Model 4 

Project size 
0.030*** 

(0.004) 

0.032*** 

(0.004) 

0.033*** 

(0.004) 

0.034*** 

(0.004) 

Module 
0.180*** 

(0.050) 

0.171*** 

(0.050) 

0.162*** 

(0.047) 

0.149*** 

(0.048) 

Module2 
−0.061*** 

(0.026) 

−0.058** 

(0.025) 

−0.054*** 

(0.024) 

−0.050** 

(0.024) 

R2 0.312 0.355 0.315 0.350 

Notes: N=517. Dependent variable is Gini_commit in Model 1 and 2, and Gini_LOC in 
Model 3 and 4. ***p<0.01. Model 2 and 4 further include 34 dummy variables as in Table 
4.  

Based on the result in Model 4 in Table 5, we plot the impact of number of module on the value of Gini in 
Figure 2 as below. It clearly shows a concave relationship between the two values. 



 Author1 Lastname & Author 2 Last name (or Author1 Last name et. al.) / Short Title up to 8 words 
  

 Thirty Second International Conference on Information Systems, Shanghai 2011 13 

       

 

Figure 2. The Impact of Number of Modules and Gini 

 

As discussed in Proposition 4, when the code architecture gets increasingly modular, hackers will reduce 
their contribution first, followed by the onlookers and finally the leaders. To validate this prediction, we 
run the following regression at programmer level rather than project level with four interaction terms 
added: 

2 2

1 2 3 4

6+ ker*

5

2

7 8 9

Contribution Size Module Module Hacker* Module+ a Hacker* Module

Onloo Module+ a Onlooker* Module + a Hacker + a Onlooker + Characteristics

α α α α

α ε

= + + +

+β
    (13) 

The regression results for Equation (13) are shown in Table 6. 

Table 6.  Estimation Results for Equation (13) 

Independent Variables Model 1 Model 2 

Module 
2.601*** 

(0.413) 

2.821*** 

(0.504) 

Module2 
−0.515** 

(0.222) 

−0.585** 

(0.259) 

Hacker*Module 
3.618*** 

(0.904) 

3.965*** 

(1.106) 

Hacker*Module2 
−1.914*** 

(0.562) 

−2.127*** 

(0.680) 

Onlooker*Module 
0.555 

(0.570) 

0.287 

(0.727) 

Onlooker*Module2 
−0.576** 

(0.291) 

−0.486 

(0.357) 

 R2 0.264 0.225 

Notes: N=1715. ***p<0.01. Dependent variable is the Code_commit in 
Model 1, and Code_LOC in Model 2. Other control variables are the same as 
in Equation (11).  
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It can be seen that compared with the base group of leaders, hackers increase their contribution faster 

initially, as evidenced by the positive and significant 
4

α  . However, their contribution decreases faster 

than others after certain threshold of m, and this is supported by the negative and significant sign of  
5

α . 

Discussion 

We develop a model to examine the impact of modular code architecture on code contribution in OSS 
development. Our model explicit considers the resource heterogeneity, various motivations of the 
programmers as well as the strategic interactions between them, thus extending the results from prior 
literature (e.g., Johnson 2002; Baldwin and Clark 2006; Shah 2006). We make several important 
contributions to the emerging literature of OSS development.  

First, current OSS models almost invariantly consider OSS as a pure public good since the final software 
products are shared by everybody, and assume contributors do not derive private benefits from their own 
contributions (e.g., Johnson 2002; Baldwin and Clark 2006). However, as described in the private-
collective innovation model, motivations of various types of contributors to OSS projects are very 
different, and while some mainly benefit from the final product, others may derive benefits from the 
coding process itself (von Hippel and von Krogh 2003). Essential to our analysis is the presence of hacker 
programmers, which contribute to the source code most out of their own private interests (Shah 2006). 
To the best of our knowledge, our type-dependent model is the first to explicitly account for both the 
public and the private nature of the OSS model. Second, while prior literature have suggested that code 
architecture will influence the extent of free-riding which endangers the healthy development of OSS 
communities, they do not distinguish between code contribution and code participation (e.g., Johnson 
2002; Baldwin and Clark 2006). We extend prior literature by arguing that these are two different 
concepts depicting involvement into OSS development: while two programmers may both participated in 
the coding activities, the amount of the code they contributed can differ substantially, thus describing 
free-riding as coding the OSS project or not is not accurate, and may even be misleading.  

Third, our results reveal that rather than uniformly reducing free-riding in OSS development, modular 
architecture may well increase free-riding initially. It is due to tradeoff between the positive and negative 
impact of modular design. When modular architecture is initially adopted, the benefits outweigh the costs 
for programmers, particularly for the hackers, and this has widened the gap of code contributions 
between programmers. However, as code architecture gets increasingly modular, the negative side 
dominates, and programmers, particularly the hackers will refrain from contributing, which narrows 
down the gap of contributions, thus free-riding is less severe. Fourth, although theoretical models 
examining the effect of code architecture on code contribution exist, we know no empirical evidence in the 
current literature. In this study, we use the OSS development data obtained from SofrceForge.net. The 
CVS log file allows us to trace which developers contributed what codes to which modules and when. 
Therefore, our study also represents the first attempt to validate the theoretical models using real world 
data.  

Our results contribute to our understanding about the broader literature of open innovation as well. Open 
innovation is attracting increasing attention from both researchers and practitioners, and it reflects the 
innovation trend that firms and organizations are increasing rely on the external as well as the internal 
resource for innovation due to stronger global competition and accelerated flow and exchange of 
knowledge and information across firm boundaries (Chesbrough 2003). The idea of open innovation 
originated from OSS development (e.g., Gruber and Henkel 2006, West and Gallagher 2006), and has 
quickly proliferated into other research areas as well. Researchers suggest that one of the most important 
challenges to open innovation is how to design the model so to facilitate innovation processes 
(Chesbrough 2007). So far, quite some research has devoted to the study of organizational design (e.g., 
Jacobides and Billinger 2006; Dittrich and Duysters 2007), but few have realized that product design also 
bears importance to the success of the open innovation. Our results shows both the positive and negative 
side of modular product design, thus managers can leverage the findings of this study so to enhance the 
contribution from various business partners, and eventually leading to success of open innovation.   

Our results bear important implications for practitioners as well. First, to induce code contribution, it is 
imperative to attract the hacker programmers. Research has shown that hackers tend to be highly skilled, 
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and they can potentially provide guidance to other programmers (Shah 2006). Most importantly, they 
contribute to the code base out of their own private interests, thus their enthusiasm provides the bottom 
line to the healthy development of the OSS community. In contrast, the onlookers and the leaders 
anticipate the contribution levels from the hackers, and the less contribution from the hackers, the more 
likely the onlookers and the leaders tend to start to contribute. Second, it would help to make the code 
structure or the workspace more user-friendly, so that potential programmers can make up their mind to 
contribute, and a modular code structure is one of the effective approaches to do so. Third, and most 
importantly, both our theoretical and empirical analysis suggest that although modular design can 
potentially increase the level of contribution, it might not be reliable to count on the design structure to 
reduce free-riding or inequality of contribution. Thus practitioners need to avoid the negative impact of 
modular design and incorporate other mechanisms that potentially can help to solve the free-riding 
problem. 

Conclusion 

The private-collective nature of OSS model makes many believe that OSS model has the potential to be 
applied in much broader fields other than software development (von Hippel and von Krogh 2003; Rai 
2005; Shah 2006; Fleming and Waguespack 2007). However, OSS model differs from prior models of 
innovations in some prominent ways, and success of OSS model depends on our understanding of some 
important issues such as the motivations of contribution and design of code architecture, etc. In this 
paper, we study how OSS code architecture could affect code contribution from programmers, with 
particular attention to the problem of free-riding. Our study opens several areas for future explorations. 
First, we do not differentiate the three types of benefits brought by the modular design: reduced cognitive 
cost, lower coordination cost, and enhanced code quality, future study might model and empirically test 
these effects separately. Another limitation is that we cannot distinguish all types of programmers directly 
from our dataset, and future studies might develop algorithms to identify programmer types so to validate 
our prediction for each type directly. Lastly, we model the OSS code contribution as a static game; 
however, code contribution involves constant interactions between various participants, thus future effort 
can extend this research by studying the dynamics of code contribution using dynamic model of multiple 
stages or even under continuous time horizon. 
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