
 Thirty Second International Conference on Information Systems, Shanghai 2011 1

Modeling and Checking Business Process
Compliance Rules in the Financial Sector

Completed Research Paper

Jörg Becker

University of Münster
European Research Center

for Information Systems (ERCIS)
Leonardo-Campus 3

48149 Münster, Germany
becker@ercis.uni-muenster.de

Philipp Bergener
University of Münster

European Research Center
for Information Systems (ERCIS)

Leonardo-Campus 3
48149 Münster, Germany

bergener@ercis.uni-muenster.de

Patrick Delfmann
University of Münster

European Research Center
for Information Systems (ERCIS)

Leonardo-Campus 3
48149 Münster, Germany

delfmann@ercis.uni-muenster.de

Burkhard Weiß
University of Münster

European Research Center
for Information Systems (ERCIS)

Leonardo-Campus 3
48149 Münster, Germany

weiss@ercis.uni-muenster.de

Abstract

Assuring compliance of business processes with legal and internal regulations is crucial
for financial institutions, as non-compliance may lead to severe financial and juridical
penalties. To ensure business process compliance, process models have been established
as a widely accepted basis for the design, documentation and control of the implementa-
tion of business process rules. Accordingly, in this paper, we introduce a semi-automatic
business process compliance checking approach based on process models and related
models. It relies on graph-based pattern matching, which makes it possible in contrast
to existing approaches to define and check any possible type of business rule in any pos-
sible type of business process model or even other type of model. The approach is em-
bedded in a design science research methodology.

Keywords: Business Process Compliance, Business Rules, Conceptual Modeling, Model
Checking, Pattern Matching, Financial Sector

CORE Metadata, citation and similar papers at core.ac.uk

Provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301352489?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Project Management, Outsourcing and IS Development

2 Thirty Second International Conference on Information Systems, Shanghai 2011

Introduction

Assuring compliance – obeying legal or company-specific regulations – is a crucial issue in information
systems development, as neglecting these regulations can lead to severe monetary disadvantages or even
legal punishment. Hence every information systems development process should incorporate mecha-
nisms that allow for assuring compliance right from the start. In this paper, we focus on assuring compli-
ance in business processes as a vital part of information systems. Particularly, we focus on business pro-
cess compliance assurance in the financial sector based on conceptual models.

According to a recent empirical study by Abdullah et al. (2010), “the financial sector is the most highly
regulated industry.” In fact, with the upcoming of the financial crisis since 2007 and the Euro-crisis since
2010, there is a continuing trend towards increased regulation in this already highly regulated industry
(Caldwell 2009, Caldwell et al. 2009, Opromolla 2009). In addition to external regulations, banks are also
ruled by many internal regulations, which prescribe the ways and means by which the daily operating
business and hence business processes are to be implemented.

As banking business tends to be manifold, with a diverse number of services and products offered to cus-
tomers, business process landscapes in banks are also very complex. Raduescu et al. (2006), for example,
report on a financial institution that engaged in a project “involving over 300 [process] modelers, with a
[process] model repository of over 1,800 [business process] models, as part of its $190 million investment
in business process management initiatives.”

Hence, banks are faced with the immense challenge of ensuring that their large business process reposito-
ry complies with the abundance of existing laws and new regulations. Supportingly, Moormann et al.
(2009) remark that the handling of complexity in business processes of financial institutions is a challeng-
ing task, in which some of the most important complexity drivers include the high rate of business rule
changes and the redundant documentation of business processes and business rules. Ensuring that busi-
ness processes comply with given regulations (frequently termed as business process compliance man-
agement) is thus a difficult and strenuous task that, if not permanently accomplished successfully, has a
high risk of resulting in severe financial and juridical penalties. Winkingly, this dilemma has frequently
been described by the bon mot: “If you think compliance is expensive try non-compliance.”

Obviously, non-compliance in banks is not an option and therefore, the research problem can be framed
as the need to implement business process compliance (BPC) in an efficient (i.e., using as minimal re-
sources as possible) and effective manner (i.e., addressing all regulations that apply to the business pro-
cess landscape). In recent years, this challenge has led to an increasing number of approaches to solve
compliance issues within IS research (Abdullah et al. 2009). In particular, research focused on partially
automating the task of compliance checking and giving advice and IT support on how to model business
process rules and detect their occurrences – or in case of violation their non-occurrence – in business
process models. However, as many of these approaches are still in their infancy (Rikhardsson 2006), they
only partially solve the dilemma of business process compliance and are hence not suitable for serving as
a possible IS standard with regards to compliance modeling and compliance checking. In fact, there is a
research gap that results from the restrictions of these approaches, which can be summarized as follows:

 types of supported compliance rules: existing approaches focus on modeling and checking sim-
ple business process compliance rules in business process models expressing predecessor/successor
relations (e.g., Activity A must follow Activity B). However, more complex rules like escalation rules
using additional information from models other than process models are neglected by existing ap-
proaches. For instance, a credit application that has been approved by an employee has to be checked
once again by a second employee who is superordinate of the first one. An according compliance rule
has to check a sequence of actions related to different responsible persons in a process model and the
disciplinary relation of the responsible persons in an organizational chart. As such complex rules are
not less important than simple ones, we argue that a universal compliance checking approach should
not abandon these rules, hence support any rule structure in any type of model.

 supported (process) modeling languages: existing approaches focus on compliance checking
support for one given process modeling language (e.g., Event-driven process Chains (EPC) (Scheer
2000) or the Business Process Modeling Notation (BPMN) (White and Miers 2008)). Due to the fact
that the use of business process modeling languages amongst different banks is very heterogeneous

 Modeling and Checking Business Process Compliance Rules

 Thirty Second International Conference on Information Systems, Shanghai 2011 3

(Becker et al. 2010), we argue that the compliance community would benefit from a more general
compliance checking approach that is suitable for any modeling language. In the end, not every finan-
cial institute will be willing to change its process modeling language in use only to fit a specialized
compliance checking approach. Thus, a universal compliance checking approach should be applicable
to models of any modeling language to enable widespread application.

Hence, our research objective within this paper, and thus also our research contribution in closing the
research gap and solving the research problem, is to present a business process compliance checking ap-
proach suitable for arbitrary modeling languages. It allows for specifying complex business process com-
pliance rules for any modeling language and for identifying the rules’ occurrences in the respective mod-
els. Thus, we aim at handling information from process models, combined with other types of linked con-
ceptual models, and also being able to create and analyze complex, e.g. interlaced, business process com-
pliance rules in complex, e.g. highly branched and concurrent (process) models. To achieve this objective,
we exploit a well-known property of conceptual models. Every conceptual model can be seen as a graph
(Diestel 2010) consisting of nodes and edges. As occurrences of compliance rules appear as typical struc-
tures in conceptual models, the search for these occurrences can be described as a graph pattern matching
problem – regardless of how complex the rules are and to which type of model the rules are to be applied.
Hence, we base our approach upon a graph-based representation of the models to be searched in and a
graph pattern-based representation of the compliance rules to be searched for. Two compliance patterns
describing the same rule for different modeling languages will hence differ in the used node and edge
types and in the way they have to obey the syntaxes of the modeling languages. This way, we are able to
define and search for compliance rule patterns of and in models of any type. Of course the set of compli-
ance patterns for a company using, for instance, the Business Process Modeling Notation (BPMN) (White
and Miers 2008), and organizational charts will look different from that of a company using, for example,
Petri Nets (Petri 1962). Summarizing, the approach to be introduced in this paper differs from existing
ones inasmuch the specifics of modeling languages are treated as variables – not as constants. At the end,
this allows us as well to specify and search for compliance patterns of any complexity.

Due to the fact that the research problem demands for the development of a new or better approach to
business process compliance modeling and checking, and hence for the development of an IS artifact, a
design science approach is chosen to tackle the research problem at hand. Typically, design science is ap-
plied to design methodologies (including process models) and languages, and as the presented approach
deals with compliance modeling and checking in the context of process models, this research approach is
particularly well-suited for this type of research.

In particular, the design science research methodology (DSRM), according to Peffers et al. (2007), is ap-
plied in this paper. The DSRM approach is a 6-step procedure model that suggests to first identify and
define a problem as well as motivate its relevance (as done within this introduction), followed by the defi-
nition of objectives of a solution (e.g., requirements that a new design artifact should fulfill to be regarded
as a better solution for a given problem). It then proposes to design and develop an artifact (e.g., a new
approach to business process compliance modeling and checking), as well as to demonstrate its ability to
solve a problem in a suitable context. Furthermore, it recommends to evaluate the artifact’s utility and to
determine if it is in fact a better solution than existing solutions to solve the given problem. Finally, it de-
mands that the research outcomes shall be published in order to make a valid contribution to the existing
scientific body of knowledge.

Thus, the remainder of this paper is structured as follows: at first, the status quo of model-driven business
process compliance checking approaches is examined to identify research gaps and requirements for an
improved approach to business process compliance modeling and checking. Then, a business process
compliance modeling and checking approach suitable for arbitrary modeling languages and based on pat-
tern matching is presented. Furthermore, the functionality of the approach is demonstrated on a set of
business process compliance rules, using four different modeling languages. We evaluate our approach by
presenting an implementation showing the approach’s practical applicability, a performance evaluation to
prove the approach’s satisfactory running time and a survey including professionals from financial institu-
tions to confirm the utility of the approach. Finally, the paper concludes with a discussion of the key find-
ings and research limitations, while summarizing the research contributions and closing with an outlook
on future research that can be inspired by the presented work.

Project Management, Outsourcing and IS Development

4 Thirty Second International Conference on Information Systems, Shanghai 2011

Related Work

The notion of business process compliance refers to the implementation and execution of business pro-
cesses and their conformance with a set of relevant compliance requirements, such as internal directives
and laws that govern them (Sadiq et al. 2007, Cabanillas et al. 2010). To ensure that business processes
are compliant with certain rules, conceptual models, and in a narrower sense process models, have been
established as a widely accepted basis for the design, documentation and control of the implementation of
business process rules (Sadiq et al. 2007, vom Brocke et al. 2008, Wand and Weber 2002).

A methodologically consistent design or maintenance of business processes always begins with the design
or maintenance of the corresponding business process models. This approach is propagated by process
modeling approaches and has been approved in practice (vom Brocke et al. 2008, Wand et al. 2002).
Hence, in order to avoid the risk of violating of compliance rules during design or maintenance of busi-
ness processes, business process models should be created and maintained in a compliant manner right
from the start. However, due to the complex nature of many business processes, and correspondingly
their process models, as well as the abundance of business compliance rules and last but not least due to
the frequent changes of processes (Moormann et al. 2009), manual business process compliance checking
is a strenuous task that should be improved through the use of IT-supported methods (Namiri 2008).

As a consequence, researchers have recently begun with the development of approaches to automate
compliance checking and formally model certain types of business process compliance rules. These ap-
proaches can be classified by the point in time when compliance is checked. The two points in time are
(Cabanillas et al. 2010, El Kharbili et al. 2008, Zoet et al. 2009, Rinderle-Ma et al. 2008) forward com-
pliance checking (FCC) (before a process is executed) and backward compliance checking (BCC)
(after a process is executed).

Backward compliance techniques typically focus on the analysis of actual process instances, obtained from
process mining logs from workflow management systems. An example is the compliance checking ap-
proach presented by Rozinat and van der Aalst (2008), who present a conformance checking technique
that compares the behavior of actual process instances to predefined process models and is able to identi-
fy instances that do not comply to the model. A further example of a process mining based backward
compliance approach is the approach from van der Aalst et al. (2005), who suggest the use of Linear
Temporal Logic to verify business compliance rules for sequence, temporal and executing person con-
straints. The major drawback of backward compliance checking techniques is, however, “that they can
neither prevent the occurrence of non-compliant situations nor modify the behavior of the process in-
stance during its execution to solve problems, since they just compare the results of the execution with the
expected behavior, once the process execution is over” (Cabanillas et al. 2010).

In contrary, forward compliance checking techniques concentrate on preventing compliance violations,
before they are committed or enabling the on-the-fly recovery of compliance violations directly at the time
of their occurrence. This is done by either design time compliance checking (DTCC) (checking pro-
cesses while they are modeled, in terms of a process model), or run time compliance checking
(RTCC) (checking processes when they are being executed).

As a prerequisite, run time compliance checking techniques need real-time data from running process
instances (e.g., from a workflow management system). With these data they can then check if a compli-
ance violation has just taken place and can offer recovery actions to resolve detected compliance viola-
tions by restoring a compliant state of the running process instance. An example of such an approach is
the semantic mirror approach by Namiri and Stojanovic (2007).

As both backward compliance and run time compliance only provide methods for ex post detection of
compliance violations and at best also reactive techniques (in the case of run time compliance checking),
research has primarily focused on design time compliance checking techniques (Cabanillas et al. 2010)
and resulted in a number of different approaches for these. The approach by Wörzberger et al. (2008)
suggests a business process compliance language (BPCL) for the description of compliance rules for inclu-
sion, existence and precedence of activities in processes. BPCL rules are related with WS-BPEL models
through an integrated meta model. The business process specification language (BPSL) by Liu et al.
(2007) describes another approach for explicating sequence compliance rules for the formal business pro-
cess execution language (BPEL) that define in which order activities of a process can be executed. Sadiq et

 Modeling and Checking Business Process Compliance Rules

 Thirty Second International Conference on Information Systems, Shanghai 2011 5

al. (2007) describe an approach that furthermore allows for the specification of controls, which can define
data and resources needed for a process activity as well as temporal constraints. The paper focuses more
on the specification of compliance rules and not on compliance checking, which would only be feasible at
runtime for some of the rules. Governatori et al. (2009) present an approach which is also based specify-
ing compliance rules in FCL (Formal Contract Language). They develop an algorithm that is able to detect
regulatory compliance violations based on effect annotations in process models. Ghose et al. (2007) pro-
pose a similar approach based on effect annotations and compliance rules in CTL (Computational Tree
Logic). They focus not so much on compliance checking as such but on strategies to transform incompli-
ant process models to compliant ones.

Under the notion of lifetime compliance of business processes, Ly et al. (2009) suggest a formal frame-
work for DTCC, RTCC and to a minor extent BCC. The framework is based on event traces as a formaliza-
tion of the underlying processes. Compliance requirements, which cannot be checked during process
model creation, are checked during process execution against the current event history, while also consid-
ering the future behavior of the process. Special attention is also given to handling process changes.

Comparing this portfolio of research approaches with regards to the utility each approach provides in the
context of business rules modeling and compliance checking, we see two main areas of interest regarding
a research gap:

 types of supported compliance rules: first of all, it is of interest to evaluate the expressiveness of
these approaches in terms of being able to model any type of business rule (Cabanillas et al. 2010).

 supported (process) modeling languages: secondly, it is of interest to evaluate the universality of
the approaches in terms of being able to apply them in the context of any given (process) model and
modeling language.

It is important to enable banks to model and check as many process-related compliance rules as possible.
However, the approaches by Ghose et al. (2007), Governatori et al. (2009) and Ly et al. (2009), which are
based on effect or event notions are all not able to deal with more complex process models containing
loops. Ly et al. also have concerns regarding the performance of event trace based checks and instead re-
vert to structural checks on the underlying process models for the prototypical implementation. Liu et al.
(2009) do not directly cover the topic of loops. But since their approach is based on Finite State Machines
it is unlikely that the approach can deal with the possible infinite number of states caused by loops. Only
the approach of Wörzberger et al. (2008) seems to be able to cope with this problem, however it is not
clarified. Besides process models, banks, just like many other organizations, also create other types of
models, for example, to document their organizational hierarchy and their resources and link them to
process models. To enable a maximum freedom in specifying compliance rules, it is also reasonable to use
and check information from non-process models (e.g., data and resource models) that are closely linked to
process models (cf. also example in the introduction). However, only Sadiq et al. (2007) provide extensive
capabilities to define constraints regarding resources and data but do not present an approach to check
the constraints. The approaches by Ly et al. (2009) and Governatori et al. (2009) contain variable con-
cepts, which may be able to support process annotations to some extent. However, it is not demonstrated
how this can be achieved. Ghose et al. (2007) only take actors into account through the use of BPMN
swimlanes. Liu et al. (2007) and Wörzberger et al. (2008) provide no means for any kind of resource re-
lated rules. Furthermore, none of the approaches is able to consider separate models for resources.

Supporting any (process) modeling language is of high importance for many organizations including
banks from an economic point of view, as many of them have already modeled a large share of their pro-
cess landscape, while at the same time using individual process modeling languages (Becker et al. 2010).
Hence, as it may imply monetary disadvantages and process management “cultural” obstacles, they may
not be willing to transform their process models into a language, required by an existing compliance
checking approach. Moreover, a company may apply a domain-specific (process) modeling language that
fits best its needs. Such a company should be supported by a compliance checking approach anyhow.
However, existing approaches are mostly specially tailored for distinct modeling languages. For instance,
the approach by Ghose et al. (2007) is tailored towards BPMN, while Liu et al. use BPEL for process mod-
eling. Wörzberger et al. (2009) rely on a meta model integration with WS-BPEL. Governatori et al. (2009)
require languages which have a token concept like Petri Nets. Sadiq et al. (2007) state that their approach
can be mapped to languages like BPMN and Petri Nets, but do not provide further details or restrictions.
Through the use of event traces, the approach of Ly et al. (2009) generally abstracts from specific model-

Project Management, Outsourcing and IS Development

6 Thirty Second International Conference on Information Systems, Shanghai 2011

ing languages. However, in their prototypical implementation, they rely on structural model checks in
ADEPT process models due to performance reasons.

Thus, to our best knowledge, there is no compliance checking approach allowing to define arbitrary com-
pliance rules, based on any type of conceptual model, and suitable for any type of modeling language.
Hence, in this paper, we aim to present an approach, which addresses this research gap. This approach
shall have the following characteristics:

 Support any type of compliance rule: the new approach shall allow the definition of a variety of
different types of business process compliance rules, ranging from simple sequence rules, which can al-
so be detected in process models containing loops, to even providing the possibility to specify complex
rules that also take advantage of additional information from other conceptual models.

 Support any modeling language: the new approach shall support the modeling and checking of
compliance rules for arbitrary modeling languages.

Hence, we introduce a business process compliance checking approach that is applicable to conceptual
models, regardless of which modeling language they are. Furthermore, we aim at being able to specify
compliance rule patterns of any structure – as soon as they are explicable as a subgraph or a subgraph’s
subdivision in a model graph. This means that regardless of the modeling language a company uses to
describe its business processes the approach can be applied without transforming the models of that com-
pany into another modeling language. However, the compliance rule patterns have to be specified accord-
ing to the modeling language the company uses. In contrast to existing approaches, we treat the specifics
of a distinct modeling language as variables – not as constants. Consequently, a compliance pattern for
BPMN will be different from a pattern for Petri Nets.

A Graph Pattern-based Compliance Checking Approach

According to the previously identified characteristics, a business process compliance checking approach
should provide the possibility to specify compliance rules, regardless of their shape, their complexity and
the modeling language they are applied to. We argue that this is possible due to two core properties of
(process) models and model sections representing compliance rule instances:

 Every (process) model consists of labeled vertices and edges connecting the vertices. In this context, it
is irrelevant, which modeling language was used to create the model. Solely the vertices’ and edges’
types of different modeling languages and the way they can be connected are different. As already stat-
ed above, we treat these special properties of modeling languages as variables.

 Every (process) model that obeys a compliance rule incorporates a section that represents the instance
of the rule. For example, a compliance rule requiring a document double check will appear as two suc-
ceeding process activities with different persons in charge attached. Hence, a compliance rule can be
expressed as a (process) model pattern with a distinctive structure and distinctive labeling.

Regarding these two properties, we can specify compliance rules as graph patterns. As it is possible to
specify graph patterns of any size, any complexity and any labeling, it is consequently possible to specify
any compliance rule using graph patterns. Using graph patterns as a specification basis makes it also pos-
sible to handle arbitrary modeling languages.

In order to identify compliance rule instances in (process) models, we make use of a graph pattern match-
ing approach, which was available from a previous research project (Delfmann et al. 2010). It is applicable
to multiple modeling languages and multiple application scenarios. Hence, it supports any situation re-
quiring the search for (compliance) patterns in conceptual (process) models.

The idea of this approach is to apply set operations to a set of model elements, representing the model to
be analyzed. Coming from graph theory, the approach recognizes any conceptual model as a graph G, con-

sisting of vertices V and edges E, where G=(V,E) with EV×V. Therefore, the approach distinguishes
model objects, representing nodes, and model relationships, representing edges interrelating model ob-
jects. Starting from a basic set that contains all model elements, the approach searches for pattern match-
es by performing set operations on this basic set. By combining different set operations, patterns are as-
sembled successively. Given a pattern definition, the matching process returns a set of model subsets, rep-
resenting the pattern matches found. Every match found is put into a separate subset.

 Modeling and Checking Business Process Compliance Rules

 Thirty Second International Conference on Information Systems, Shanghai 2011 7

Element Type (A)

Object Type (B)Relation Type (C)

Element (E)

Object (O) Relationship (R)

Directed: Boolean Domain: Enum Value: B.Domain

0..*

0..*

0..*

0..*

1..1

1..1

1..1

1..1
1..1 0..*Instantiates

Is
 S

o
u

rc
e

 O
f

Is
 T

a
rg

e
t
O

f

Is
 S

o
u

rc
e

 O
f

Is
 T

a
rg

e
t
O

f

Figure 1. Specification Environment for Conceptual Modeling Languages and Models

As a basis for the definition of patterns, the approach makes use of a specification environment for con-
ceptual modeling languages and models. The specification mainly consists of three constructs (cf. Figure
1). Element types, representing any atomic part of a model, are specialized as object types (i.e., model ver-
tices) and relationship types (e.g., model edges and links). Each relationship type has a source element
type from which it originates, and a target element type to which it leads. Relationship types are either
directed or undirected. Whenever the attribute directed is FALSE, the direction of the relationship type is
ignored. n-ary relationship types are represented as object types connected to n relationship types.

Particular model elements are instantiated from their distinct element type. They are specialized as ob-
jects and relationships. Each of the latter leads from a source element to a target element. Objects can
carry values, which belong to a distinct domain, specified in the object type, to which the object belongs
to. For example, the value of an object “name” contains the string of the name (e.g., “credit”). As a conse-
quence, the domain of the object’s object type has to be “string” in this case. Thus, attributes are consid-
ered as objects.

The pattern matching approach makes use of set operations, extracting elements, objects and relation-
ships with particular properties from the sets of the specification environment shown and thus builds up
pattern matches successively. For example, such an operation could analyze all elements of a process
model and returns only those process activities that are related to two different organizational units at the
same time. This exemplary pattern would represent a compliance rule that requires the so-called four-
eyes-principle.

In the following, we introduce the available operations of the approach briefly (for a detailed formal speci-
fication cf. (Delfmann et al. 2010)). Each operation has a defined number of input sets and returns a re-
sulting set, where the initial input sets used come from the specification environment (cf. abbreviations in
the objects of Figure 1). In the explanation of the operations, we use additional sets (X: arbitrary set of
elements; Y: arbitrary set of objects; Z: arbitrary set of relationships), specifying which types of inputs an
operation expects. The first category of operations reveals specific properties of model elements:

 ElementsOfType(X,a) returns a set of all elements of X, belonging to the given element type a.

 ObjectsWithValue(Y,value) returns a set of all objects of Y, whose values equal the given one.

 ObjectsWithDomain(Y,domain) returns a set of all objects of Y, whose domains equal the given one.

In order to assemble complex pattern structures successively, the following operations combine elements
and their relationships and elements, being related, respectively:

 ElementsWithRelations(X,Z) returns a set of sets, containing all elements of X and their undirected
relationships of Z. Each inner set contains one occurrence.

 ElementsWithOutRelations(X,Z) returns a set of sets, containing all elements of X and their directed,
outgoing relationships of Z. Each inner set contains one occurrence.

 ElementsWithInRelations(X,Z) is defined analogously to ElementsWithOutRelations. In contrast, it
only returns incoming relationships.

 ElementsDirectlyRelated (X1,X2) returns a set of sets, containing all elements of X1 and X2 that are
connected directly via undirected relationships of R, including these relationships. Each inner set con-
tains one occurrence.

 DirectSuccessors (X1,X2) is defined similarly to ElementsDirectlyRelated. Though, it only returns di-
rected relationships, of which the source elements are part of X1 and the target elements are part of X2.

Project Management, Outsourcing and IS Development

8 Thirty Second International Conference on Information Systems, Shanghai 2011

A further category of operations is needed to build patterns, representing recursive structures (e.g. a path
of an arbitrary length):

 {Directed}Paths(X1,Xn) returns a set of sets, containing all sequences with undirected {directed} rela-
tionships, leading from any element of X1 to any element of Xn. The elements that are part of the paths
do not necessarily have to be elements of X1 or Xn, but can also be of E\X1\Xn. Each path found is rep-
resented by an inner set.

 {Directed}Loops(X) is defined similarly to {Directed} Paths. It returns a set of sets, containing all un-
directed {directed} sequences, which lead from any element of X to itself.

To avoid infinite sets, only finite paths and loops are returned. To provide a convenient specification envi-
ronment for structural model patterns, we define some additional functions that are derived from those
already introduced:

 ElementsWith{In|Out}RelationsOfType(X,Z,c) returns a set of sets, containing all elements of X and
their {un}directed, {incoming|outgoing} relationships of Z of the type c. Each occurrence is represent-
ed by an inner set.

 ElementsWithNumberOf{In|Out}Relations(X,n) returns a set of sets, containing all elements of X,
which are connected to the given number n of {un}directed {incoming|outgoing} relationships of R, in-
cluding these relationships. Each occurrence is represented by an inner set.

 ElementsWithNumberOf{In|Out}RelationsOfType(X,c,n) returns a set of sets, containing all elements
of X, which are connected to the given number n of {un}directed {incoming|outgoing} relationships of
R of the type c, including these relationships. Each occurrence is represented by an inner set.

 {Directed}PathsContainingElements(X1,Xn,Xc) returns a set of sets, containing elements that repre-
sent all undirected {directed} paths from elements of X1 to elements of Xn, which each contain at least
one element of Xc. The elements that are part of the paths do not necessarily have to be elements of X1
or Xn, but can also be of E\X1\Xn. Each such path found is represented by an inner set.

 {Directed}PathsNotContainingElements(X1,Xn,Xc) is defined similarly to {Directed}PathsContaining-
Elements. However, it only returns paths that do not contain any element of Xc.

 {Directed}Loops{Not}ContainingElements(X,Xc) is defined similarly to {Directed}Paths{Not}Con-
tainingElements but is related to loops.

By nesting the functions, introduced above, it is possible to build model patterns successively. The results
of each function can be reused, adopting them as an input for other functions. In order to combine differ-

ent results, the basic set operators union (), intersection (), and complement (\) can generally be used.
Since it should be possible to not only combine sets of pattern matches (i.e., sets of sets), but also the pat-
tern matches themselves, the approach incorporates additional set operators. These operate on the inner
sets of two sets of sets respectively.

The Join operator performs a union operation on each inner set of the first set with each inner set of the
second set. Since we regard patterns as cohesive, only inner sets that have at least one element in com-
mon, are considered. The InnerIntersection (II) operator intersects each inner set of the first set with
each inner set of the second set. The InnerComplement (IC) operator applies a complement operation to
each inner set of the first outer set combined with each inner set of the second outer set. Only inner sets
that have at least one element in common are considered.

As most of the introduced set operations expect simple sets of elements as inputs, further operators are
introduced that turn sets of sets into simple sets. The SelfUnion (SU) operator merges all inner sets of one
set of sets into a single set performing a union operation on all inner sets. The SelfIntersection (SI) opera-
tor performs an intersection operation on all inner sets of a set of sets successively. The result is a set,
containing elements that each occur in all inner sets of the original outer set.

A simple exemplary pattern, searching for two particular Activities (named “Activity A” and “Activity B”),
following each other over a path of arbitrary length, is specified as follows:

DirectedPaths(ObjectsWithValues(ElementsOfType(O,Activity),“Activity A“),

 ObjectsWithValues(ElementsOfType(O,Activity),“Activity B“))

As this pattern shows, some compliance rules require the analysis of model vertices’ labels. To receive
consistent results, it is crucial that the labels are semantically unambiguous. Although we do not evaluate

 Modeling and Checking Business Process Compliance Rules

 Thirty Second International Conference on Information Systems, Shanghai 2011 9

according approaches in this paper, we recommend using an approach that is able to consider the actual
meaning of a model element’s content. Otherwise proper pattern matching is hardly possible, as simply
checking the strings of labels may lead to ambiguous, incorrect or even no results. To account for using
according approaches, we use placeholders in the patterns to be specified below that are supposed to carry
semantic concepts to be evaluated by the respective approaches (see below).

Application to Different Modeling Languages and Compliance Rules

In the following we show how the pattern matching approach can be applied to models of different model-
ing languages and to different compliance checking scenarios. For this purpose we use a set of compliance
rules that were identified through literature reviews in prior research (Becker et al. 2011). Although, this
set of rules does not claim to be exhaustive, it covers a bulk of compliances rules that are discussed in the
literature. Hence, they should provide a good measure of the applicability of the pattern matching ap-
proach for compliance modeling and checking.

As process modeling language examples, we use BPMN, Event-driven Process Chains (EPCs) (Scheer
2000) and Petri Nets (PN). As a non-process modeling language example, we use organizational charts,
which play an important role in compliance management, for example, due to escalation regulations. To
show the applicability of our compliance checking approach to different process modeling languages, we
specify typical business process compliance rules for process modeling languages, which we took from the
literature (Awad and Weske 2009). In addition, to show the applicability to other conceptual models, we
specify a compliance rule requiring information from both process models and organizational charts.

Table 1. Object Types of Process Modeling Languages

BPMN EPC Petri Nets
Activity Function Transition
{Start|Intermediate|End}Event Event Place
Gateway Operator ---
Document Data Place
IT System IT System Place
Swimlane Organizational Unit Place
… … …

Table 2. Relationship Types of Process Modeling Languages

Language Relationship Type Source Object Type Target Object Type Directed
BPMN Process Flow 1 Activity Event TRUE
BPMN Process Flow 2 Event Activity TRUE
BPMN Process Flow 3 Activity Gateway TRUE
BPMN Responsibility Activity Swimlane FALSE
… … … … …
EPC Control Flow 1 Function Event TRUE
EPC Control Flow 2 Event Function TRUE
EPC Control Flow 3 Function Operator TRUE
EPC Responsibility Function Organizational Unit FALSE
… … … … …
Petri Nets Flow 1 Transition Place TRUE
Petri Nets Flow 2 Place Transition TRUE
Petri Nets Marking Place Token FALSE

Tables 1 and 2 exemplarily show how process modeling languages can be specified using the specification
environment introduced above. Their object types are listed in Table 1. Due to the fact that the process
modeling languages we use here are all designed to represent actions and incidents, they all incorporate
similar concepts. (Note that there are further process modeling languages that do not make use of inci-
dent-like concepts and rely on actions only. Their process models will of course differ from those designed
in one of the languages at hand. The same applies for according compliance patterns). For instance, ac-

Project Management, Outsourcing and IS Development

10 Thirty Second International Conference on Information Systems, Shanghai 2011

tions are called “Activities” in BPMN, “Functions” in EPCs and “Transitions” in Petri Nets. Incidents are
called “Events” in BPMN and EPCs and are represented through “Places” in Petri Nets. There exist equal
concepts for annotations in BPMN and EPCs, such as Documents/Data, IT-Systems and Organization. In
Petri Nets, such annotations are represented through special places (e.g., a place representing an organi-
zational unit, whose tokens are consumed and reproduced as soon as the according transition fires). Ac-
cording relationship types are listed in Table 2. Just like the object types, the relationship types of the
process modeling languages show many similarities. The Control/Process Flow is always a directed rela-
tionship type between an action and an incident. In BPMN and EPCs, annotations are connected to activi-
ties/functions through undirected relationship types to indicate their use (note that some dialects use di-
rected relationship types, e.g., for data inputs and outputs). Petri Nets do not incorporate annotations ex-
plicitly, so they simply use the common control flow to connect special places to transitions (cf. example
above). Since BPMN and EPCs are very similar in their languages, their compliance patterns will look
quite similar, whilst a Petri Net pattern for the same purpose will look slightly different.

Table 3. Element Types of Organizational Charts

Object Type (OT)

Relationship Type Source OT Target OT Directed
Organizational Unit (OU)

part_of OU OU TRUE
Job

belongs_to OU OU TRUE
Person

supervises Job Job TRUE
…

occupies Person Job TRUE

Fayol’s Bridge Person Person FALSE

… … … …

Table 3 shows the specification of a typical modeling language of organizational charts. It consists of Or-
ganizational units (OU), jobs and persons that are interrelated by part-of relationships (e.g. to express
that a department belongs to a division), belongs-to relationships to assign jobs to OUs, supervises rela-
tionships to express who is superordinate to whom, etc.

Applying the pattern matching approach to business process compliance checking requires identifying
typical business rules representing requirements by law or internal standards. In the following, we intro-
duce exemplary patterns representing such structures. We apply them to the different modeling languages
specified above to provide an impression of the general applicability of our approach. The patterns can be
used to check (process) models whether they contain the specified structures and, as a consequence,
whether they comply with the given rules.

To allow a convenient specification of patterns, which are similar for the introduced process modeling
languages, we make use of placeholders comprising similar object types of the languages in the following.
Action will be a placeholder for Activity, Function and Transition. Incident will comprise Event
and Place. Of course Transition is only to be used with Place, Function with Event, and so on. Accord-
ingly, we generally speak of Actions and Incidents in the following.

In particular, we define patterns expressing so-called control flow rules, data rules and resource rules,
according to Awad and Weske (2009). Control flow rules define the sequence in which actions may or
should be performed. As general concepts, we introduce predecessor relations (if there is a particular ac-
tion, then it has to be preceded by another particular action) and successor relations (if there is a particu-
lar action, then it has to be followed by another particular action). Furthermore, there are existence or
non-existence rules (e.g., a process has to contain a particular action). Resource and data rules focus an-
notations of process actions. This means that not only the action sequences are taken into account, but
also their relationships to organization responsible for their execution and data being processed during
execution. Control flow patterns to be specified are (1) mandatory action, (2) forbidden action, (3) man-
datory predecessor, (4) forbidden predecessor, (5) mandatory successor, (6) forbidden successor, (7)
mandatory intermediary, (8) forbidden intermediary, (9) start action, (10) end action, and (11) immedi-
ate succession. Resource and data patterns are (12) separation of duties, (13) four-eyes-principle, and
(14) effect sequencing. A sophisticated resource rule that we specify to demonstrate parallel compliance
checking in models of different modeling languages is (15) escalation.

Note that in any case where a model element’s label has to be checked, meaning that a pattern searches
for a model element with a specific content, we use placeholders like ACT_A (“Action A”) supposed to con-

 Modeling and Checking Business Process Compliance Rules

 Thirty Second International Conference on Information Systems, Shanghai 2011 11

tain terms, phrases, ontological concepts, etc. We use these placeholders to indicate that checking the con-
tents of a model element against a given value can be done by using an arbitrary approach – for example
by using the Levenshtein distance (Levenshtein 1966), the ontological similarity (e.g., Thomas and Fell-
mann 2009) or the linguistic similarity (e.g., Delfmann et al. 2009). In the first case, ACT_A=ACT_B means
that the Levenshtein distance of ACT_A and ACT_B equals zero, in the second case ACT_A and ACT_B are
ontologically equal, and in the third case the terms (or even the phrases) used in the element’s labels are
synonymous. Although we do not evaluate according approaches in this paper, we recommend using an
approach that is able to consider the actual meaning of a model element’s content. Otherwise a proper
comparison is hardly possible.

The mandatory action rule requires a particular action to be part of a process. That is, a compliance check
based on the pattern matching approach introduced has to search for that action (i.e., the returned ele-
ment set of the following pattern specification must not be empty):

ObjectsWithValues(ElementsOfType(O,Action),ACT_A)

The forbidden action rule requires a particular action not to be part of a process. Thus, the pattern match-
ing approach has to search the according model for such an action. Here, the returned element set of the
pattern specification must be empty):

ObjectsWithValues(ElementsOfType(O,Action),ACT_A)=

The mandatory predecessor rule requires an action to precede another action, as soon as the latter exists.
In particular, this means that there has to exist a path in the process model that leads from the preceding
action over an arbitrary number of other actions to the succeeding action. First, it has to be checked
whether a specific action (here: ACT_B) exists:

ObjectsWithValues(ElementsOfType(O,Action),ACT_B)

If ACT_B exists, then a path from a specific predecessor action (here: ACT_A) to ACT_B has to exist in order
to satisfy the predecessor constraint:

DirectedPaths(ObjectsWithValues(ElementsOfType(O,Action),ACT_A),

 ObjectsWithValues(ElementsOfType(O,Action),ACT_B))

Should the second pattern search return no result, then a compliance violation is detected. If ACT_B does
not exist, the second check is not necessary, as then it is not possible to violate a predecessor constraint
related to ACT_B.

The forbidden predecessor rule requires an action not to precede another action, as soon as the latter ex-
ists. In particular, this means that a path in the process model that leads from the preceding action over
an arbitrary number of other actions to the succeeding action must not exist. First, it has to be checked
whether ACT_B exists:

ObjectsWithValues(ElementsOfType(O,Action),ACT_B)

If ACT_B exists, then a path from ACT_A to ACT_B must not exist in order to satisfy the predecessor con-
straint (i.e., the returned element set of the following pattern specification must be empty):

DirectedPaths(ObjectsWithValues(ElementsOfType(O,Action),ACT_A),

 ObjectsWithValues(ElementsOfType(O,Action),ACT_B))=

Should the second pattern search return a non-empty set, then a compliance violation is detected. If
ACT_B does not exist, the second check is not necessary, as then it is not possible to violate a predecessor
constraint related to ACT_B.

The mandatory and forbidden successor rules represent the counterparts of the mandatory successor
and forbidden successor ones. Here, it is required/forbidden that a particular action is followed by anoth-
er one. Thus, the specifications of the compliance rules are analogous, with ACT_A and ACT_B exchanged.

The mandatory intermediary rule requires that as soon as two particular succeeding actions exist, they
have to be intermediated by a third particular action. First, it has to be checked whether ACT_A exists and
is followed by ACT_C:

Project Management, Outsourcing and IS Development

12 Thirty Second International Conference on Information Systems, Shanghai 2011

DirectedPaths(ObjectsWithValues(ElementsOfType(O,Action),ACT_A),

 ObjectsWithValues(ElementsOfType(O,Action),ACT_C))=

If such a path exists, then this path has to contain ACT_B:

DirectedPathsContainingElements(ObjectsWithValues(ElementsOfType(O,Action),ACT_A),

 ObjectsWithValues(ElementsOfType(O,Action),ACT_C),

 ObjectsWithValues(ElementsOfType(O,Action),ACT_B))

Should the second pattern search return no result, then a compliance violation is detected. If there is no
path from ACT_A to ACT_C, the second check is not necessary, as then it is not possible to violate a manda-
tory intermediary constraint related to ACT_A and ACT_C.

The forbidden intermediary rule requires that as soon as two particular succeeding actions exist, they
must not be intermediated by a third particular action. First, it has to be checked whether ACT_A exists
and is followed by ACT_C:

DirectedPaths(ObjectsWithValues(ElementsOfType(O,Action),ACT_A),

 ObjectsWithValues(ElementsOfType(O,Action),ACT_C))=

If such a path exists, then this path must not contain ACT_B:

DirectedPathsNotContainingElements(ObjectsWithValues(ElementsOfType(O,Action),ACT_A),

 ObjectsWithValues(ElementsOfType(O,Action),ACT_C),

 ObjectsWithValues(ElementsOfType(O,Action),ACT_B))

Should the second pattern search return no result, then a compliance violation is detected. If there is no
path from ACT_A to ACT_C, the second check is not necessary, as then it is not possible to violate a forbid-
den intermediary constraint related to ACT_A and ACT_C.

The start action rule requires a particular action to be the start action of a process. Accordingly, such an
action (here: ACT_A) has to be preceded by a starting incident. The BPMN pattern checks whether ACT_A is
preceded by a start event. The EPC pattern checks whether there is an event having no predecessors,
which precedes ACT_A. A Petri Net pattern has to check whether ACT_A is preceded by a place that has no
predecessors. Furthermore, ACT_A must not have any other predecessors:

BPMN: DirectSuccessors(ElementsOfType(O,StartEvent),

 ObjectsWithValues(ElementsOfType(O,Activity),ACT_A))

EPC: DirectSuccessors(SU ElementsWithNumberOfInRelations(ElementsOfType(O,Event),0),

 ObjectsWithValues(ElementsOfType(O,Function),ACT_A))

PN: DirectSuccessors(SU ElementsWithNumberOfInRelations(ElementsOfType(O,Place),0),

 ObjectsWithValues(SU ElementsWithNumberOfInRelations(

 ElementsOfType(O,Transition),1),ACT_A))

The end action rule is the counterpart of the start action one. It requires a particular action to be the end
action of a process. Accordingly, such an action (here: ACT_A) has to be succeeded by an end incident. The
BPMN pattern checks whether ACT_A is succeeded by an end event. The EPC pattern checks whether there
is an event having no successors, which succeeds ACT_A. A Petri Net pattern has to check whether ACT_A is
succeeded by a place that has no successors. Furthermore, ACT_A must not have any further successors:

BPMN: DirectSuccessors(ObjectsWithValues(ElementsOfType(O,Activity),ACT_A),

 ElementsOfType(O,EndEvent))

EPC: DirectSuccessors(ObjectsWithValues(ElementsOfType(O,Function),ACT_A),

 SU ElementsWithNumberOfOutRelations(ElementsOfType(O,Event),0)))

PN: DirectSuccessors(ObjectsWithValues(

 SU ElementsWithNumberOfOutRelations(ElementsOfType(O,Transition),1),ACT_A)

 SU ElementsWithNumberOfOutRelations(ElementsOfType(O,Place),0)))

The immediate succession rule requires two actions to succeed each other directly without any other ac-
tion intermediating them. First, it has to be checked whether there exists ACT_A that is followed by ACT_B:

 Modeling and Checking Business Process Compliance Rules

 Thirty Second International Conference on Information Systems, Shanghai 2011 13

DirectedPaths(ObjectsWithValues(ElementsOfType(O,Action),ACT_A),

 ObjectsWithValues(ElementsOfType(O,Action),ACT_B))=

If such succeeding actions exist, we have to assure that they are not intermediated by one or more further
actions. Thus, they have to be direct successors:

DirectSuccessors(ObjectsWithValues(ElementsOfType(O,Action),ACT_A),

 ObjectsWithValues(ElementsOfType(O,Action),ACT_B))=

The separation of duties rule requires two succeeding actions to be executed by different responsible per-
sons. First, it has to be checked whether ACT_A and ACT_B exist succeeding each other:

DirectedPaths(ObjectsWithValues(ElementsOfType(O,Action),ACT_A),

 ObjectsWithValues(ElementsOfType(O,Action),ACT_B))

If such succeeding actions exist, then they have to be assigned to different persons, or more generally
speaking, organizational units. The pattern for BPMN checks whether the two activities are assigned to
different swimlanes. The EPC pattern returns succeeding functions that are annotated by different organi-
zational units (OU). The Petri Net pattern checks whether the succeeding transitions have different input
places serving as organizational units:

BPMN/EPC: DirectedPaths(ElementsOfType(O,Action) II ElementsDirectlyRelated(

 ObjectsWithValues(ElementsOfType(O,Action),ACT_A),

 ObjectsWithValues(ElementsOfType(O,OU|Swimlane),Org1)),

 ElementsOfType(O,Action) II ElementsDirectlyRelated(

 ObjectsWithValues(ElementsOfType(O,Action),ACT_B),

 ObjectsWithValues(ElementsOfType(O,OU|Swimlane),Org2))); Org1Org2

PN: DirectedPaths(ElementsOfType(O,Transition) II DirectSuccessors(

 ObjectsWithValues(ElementsOfType(O,Transition),ACT_A),

 ObjectsWithValues(ElementsOfType(O,Place),Org1)),

 ElementsOfType(O,Transition) II DirectSuccessors(

 ObjectsWithValues(ElementsOfType(O,Transition),ACT_B),

 ObjectsWithValues(ElementsOfType(O,Place),Org2))); Org1Org2

A resource rule that is similar to separation of duties is the four-eyes-principle. It requires a single action
to be executed by two different persons. First, it has to be checked whether ACT_A exists:

ObjectsWithValues(ElementsOfType(O,Action),ACT_A)

If such an action exists, it has to be checked whether the activity is executed by two persons. In case of
BPMN, the pattern checks if the same activity can be found on two different swimlanes (in case of BPMN,
the activity has to be duplicated, as in BPMN it is not possible to assign one single activity to two swim-
lanes at the same time). The EPC pattern checks whether the function is assigned to two different organi-
zational units. The Petri Net pattern returns transitions that have two different input places serving both
as organizational units:

BPMN: ElementsDirectlyRelated(ObjectsWithValues(ElementsOfType(O,Activity),ACT_A),

 ObjectsWithValues(ElementsOfType(O,Swimlane),Org1)) UNION

ElementsDirectlyRelated(ObjectsWithValues(ElementsOfType(O,Activity),ACT_A),

 ObjectsWithValues(ElementsOfType(O,Swimlane),Org2)); Org1Org2

EPC: ElementsDirectlyRelated(ObjectsWithValues(ElementsOfType(O,Function),ACT_A),

 ObjectsWithValues(ElementsOfType(O,OU),Org1)) JOIN

ElementsDirectlyRelated(ObjectsWithValues(ElementsOfType(O,Function),ACT_A),

 ObjectsWithValues(ElementsOfType(O,OU),Org2)); Org1Org2

PN: DirectSuccessors(ObjectsWithValues(ElementsOfType(O,Transition),ACT_A),

 ObjectsWithValues(ElementsOfType(O,Place),Org1)) JOIN

DirectSuccessors(ObjectsWithValues(ElementsOfType(O,Transition),ACT_A),

 ObjectsWithValues(ElementsOfType(O,Place),Org2)); Org1Org2

Following Zoet et al. (2009), rules for effect sequencing describe business objects with certain properties
implying further actions to be executed (e.g. credit applicants applying for credits worth more than

Project Management, Outsourcing and IS Development

14 Thirty Second International Conference on Information Systems, Shanghai 2011

75,000 $ must receive an additional positive vote inside a bank). For example, a compliance rule requir-
ing the assignment of business objects with specific properties to specific actions is specified as follows:
First, it has to be checked whether a business object exists that is related to an attribute, whose value de-
scribes a specific property. In BPMN and EPC models, we search for Document/Data objects, which carry
an according attribute. Petri Nets are searched for places carrying an according token:

BPMN/EPC: ElementsDirectlyRelated(ElementsOfType(O,Document|Data),

 ObjectsWithValues(ElementsOfType(O,Attribute),Constraint))

PN: ElementsDirectlyRelated(ElementsOfType(O,Place),

 ObjectsWithValues(ElementsOfType(O,Token),Constraint))

As the property could be anything, we indicate this property by the term “constraint” in the example. If
there is a business object having this property, it has to be checked if it has been assigned to the required
action – in this case ACT_A. In BPMN and EPC models, this is done by annotation. In Petri Nets, the place
carrying the business object token has to be an input place of ACT_A:

BPMN/EPC: ElementsDirectlyRelated(ElementsOfType(O,Document|Data) II

 ElementsDirectlyRelated(ElementsOfType(O,Document|Data),

 ObjectsWithValues(ElementsOfType(O,Attribute),Constraint)),

 ObjectsWithValues(ElementsOfType(O,Action),ACT_A))

PN: DirectSuccessors(ElementsOfType(O,Place) II

 ElementsDirectlyRelated(ElementsOfType(O,Place),

 ObjectsWithValues(ElementsOfType(O,Token),Constraint)),

 ObjectsWithValues(ElementsOfType(O,Transition),ACT_A))

The possibility to build patterns for arbitrary compliance rules and arbitrary languages results from the
universal applicability of the underlying pattern matching approach. It does not require modeling lan-
guage-specific types of objects or relationships. The specifics of an according modeling language are not
part of the pattern matching approach, but they are specified as variables during the specification of the
compliance patterns as shown above. Of course, a pattern specified for one modeling language cannot be
applied to another one, as in such a case a transformation mechanism would be necessary. Nevertheless,
the approach can be applied by any company, regardless of which (process) modeling language it uses.

To illustrate the applicability of the approach to other modeling languages and even process models com-
bined with other types of models, we specify an advanced escalation compliance rule. It requires subse-
quent checks of a transaction by employees of different disciplinary positions. For example, a credit appli-
cation that has been approved by an employee has to be checked once again by a second employee super-
ordinate of the first one. An according compliance rule has to check a sequence of actions related to dif-
ferent responsible persons in a process model and the disciplinary relation of the responsible persons in
an organizational chart. The following example illustrates this rule with EPCs and organizational charts:

First, it has to be checked whether two functions representing both check actions (here: ACT_A and
ACT_B) exist succeeding each other:

DirectedPaths(ObjectsWithValues(ElementsOfType(O,Function),ACT_A),

 ObjectsWithValues(ElementsOfType(O,Function),ACT_B))

If such succeeding functions exist, then they have to be assigned to different jobs. Moreover, the second
job has to be superordinate of the first one:

DirectedPaths(ElementsOfType(O,Function) II ElementsDirectlyRelated(

 ObjectsWithValues(ElementsOfType(O,Function),ACT_A),

 ObjectsWithValues(ElementsOfType(O,Job),Job1) II

 DirectedPathsNotContainingElements(

 ObjectsWithValues(ElementsOfType(O,Job),Job2),

 ObjectsWithValues(ElementsOfType(O,Job),Job1),

 R \ ElementsOfType(R,supervises))),

ElementsOfType(O,Function) II ElementsDirectlyRelated(

 ObjectsWithValues(ElementsOfType(O,Function),ACT_B),

 ObjectsWithValues(ElementsOfType(O,Job),Job2) II

 DirectedPathsNotContainingElements(

 ObjectsWithValues(ElementsOfType(O,Job),Job2),

 Modeling and Checking Business Process Compliance Rules

 Thirty Second International Conference on Information Systems, Shanghai 2011 15

 ObjectsWithValues(ElementsOfType(O,Job),Job1),

 R \ ElementsOfType(R,supervises)))); Job1Job2

To realize more sophisticated compliance rules, two or more of the rules shown can be combined.

Applicability, Performance and Utility Evaluation

To demonstrate the value of our compliance checking approach, it is necessary to prove its applicability,
its performance and its utility.

In order to show the approach’s applicability, we have implemented a plug-in for a meta modeling tool
that was available from a former research project (Delfmann et al. 2009). The tool consists of a meta
modeling environment that is based on the specification environment for modeling languages shown in
Figure 1.

The plug-in provides a specification interface for compliance patterns. It is integrated into the meta mod-
eling environment of the tool, as the patterns have to be specified according to the respective modeling
language as shown above. All basic sets, functions and set operators introduced previously are provided
and can be used to build up structural model patterns successively. In order to gain a better overview of
the patterns, they are displayed and edited in a tree-like structure. Users can build up the tree-structure
through drag-and-drop of the basic sets, functions and set operators.

The patterns specified can be applied to any model that is available within the model base and that was
developed with the modeling language, fitting the pattern specification. Applying a pattern reveals all of
its occurrences existing in the model base. The occurrences are displayed through highlighting their mod-
el nodes and edges. To gain a quick overview, the models containing the pattern occurrences can be
flipped.

As the general pattern matching problem in graphs has an exponential computational complexity, we had
to prove that the performance of the compliance checking approach is satisfactory. For this purpose, we
conducted an empirical performance evaluation (a detailed explanation can be found in Dietrich et al.
2011). We analyzed models of different modeling languages having a size ranging from 20 to 343 ele-
ments. We used patterns of different size and different density (i.e. containing more or less arcs per node).
The patterns ranged from simple exact subgraphs to those containing paths of arbitrary length. For the
performance test, we used a common personal computer equipped with an Intel® Core™ 2 Duo CPU
E8400 3.0 GHZ with 3.25 GB RAM and Windows 7 (32-Bit edition). The result shows that the pattern
matching approach returns results with acceptable performance. Most of the patterns could be identified
within a few milliseconds.

Concerning the overhead produced by the specification of the compliance rule patterns, we bring forward
two arguments that militate in favor of our approach: Firstly, we determined the average time needed by a
trained person to specify a pattern. We measured a few minutes for a typical compliance rule. This means
that even specifying hundreds of patterns with the introduction of compliance management using our ap-
proach only takes a few days. New regulations that may become relevant day-to-day can be added quickly.
The problem that remains is to identify the compliance rules relevant for the according company. Howev-
er, this problem remains for any automated or manual compliance approach as it is highly individual.

To estimate the real utility of our approach, we conducted a case study in the banking sector. We selected
a regional bank, which was operating in one of the major cities and its surrounding metropolitan areas
across two federal states in Germany. As a universal bank, it offered its clients typical products such as
consumer credits, investment counseling, credit cards, and giro accounts with many additional services
and products offered for special client groups such as corporate clients, startup founders, and students. It
was serving more than 632,000 customers with more than 2,200 employees in over 130 branch offices,
with a balance sheet total of 9.9 billion Euros in 2009. Being part of the cooperative banking sector in
Germany, it was among the top 10 largest banks in Germany.

We selected its bank account opening process for new customers, since this process is one of the most
universal and frequent processes that can be found in almost any commercial bank. In addition, we re-
ceived further compliance related material that the bank’s legal department supplied for this special pro-
cess (e.g., applicable internal and external regulations). Through several interviews and observations at

Project Management, Outsourcing and IS Development

16 Thirty Second International Conference on Information Systems, Shanghai 2011

the bank, this process was modeled using BPMN and evaluated as valid by the bank representatives.
Overall, the process had to obey 12 business process compliance rules (most of them due to internal regu-
lations). We specified the compliance rules as patterns and applied them to the process model. As a result,
we found that it was possible to specify each business rule using our business process compliance model-
ing notation and it was also possible to automatically detect the compliance of the business processes with
these business rules, using our prototypical modeling tool implementation. As already our performance
evaluation suggests, the performance of the compliance checking process was satisfactory.

In a workshop with bank representatives responsible for process management and compliance, we pre-
sented the process model, the relevant compliance rules, the way how to specify the rules and the way how
to check compliance of the process model. Furthermore, we presented a complete compliance checking
task in order to provide an impression of our approach’s performance. The approach was rated highly
beneficial by all of the bank’s process management and compliance representatives. In particular, they
appreciated the applicability to different modeling languages. This was due to special attributes the bank
is using to annotate process model activities. Furthermore, the bank was planning to extend their model-
ing language by law-related annotations. The speed of checking multiple compliance rules in one step ra-
ther than searching for them manually was appreciated as well. The bank representatives were aware of
the fact that selecting the relevant compliance rules and specifying them in a tool is time-consuming.
However, they regarded this task as not avoidable. We repeated the workshop with representatives of an-
other German bank acting in the field of pharmacy and a provider of IT services for a large cooperative
society of banks. The feedback of the according representatives was equal.

Discussion, Limitations and Outlook

In this paper, we have introduced a model-driven business process compliance checking approach that is
suitable for models of any modeling language and for business process compliance rules of any structure.
The approach exploits a common property of conceptual models, in particular their representation as
graphs. As occurrences of compliance rules appear as typical structures in conceptual models, the search
for these occurrences can be described as a graph pattern matching problem, which we addressed by in-
troducing a graph pattern matching based business process compliance checking approach. The approach
differs from existing approaches as it is not restricted to a special process modeling language and as it is
not restricted to simple linear compliance rules. To prove its applicability to multiple modeling languages,
we provided a set of common compliance rules and specified them for different modeling languages, in-
cluding a non-process modeling language. The evaluation of our approach consisted of an implementation
as a modeling prototype, a performance evaluation and a survey confirming its utility.

The applicability to any modeling language and any compliance rule closes the research gap identified in
the introduction and the related work section. The contributions of our approach to practice and research
and their implications are manifold:

 Companies that use a modeling language different from those used in language-specific approaches are
provided with a semi-automatic business process compliance checking approach. Before, those com-
panies were either forced to change their modeling language, which causes not only a time-consuming
transformation process but also may cause acceptance and skill problems, or they had to perform
manual compliance checking. Hence, the approach implies an increase of the ability of semi-automatic
compliance checking for a number of companies and is therefore a valuable contribution for practice.

 The presented approach allows for checking compliance rules of any structure. Previous approaches
were restricted to linear compliance rules. This means that compliance rules, which had to be checked
manually before, due to previously existing restrictions, can now be checked automatically (or at least
semi-automatically). As this implies an increase of efficiency in business process compliance manage-
ment, we identify another valuable contribution for practice.

 The introduced approach generalizes the identification of linear compliance rule occurrences in pro-
cess models of a distinct modeling language towards the identification of arbitrary compliance rule oc-
currences in any conceptual model. Hence, the approach extends the previously limited scope of busi-
ness process compliance checking to a generalized level and contributes to the existing literature body
of knowledge in business process compliance checking, discussed in the related work section. As we

 Modeling and Checking Business Process Compliance Rules

 Thirty Second International Conference on Information Systems, Shanghai 2011 17

have shown that our approach works for different languages and different compliance patterns, we ar-
gue that a restriction to a special modeling language and only simple compliance rules, as proposed by
the existing approaches, discussed in the related work section, is not necessary.

 As the approach is not restricted in its set of rules, it implies to be applied to related purposes requir-
ing pattern matching in conceptual models, like for example model comparison, model integration,
business process weakness detection, model transformation, and syntax checking. Therefore, it con-
tributes indirectly to the literature body of knowledge in these research fields. Hence, we plan to apply
our approach to model comparison, model integration, business process weakness detection, model
transformation, and syntax checking in the future.

Despite the contributions, our presented approach delivers, there are also some limitations:

 With regards to automation and therefore efficiency, our approach still requires the identification of
relevant compliance rules (e.g., from law or company-internal regulatory documents) and their trans-
formation into formal compliance rule patterns. This task is time-consuming; however, we doubt that
it is automatable. Furthermore, the initial specification of the relevant set of compliance patterns has
to take place only once. The patterns can be reused repeatedly for compliance checks whenever new
(process) models have been created.

 Another issue of automation is the fact that compliance checking cannot be automated completely by
our approach; again we doubt that this is possible at all. To our experience, gained from discussions
with professionals, a great amount of time is consumed by searching processes or process models for
those sections that require compliance or that may violate a compliance rule. Our approach is only
suitable to reduce this searching time and find as many compliance violations as possible. This can be
of high value for a compliance manager, as it makes the annoying and time-consuming search process
obsolete. Nevertheless, the final decision, if a possible compliance violation has to lead to a process
change, is made by the compliance manager. Hence, our approach does not aim at replacing the exper-
tise of a compliance manager.

 The approach is applicable to multiple modeling languages. However, as already stated, once a compli-
ance rule is defined for one modeling language, it will not work on another one (cf. the differences of
compliance rules for different languages in the application section). Companies using different model-
ing languages will not be able to exchange their compliance rules.

Although the performance evaluation has shown that there are no performance problems, we still aim to
improve the performance, making the approach also work for very large model repositories, containing
models with thousands of nodes. This can become relevant when regarding the overall model of a compa-
ny that is not split up into model parts (e.g., the whole process landscape of a company). In this context,
our future research will address efficient algorithms from graph theory, which exploit the fact that con-
ceptual models are typically sparse graphs.

In this paper, we did not go into detail on the importance of standardizing natural language elements that
are often used to specify elements of (process) models (e.g. activities, resources, organizational units etc.).
However, as already stated, this is an important aspect, as business process compliance rules can only be
specified well, if also a common vocabulary is used. Here, we have only referred to prior research describ-
ing different approaches to standardizing semantics of model element labels, for instance by providing
linguistic conventions or connecting the models to ontologies. However, we are aware of the fact that gen-
erally accepted or standardized labeling is a crucial issue in business process modeling. Otherwise, models
may become ambiguous and identifying a model element with a particular meaning as part of a compli-
ance rule occurrence becomes nearly impossible. Therefore, we aim at combining our previous work on
semantic disambiguation of conceptual models (Delfmann et al. 2009) with the presented approach.

With regards to user acceptance and utility, we have only conducted a preliminary evaluation. Although
the professionals that were involved in the evaluation confirmed a high value of the approach for business
process compliance checking, we aim at extending the utility evaluation by performing extensive tests in a
real-world compliance management environment. At the very moment, we are applying the approach in
the institutions that were also involved in the preliminary evaluation. In particular, the evaluation com-
prises modeling of the relevant processes, specification of relevant compliance rules, executing the check-
ing approach, measuring the increase/decrease of detected compliance violations compared to manual
checking, measuring time savings and determining possible options for usability improvement.

Project Management, Outsourcing and IS Development

18 Thirty Second International Conference on Information Systems, Shanghai 2011

References

Abdullah, S. N., Indulska, M., and Sadiq, S. 2009. “A Study of Compliance Management in Information
Systems Research.” in Proceedings of the 17th European Conference on Information Systems (ECIS
2009), Verona, Italy, pp. 1-10.

Abdullah, S. N., Sadiq, S., and Indulska, M. 2010. “Emerging Challenges in Information Systems Research
for Regulatory Compliance Management,” Lecture Notes in Computer Science (6051), pp. 251-265.

Awad, A., and Weske, M. 2009. “Visualization of Compliance Violation in Business Process Models,” in
Proceedings of the 5th Workshop on Business Process Intelligence, pp. 1-12.

Becker, J., Bergener, P., Delfmann, P., Eggert, M., and Weiß, B. 2011. „Supporting Business Process Com-
pliance in Financial Institutions – A Model-Driven Approach,” in Proceedings of the 10th Internation-
al Conference on Wirtschaftsinformatik. Zurich, 16.-18. February.

Becker, J., Breuker, D., Weiß, B., and Winkelmann, A. 2010. „Exploring the Status Quo of Business Pro-
cess Modelling Languages in the Banking Sector – An Empirical Insight into the Usage of Methods in
Banks,” in Proceedings of the 21st Australasian Conference on Information Systems (ACIS 2010),
Brisbane, Australia.

Cabanillas, C., Resinas, M., and Ruiz-Cortés, A. “Hints on how to face business process compliance,” Ac-
tas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos (4:4), pp. 26-32.

Caldwell, F. 2009. The Worldwide Economic Crisis will Bring Real-Time Reporting for Risk Manage-
ment. Gartner Research, Gartner, Inc., Stamford.

Caldwell, F., Bace, J., and Lotto, R. J. D. 2009. U.S. Financial System Regulatory Overhaul Brings More
Scrutiny. Gartner Research. Gartner, Inc., Stamford.

Delfmann, P., Herwig, S., and Lis, L. 2009. “Unified Enterprise Knowledge Representation with Concep-
tual Models - Capturing Corporate Language in Naming Conventions,” In Proceedings of the 30th In-
ternational Conference on Information Systems (ICIS 2009). Phoenix, Arizona, USA.

Delfmann, P., Herwig, S., Lis, L., Stein, A., Tent, K., and Becker, J. 2010 “Pattern Specification and
Matching in Conceptual Models. A Generic Approach Based on Set Operations,” Enterprise Modelling
and Information Systems Architectures (5:3), pp. 24-43.

Diestel, R. 2010. “Graph Theory” 4th Edition, Heidelberg, Germany.
Dietrich, H., Steinhorst, M., Becker, J., and Delfmann, P. 2011. „Fast Pattern Matching in Conceptual

Models – Evaluating and Extending a Generic Approach,” appears in Proceedings of the 4th Interna-
tional Workshop on Enterprise Modelling and Information Systems Architectures (EMISA 2011),
Hamburg, Germany.

El Kharbili, M., de Medeiros, A., Stein, S., and van der Aalst, W. M. P. 2008. "Business Process Com-
pliance Checking: Current State and Future Challenges," Lecture Notes in Informatics (141), pp. 107-
113.

Ghose, A.K., and Koliadis, G. 2007. "Auditing business process compliance," in Proceedings of the Inter-
national Conference on Service-Oriented Computing (ICSOC-2007), pp. 169-180.

Governatori, G., Hoffmann, J., Sadiq, S., and Weber, I. 2009. "Detecting Regulatory Compliance for Busi-
ness Process Models through Semantic Annotations," Lecture Notes in Business Information Pro-
cessing (7:1), pp. 5-17.

Levenshtein, V. 1966. "Binary codes capable of correcting deletions, insertions, and reversals". Soviet
Physics Doklady (10), pp. 707–10.

Liu, X., Müller, S., and Xu, K. 2007 "A static compliance-checking framework for business process mod-
els," IBM Systems Journal (46:2), pp. 335-361.

Ly, L., Rinderle-Ma, S., Göser, K., and Dadam, P. 2009 "On enabling integrated process compliance with
semantic constraints in process management systems: Requirements, challenges, solutions," Infor-
mation Systems Frontiers (accepted for publication).

Moormann, J., Vetter, D., and Hilgert, M. 2009. „Reducing Complexity: Business Rules in Business Pro-
cess Management,” (in German), Die Bank (109:11), 2009, pp. 30-37.

Namiri, K. 2008. “Model-Driven Management of Internal Controls for Business Process Compliance”,
Doctoral Thesis, University of Karlsruhe.

Namiri, K., and Stojanovic, N. 2007. "A Formal Approach for Internal Controls Compliance in Business
Processes," in Proceedings of the 8th Workshop on Business Process Modeling, Development and
Support (BPMDS 2007), Trondheim, Norway, pp. 1-9.

 Modeling and Checking Business Process Compliance Rules

 Thirty Second International Conference on Information Systems, Shanghai 2011 19

Opromolla, G. 2009. “Facing the Financial Crisis: Bank of Italy's Implementing Regulation on Hedge
Funds.” Journal of Investment Compliance (10: 2), pp. 41-44.

Peffers, K., Tuuanen, T., Rothenberger, M. A., and Chatterjee, S. 2007. “A Design Science Research Meth-
odology for Information Systems Research,” Journal of Management Information Systems (24:3),
pp. 45-77.

Petri, C. A. 1962. “Communicating with Machines [in German: Kommunikation mit Automaten]“. Ph. D.
Thesis. University of Bonn.

Raduescu, C., Tan, H. M., Jayaganesh, M., Bandara, W., zur Muehlen, M., and Lippe, S. 2006. "A Frame-
work of Issues in Large Process Modeling Projects,“ in Proceedings of the European Conference on
Information Systems (ECIS 2006), Göteborg, Sweden, pp. 1-12.

Rikhardsson, P., Best, P., Green, P., and Rosemann, M. 2006. “Business Process Risk Man-agement,
Compliance and Internal Control: A Research Agenda,” in Proceedings of the 2nd Asia/Pacific Re-
search Symposium on Accounting Information Systems, Melbourne, Australia.

Rinderle-Ma, S., Ly, L. T., Dadam, P. 2008. „Business Process Compliance,“ EMISA Forum (28:2),
pp. 24-29.

Rozinat, A., and van der Aalst, W. M. P. 2008. "Conformance Checking of Processes Based on Monitoring
Real Behavior," Information Systems (33:1), pp. 64-95.

Sadiq, S., Governatori, G., and Namiri, K. 2007. “Modeling control objectives for business process compli-
ance,” in Proceedings of the 5th International Conference on Business Process Management (BPM
2007), pp. 149-164.

Scheer, A.-W. 2000. “ARIS – Business Process Modelling”. 3rd Edition. Berlin, Germany.
Thomas, O., and Fellmann, M. 2009. “Semantic Process Modeling – Design and Implementation of an

Ontology-Based Representation of Business Processes,” Business & Information Systems Engi-
neering (1:6), 438-451.

van der Aalst, W. M. P., de Beer, H. T., and van Dongen, B. F. 2005. "Process Mining and Verification of
Properties: An Approach Based on Temporal Logic," Lecture Notes in Computer Science (3760), pp.
130-147.

vom Brocke, J., Becker, J., Simons, A., and Fleischer, S. 2008. "Conceptual Modeling of Enterprise Con-
tent," in Proceedings of the 7th International Conference on Perspectives in Business Informatics
Research (BIR 2008), Gdańsk, Poland.

Wand, Y., and Weber, R. 2002. "Research Commentary: Information Systems and Conceptual Modeling –
A Research Agenda," Information Systems Research (13:4), pp. 363-376.

White, S. A., and Miers, D. 2008. “BPMN Modeling and Reference Guide. Understanding and Using
BPMN,” Future Strategies Inc., Lighthouse Point, FL, USA.

Wörzberger, R., Kurpick, T., and Heer, T. 2008. "Checking Correctness and Compliance of Integrated
Process Models," in Proceedings of the 10th International Symposium on Symbolic and Numeric Al-
gorithms for Scientific Computing, pp. 576-583.

Zoet, M., Welke, R., Versendaal, J., Ravesteyn, P. 2009. „Aligning Risk Management and Compliance
Considerations with Business Process Development,” Lecture Notes in Computer Science (5692),
pp. 157-168.

