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Abstract 

Over the past decade, information technology has dramatically changed the context in which economic 
transactions take place. Increasingly, transactions are computer-mediated, so that, relative to human-
human interactions, human-computer interactions are gaining in relevance. Computer-mediated 
transactions, and in particular those related to the Internet, increase perceptions of uncertainty. 
Therefore, trust becomes a crucial factor in the reduction of these perceptions. To investigate this 
important construct, we studied individual trust behavior and the underlying brain mechanisms 
through a multi-round trust game. Participants acted in the role of an investor, playing against both 
humans and avatars. The behavioral results show that participants trusted avatars to a similar degree 
as they trusted humans. Participants also revealed similarity in learning an interaction partner’s 
trustworthiness, independent of whether the partner was human or avatar. However, the neuroimaging 
findings revealed differential responses within the brain network that is associated with theory of mind 
(mentalizing) depending on the interaction partner. Based on these results, the major conclusion of our 
study is that, in a situation of a computer with human-like characteristics (avatar), trust behavior in 
human-computer interaction resembles that of human-human interaction. On a deeper neurobiological 
level, our study reveals that thinking about an interaction partner’s trustworthiness activates the 
mentalizing network more strongly if the trustee is a human rather than an avatar. We discuss 
implications of these findings for future research. 
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Introduction 

Over the past two decades, information technology (IT) has dramatically changed the context in which 
economic transactions take place (e.g., Kohli and Devaraj 2003). Computers, and in particular the 
Internet, have made possible new forms of organizational communication (e.g., video conferences), inter-
organizational collaborations (e.g., e-business), and distribution of goods and services to the end 
customer (e.g., e-commerce). In today’s society, as computers and the Internet pervade almost every 
corner of life, the impact of IT on economic behavior is definitive. 

As a result of this shift from face-to-face conversation and bricks-and-mortar business to IT-based 
communication and transactions, traditional human-human interactions in economic exchange are 
becoming increasingly more computer-mediated, thereby augmenting the relevance of human-computer 
interactions. However, although using IT may lead to notable benefits (e.g., Keeney 1999), it often 
increases a perception of uncertainty in economic exchange (e.g., Pavlou et al. 2007). In order to reduce 
this perception, consequently, trust becomes a crucial issue (Gefen et al. 2008). Moreover, studying trust 
in computers is gaining importance as the economic trends continually increase in orientation toward IT 
(International Telecommunication Union 2010). 

Trust is typically conceptualized either as a belief or as a behavior in information systems (IS) research 
(e.g., Gefen et al. 2003; McKnight and Chervany 2001; McKnight et al. 2002), as well as in economics and 
the management sciences (e.g., Coleman 1990; Fehr 2009a). Because both beliefs and behaviors have 
origins in neurobiological processes (e.g., Cacioppo et al. 2000), research in the fields of social cognitive 
neuroscience (e.g., Lieberman 2007) and neuroeconomics (e.g., Sanfey et al. 2006) has begun to 
investigate the brain processes underlying human trust (e.g., Delgado et al. 2005; King-Casas et al. 2005). 
Recently, this development has also been extended to IS research (Dimoka 2010; Riedl et al. 2010a). 

Many neurobiological investigations in both social cognitive neuroscience and neuroeconomics that 
normally use functional magnetic resonance imaging (fMRI) have applied the trust game (Berg et al. 
1995) to study the underlying neural processes of trust. In this game, an individual plays for monetary 
payoffs, using two different playing strategies, one representing trust behavior (hence, being vulnerable to 
the actions of the other player) and one representing distrust behavior (hence, lacking vulnerability, but 
losing an opportunity for greater monetary gain). As well, the game demonstrates trust or distrust 
behavior based on an individual’s inferences about the thoughts and intentions of the other player. The 
ability to infer the internal states of other actors in order to predict their behavior is known as theory of 
mind (TOM), and the underlying inference process is commonly referred to as mentalizing (e.g., Frith and 
Frith 2003; Premack and Woodruff 1978; Singer 2009). Hence, TOM and mentalizing are fundamental 
concepts in trust situations because the decision to trust involves thinking about an interaction partner’s 
thoughts and intentions (e.g., Dimoka 2010; Fehr 2009b; Krueger et al. 2007). Moreover, Bente et al. 
(2008) explain that this thinking involves both cognition-based trust (where an individual judges the 
competence and dependability of her or his partner) and affect-based trust (where between the partners 
there is a shared confidence that the other is protective of his or her interests, and that each is genuinely 
concerned for the welfare of the other). 

A detailed look at the game literature as it pertains to trust and mentalizing reveals that most studies are 
designed so that participants play against human opponents, which simulates economic exchange in 
traditional bricks-and-mortar business rather than in computer-mediated contexts. However, a few game 
studies have also investigated participants’ brain activation while playing against computer opponents 
(e.g., McCabe et al. 2001). The findings of these studies indicate that behavior and the underlying neural 
processes typically differ, depending on a participant’s interaction partner. Playing against another 
human more strongly activates several brain regions than does playing against a computer. Most notably, 
participants playing against computer opponents are normally informed that “[the computer opponent] 
would play a fixed probabilistic strategy” (McCabe et al. 2001, p. 11832). Moreover, participants lying in 
the fMRI scanner are often shown a picture of a computer (Rilling et al. 2004). Such designation of the 
opponent as computer creates a sharp differentiation between humans and computers. In particular, this 
emphasis on the distinction between humans and computers as players may explain the differences in 
behavior and in the underlying brain mechanisms, because computers tend to be perceived as mindless, 
while humans are not.  
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As a result of recent technological advancements, many computers no longer have the appearance of a 
mechanistic device and, increasingly, computers today have a human appearance (Al-Natour et al. 2006; 
Davis et al. 2009; MacDorman et al. 2009; Qiu and Benbasat 2009, 2010). These new human-like forms 
of computers, avatars (Bailenson and Blascovich 2004), are typically designed with faces that closely 
resemble those of humans (Nowak and Rauh 2005). Attention to a realistic portrayal of a human face is 
important because the human face has been shown to serve the interpersonal function of allowing one 
person to predict another’s personality traits and behavior (e.g., Ekman 1982; Knutson 1996), which has 
been demonstrated to apply, particularly, to trustworthiness predictions (Todorov 2008; Winston et al. 
2002). Consequently, it is possible that in human collaborations with computers, endowing a computer 
with a human face alters trust behavior and underlying brain mechanisms. The primary argument 
supporting this reasoning is that perceiving an object’s likeness to humans may result in perceptions of 
mind, thereby making it possible that objects (such as computers) are recognized as, and are treated as, 
humans. 

To date, it remains unclear whether humans in a trust situation perceive and treat avatars as mechanistic 
computers, or as humans. To address this open question, we used fMRI and a trust game to investigate 
how trust behavior (including the learning of an interaction partner’s trustworthiness) and the underlying 
neurobiological mechanisms differ between human-human and human-avatar interactions. Specifically, 
we conducted a multi-round trust game experiment in which participants played the role of investor, with 
both humans and avatars in the role of trustee. We contrasted the existing studies, which operationalized 
computer game partners as mechanical devices, and which informed participants that the computer 
would play a predefined probabilistic strategy (e.g., McCabe et al. 2001; Rilling et al. 2004). Instead, we 
used the human-like form of computers, avatars, and informed our participants that the avatars would 
have a particular character as either relatively trustworthy or relatively untrustworthy. 

The remainder of this article is structured as follows: In the second section, we begin with a discussion of 
human-computer interaction and trust, and continue with a literature review on human-computer 
interaction in economic games. Based on this theoretical fundament, we describe two behavioral 
hypotheses (H1a and H1b), as well as one neural hypothesis (H2). The third section describes the research 
methodology in detail. An outline of the research results in the fourth section precedes a segment that 
more thoroughly discusses the results and their implications for future research. In the final section, we 
summarize the contribution of this article, present limitations, and provide a concluding comment. 

Literature Review 

Human-Computer Interaction and Trust 

There is no doubt that trust may be applied to humans (Gambetta 1988; Luhmann 1979), but there is 
debate over whether it is valid for such technological artifacts as computers to be considered as recipients 
of trust (e.g., Wang and Benbasat 2005). Those who are of the opinion that computers cannot be 
recipients of trust argue that machines lack important properties of social actors, such as consciousness or 
experience of betrayal if trust is breached (Friedman and Millett 1997; Friedman et al. 2000). According 
to this view, computers cannot be trusted in the literal sense—they can only be relied upon. 

In sharp contrast to this view, research grounded in Nass’s Computers Are Social Actors (CASA) 
Paradigm has shown that people follow similar social rules and heuristics when they interact with 
computers as they do when interacting with humans (Nass et al. 1993, 1994; Reeves and Nass 1996). 
Human social behavior toward computers is interpreted as “ethopoeia,” which means that when 
computers are endowed with personality-like characteristics (e.g., with respect to their appearance or 
behavior) people will respond to them as if they have personalities, despite the fact that these persons will 
claim they do not believe that computers actually have personalities (Nass et al. 1995). 

In the following, we briefly discuss two concepts that are commonly recognized as predictors of mutual 
trust in interaction among humans, namely reciprocity (King-Cases et al. 2005; Ostrom 2003) and 
empathy (Semmes 1991; Teven and Hanson 2004). These two constructs demonstrate that in their 
interactions with computers, people often apply established rules of social interaction among humans, in 
particular those that are closely associated with trust. 
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Reciprocity is considered to be one of the fundamental characteristics of interaction among humans 
(Henrich et al. 2004), but it is not considered to be relevant in human-computer interaction. However, 
experimental evidence challenges this notion. The Fogg and Nass (1997) experiment involved two tasks—a 
task in which a computer helped a user, and a task in which the user was asked to help a computer. In the 
first task, participants conducted a series of web searches with a computer; the search results were either 
very useful or not useful at all. In the second task, participants worked with a computer that was given the 
task of creating a color palette to match human perceptions of color.  The participants were told that by 
making accurate comparisons of sets of presented colors, they could help the computer to create this 
palette. Participants were free to choose the number of comparisons to make. Obviously, the more 
comparisons they made, the more they would help the computer. In one experimental condition, 
participants performed both tasks on the same computer. Participants in another experimental condition 
used one computer for the first task, and a second, though identical, computer for the second task. 

The findings of the study (Fogg and Nass 1997) are consistent with reciprocity norms; that is, participants 
who worked with a helpful computer in the first task and then returned to the same computer in the 
second task performed significantly more work for the computer in the second task, compared to those 
participants who used two different computers for the two tasks. Moreover, when participants worked 
with a computer that was not very helpful in the first task, and then returned to the same computer in the 
second task, they made significantly fewer comparisons than did participants who used different 
computers. 

In the same way as reciprocity, empathy (here defined as other-oriented emotions demonstrating that one 
person cares about another; Singer 2009; Singer and Lamm 2009) is typically considered as a major 
characteristic in interaction among humans, but not in interactions between humans and computers 
(Batson et al. 1997). However, experimental evidence supports a view that empathy also plays a crucial 
role in human-computer interaction. 

In one experiment (Brave et al. 2005), participants played a casino-style game of blackjack with human-
like computer agents, who were manipulated based on two factors: expression of self-oriented emotion 
(absent versus present) and expression of empathic—other-oriented—emotion (absent versus present). 
The computer agent with self-oriented emotion was characterized by facial expressions that were 
programmed to correspond to that computer-agent’s specific blackjack outcomes, while the agent without 
self-oriented emotion did not respond with appropriate facial expressions. In this case, empathic emotion 
was manipulated by the agent’s reaction to the participant’s performance. As an example, in the empathic 
emotion condition, the agent made a happy facial expression when the participant won, and the agent 
made a sad facial expression when the participant lost. 

The results of this experiment show that empathic, but not self-oriented, emotional expressions of the 
computer agent do have a positive effect on the perceived trustworthiness of the agent (Brave et al. 2005). 
This finding is intriguing, because “[a]lthough the agent was a computer-generated, lifeless artifact which 
lacked ‘genuine feelings,’ the computer user still found the agent more trustworthy when it manifested 
caring orientations toward the user than when it did not” (Lee and Nass 2010, p. 7). 

Considering the empirical evidence that when humans interact with computers, they do apply trust-
related social rules, norms, and expectations (e.g., reciprocity), and taking into account the many other 
experimental findings of the CASA Paradigm (for reviews see, for example, Nass and Moon 2000, as well 
as Lee and Nass 2010) and similar research programs (e.g., Nowak and Biocca 2003), it is reasonable to 
assume that humans often treat computers as social actors rather than mechanistic technological artifacts. 
Consequently, not only humans, but also computers, can be recipients of trust. Other researchers confirm 
this view, as in the example of Wang and Benbasat (2005, p. 76, emphasis added), who write: 

[W]hile it may at first appear debatable that technological artifacts can be objects of trust, 
and that people assign human properties to them, evidence from a variety of relevant 
literature supports this argument. People respond socially to technological artifacts and 
perceive that they possess human characteristics (e.g., motivation, integrity, and 
personality). In particular, research findings have demonstrated that components of trust 
in humans and in technological artifacts do not differ significantly. This indicates that 
people not only utilize technological artifacts as tools, but also form social and trusting 
relationships with them.  
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Human-Computer Interaction in Economic Games 

Research originating from behavioral economics and neuroeconomics, which is often based on economic 
games (for a review, see Krueger et al. 2008), shows that brain activation and subsequent behavior (in 
particular trust behavior, McCabe et al. 2001) often differ, depending on the interaction partner. Humans 
as playing partners often activate specific brain regions more strongly than do computer partners, thereby 
elucidating distinct forms of behavior such as accepting or rejecting an offer (Sanfey et al. 2003). The 
following literature review summarizes important findings on human-computer interaction in economic 
games. 

The design of one study with significant relevance (Gallagher et al. 2002) asked participants to play a 
computerized version of the game rock-paper-scissors. For the first experimental condition, denoted as 
mentalizing, participants believed they were playing against another human (although, in fact, they were 
playing against a random selection strategy). In the second condition, denoted as rule solving, 
participants were informed that they were playing against a computer with a predefined algorithm, and 
that the responses would be based on simple rules related to the participant’s previous response (e.g., the 
computer would select the response that would have beaten the participant’s last response). In the third 
condition, denoted as random selection, participants were informed that they were playing against a 
computer with a random selection strategy, and they were asked to respond randomly, as well. The brain 
imaging contrast between mentalizing and rule solving revealed a higher activation in the medial 
prefrontal cortex (MPFC, Brodmann Area, BA 9 and 32; Gallagher et al. 2002, p. 818). Moreover, the 
contrast between mentalizing and random selection identified higher activation not only in the anterior 
paracingulate cortex, but also in the right inferior frontal cortex and the cerebellum. No activation was 
seen in the paracingulate cortex when rule solving and random selection were compared, however. 
Because it was only in the mentalizing condition that participants believed they were playing against 
another human (who would have beliefs, desires, and intention to interpret and predict the behavior of 
others), the bilateral anterior paracingulate cortex is considered to be a crucial mentalizing brain region 
(e.g., Singer 2009), and seems to be, thereby, a fundamental brain circuit in human-human interaction 
rather than in human-computer interaction. 

In a notable fMRI experiment from this area of research (McCabe et al. 2001), participants played the 
trust game with both human and computer counterparts, for cash rewards. Participants playing against 
the computer were told that it would play a fixed probabilistic strategy of (i) 100% trusting behavior in the 
role of the investor (i.e., the computer would always trust the trustee) and (ii) 75% trustworthiness as the 
trustee (i.e., the computer would reciprocate trust in three of four cases). Moreover, when the computer 
moved, it always did so immediately, in order to reduce any likelihood that participants would 
anthropomorphize the computer responses. As a consequence of this design, participants perceived the 
computer as a machine rather than a human. The neurobiological results of the fMRI experiment show 
that participants with the highest cooperation scores reveal significant increases in activation in the MPFC 
(BA 10; McCabe et al. 2001, p. 11834) during human-human interaction (as compared to human-
computer interaction), though within the group of non-cooperators the results did not show significant 
differences in MPFC activation between the human and computer condition. Therefore, one central 
conclusion of the McCabe et al. (2001) study is that the MPFC constitutes an “active convergence zone” 
that binds joint attention to mutual gains with the inhibition of immediate reward gratification, allowing 
cooperative decisions in human-human interaction, but not in human-computer interaction. 

A foundational experiment by Sanfey et al. (2003) applies the ultimatum game (Güth et al. 1982), and 
participants were made to believe that they were playing against both human partners and a computer. In 
fact, both the human partners and the computer played the same predetermined strategy. The behavioral 
results showed that unfair offers of $1 and $2 (stake size: $10) made by human partners were rejected at a 
significantly higher rate than were those offers made by the computer, suggesting that participants had a 
stronger emotional reaction to unfair offers from humans than to the same offers from a computer. 
Among the brain regions showing greater activation for unfair compared with fair offers from human 
partners were bilateral anterior insula, dorsolateral prefrontal cortex (DLPFC, BA 46), anterior cingulate 
cortex (ACC, BA 24 and 32), and middle frontal gyurus (BA 9) (see Table S1 in the supporting online 
material, Sanfey et al. 2003). Moreover, the magnitude of activation was also significantly greater for 
unfair offers from human partners, as compared to unfair offers from the computer. These results suggest 
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that it is not the submitted offer itself that determines neural activation and subsequent behavior, but it is, 
rather, the perception of the opponent as a human or machine that creates the response. 

Another fMRI study (Rilling et al. 2004) tested whether inferring the intentions of others would activate 
mentalizing structures, and whether activated areas would show a response in two different economic 
games—the ultimatum game and the prisoner’s dilemma game (Axelrod 1984). Interestingly, for both 
games, the study found activation in the anterior paracingulate cortex, spanning MPFC (BA 9; Rilling et 
al. 2004, p. 1699) and the rostral ACC (rACC, BA 32; Rilling et al. 2004, p. 1699), which are two classic 
mentalizing areas (Singer 2009). Both regions responded to decisions from human and computer 
partners, but showed stronger responses to human partners in both games. The stronger response to 
human partners is consistent with the behavioral data showing that participants distinguished between 
human and computer partners, rejecting unfair offers from human partners more often in the ultimatum 
game and cooperating more frequently with human partners in the prisoner’s dilemma game. 

A further fMRI experiment (Rilling et al. 2002) investigated brain activation of participants playing an 
iterated version of the prisoner’s dilemma game. When subjects were instructed that they were playing the 
game with a computer rather than with another person, evidence of cooperation was less common 
(although participants were actually playing against the same strategy in both conditions). The neural 
results reveal that cooperation with a computer activated regions of the ventromedial/orbital frontal 
cortex that were also activated by human playing partners. In particular, this activation could be elicited 
by interactive computer programs, which are programmed to be responsive to the partner’s behavior. 
However, mutual cooperation with a computer did not activate the rACC (BA 32; Rilling et al. 2002, p. 
403), which was observed only for human playing partners, suggesting that rACC activation may relate 
specifically to cooperative social interactions with human partners, rather than with computers. 

A recent study focused on strategic reasoning by Coricelli and Nagel (2009) investigated how a player’s 
mental processing incorporates the thinking processes of others. In the competitive interactive setting of 
the beauty contest game (Nagel 1995), playing against human opponents (relative to playing against a 
computer) was shown to activate regions associated with mentalizing, including MPFC, ventromedial 
prefrontal cortex (VMPFC), and rACC (Coricelli and Nagel 2009, p. 9165). This result suggests that these 
regions encode the complexity underlying human-human interactions, but not those of human-computer 
interactions. 

One final fMRI study relevant to our research (Krach et al. 2009) investigated participants’ brain 
activation during an iterated prisoner’s dilemma game. Playing against putative human and computer 
partners resulted in activity increases in the classic mentalizing network. However, MPFC and ACC 
activity were significantly more pronounced when participants believed they were playing against the 
human partner rather than a mindless machine. 

Hypotheses 

A recent summarization of the evidence on human trust behavior found in the CASA Paradigm establishes 
that “[o]ne of the key take-home messages of the CASA research paradigm on trust in computers is that 
people tend to look for similar qualities of trustworthiness in computers as they do in other people” (Lee 
and Nass 2010, p. 11), and indicates as a primary conclusion that trust behavior seems to function 
independently from the interaction partner, which can be either another human or a computer. Thus, we 
have reason to assume that both trust decisions (H1a) and the learning of trustworthiness (H1b) do not 
differ on the basis of whether people interact with humans, or with avatars. Because the decision to trust 
implies thinking about a trustee’s thoughts and intentions, mentalizing is a significant concept in trust 
research (e.g., Dimoka 2010; Krueger et al. 2007; Winston et al. 2002). Therefore, in a trust decision task 
as used in the present study, we would expect activation in mentalizing brain areas, a notion widely 
supported in the literature (e.g., Fehr 2009b, p. 228; Dimoka 2010, p. 377). However, as outlined by our 
review of the economic games literature, people generally perceive humans and computers differently. In 
particular, brain activation patterns differ significantly between human-human and human-computer 
interactions. A major factor which could explain these differences is that people attribute consciousness to 
humans, but not to computers (e.g., Friedman and Millett 1997; Friedman et al. 2000). Because 
computers are typically perceived as mindless, mentalizing should not play a significant role in human-
computer interaction, which gives us reason to assume that mentalizing brain regions are more strongly 
activated when people interact with humans, relative to interacting with avatars (H2).  
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Research Methodology 

Stimulus Selection 

In our trust game experiment, participants played in the role of the investor against both humans and 
avatars in the role of the trustee. The objective of the stimulus selection was, therefore, to identify a 
number of human and avatar faces for the fMRI study. Ultimately, both the human and avatar groups 
comprised four faces with a high degree of trustworthiness and four faces with a low degree of 
trustworthiness. To identify 16 faces appropriate for the experiment, we pre-tested a set of 40 human 
faces taken from the FACES database (Ebner et al. 2010; 20 faces of each sex) and 40 avatar faces (which 
we developed ourselves using Reallusion iClone 3.2 EX edition software, San Jose, CA, USA; 20 faces of 
each sex). In a pre-test, 45 subjects (33 males, 12 females, mean age = 24.07 years, SD = 5.62) rated the 
trustworthiness of the 80 actors on a 7-point Likert scale (1 = “not at all trustworthy” and 7 = “very 
trustworthy”). 
 

Table 1. Stimulus Material 

    

    

    

    
 

Note: Rows 1 and 2 = high trustworthiness; rows 3 and 4 = low trustworthiness. 
 

 

To arrive at the final set of 16 faces, we performed a median split on both the human and the avatar 
groups. The average trustworthiness of each face was used as the criterion for the median split. We 
selected four faces out of each group, based on the following criteria: (i) each group is gender-balanced, 
consisting of two male and two female actors; (ii) the average trustworthiness of the faces from the upper 
half is significantly higher than the average trustworthiness of the faces from the lower half (humans: t = 
5.39, df = 44, p < 0.0001; avatars: t = 4.52, df = 44, p < 0.0001); (iii) the average trustworthiness of the 
human faces from the upper half does not significantly differ from the average trustworthiness of the 
avatars from the upper half (t = 0.32, df = 44, p = 0.754); (iv) the average trustworthiness of the human 
faces from the lower half does not significantly differ from the average trustworthiness of the avatars from 
the lower half (t = 0.35, df = 44, p = 0.725). The resulting set of 16 faces used in our fMRI study is 
presented in Table 1 (rows 1 and 2 = high trustworthiness; rows 3 and 4 = low trustworthiness). 

Subjects 

For the main study, we selected eleven male and eight female subjects (none of whom had participated in 
the stimulus selection pre-test). All subjects were healthy and reported no history of neurological or 
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psychiatric diseases. One subject (female) had to be excluded from further analyses, as she indicated after 
the fMRI session that she was afraid while in the fMRI machine, and as a result was not really thinking of 
the assigned task. Therefore, the sample size underlying our data analysis is N = 18. All participants were 
familiar with the Internet, and had been using it for many years (mean = 10.77, SD = 3.40, min = 4, max = 
18). By design, our investigation is focused on experienced computer and Internet users rather than 
novices. All participants were paid for their participation, and gave written informed consent. The study 
was approved by the Freiburg Ethics Commission International (FECI), Germany. 

We were specific in the age range of participants that we sought, taking note that trust increases almost 
linearly from early childhood, but stays relatively constant within different age groups (Philips and 
Stanton 2004; Sutter and Kocher 2007). Hence, to avoid confounding effects due to age differences, we 
selected subjects from the relatively narrow age group of 25 to 40, rather than using undergraduates or a 
blend of people from different age groups (mean age = 31.83 years, SD = 4.14, min = 26, max = 40). 

Another important trait that we assessed for all participants was the general level of trust (i.e., trust 
propensity), which we measured by a 25-item questionnaire (Rotter 1967). At a maximum, each subject 
could score 125 points (high trust), and at a minimum, 25 points (low trust). Answers from all participants 
revealed general trust scores within the normal range of healthy subjects (mean = 79.11, SD = 5.60, min = 
63, max = 88). Moreover, the results are in line with the general trust levels reported in similar studies 
(e.g., Riedl et al. 2010a). We therefore included all participants in further analyses. 

Because humans tend to assess others on the basis of racial and cultural traits, we note that all 
participants were white. Research (Phelps et al. 2000) indicates that both activation of the amygdala (a 
subcortical part of the brain which plays a prominent role in emotion processing, among other functions), 
as well as the behavioral responses of white participants to unfamiliar black-versus-white faces, reflect 
cultural evaluations of social groups. Thus, it was essential for the validity of our results that we matched 
the race of the participants and trustees (see Table 1). 

Another trait that creates a differential is handedness, so we considered that as well. Research (e.g., 
Cuzzocreo et al. 2009; Schachter 2000) shows that handedness is related to brain anatomy and 
functionality, as well as cognitive abilities (e.g., memory). Hence, it is important in a brain imaging study 
such as the present one that the handedness of participants be held constant. Because one of the 
remarkable features of motor control in humans is that more than 90% of the population is more skilful 
with the right hand (Sun and Walsh 2006), we have chosen only right-handed people for the experiment. 
Our results, therefore, directly pertain to the vast majority of the human population. 

Experimental Procedure and Stimulus Presentation 

We used a multi-round trust game, an adjusted version of the original trust game (Berg et al. 1995), in 
which the investor has an initial endowment. First, the investor decides whether to keep her or his 
endowment, or to send it to the trustee. Then the trustee observes the investor’s action and decides 
whether to keep the amount received, or to share it with the investor. The experimenter multiplies the 
investor’s transfer by some factor, so that both players are advantaged, collectively, if the investor 
transfers money and the trustee sends back a part of it. As a behavioral measure for trust, we used the 
decision of the investor to send money, and as a behavioral measure for trustworthiness, we used the 
trustee’s decision of whether or not to return money (Fehr 2009a). 

In our experiment, participants played in the role of the investor against (i) humans and (ii) avatars (both 
playing in the role of the trustee, see Figure 1). Our game, therefore, mimics a typical interaction in a 
buyer-seller-relationship, both in bricks-and-mortar business (human condition), as well as in computer 
and online environments (avatar condition). Participants were told in advance that their playing partners 
(i.e., the trustees) would not be responsive to their playing strategies. We did stress, however, that each 
trustee has a specific character, which determines his or her trustworthiness. Half of the trustees, both 
humans and avatars, were predetermined by the experimenters to be relatively trustworthy, whereas the 
other half were predetermined as relatively untrustworthy. Trustworthy actors returned €30 in seven out 
of ten rounds, whereas untrustworthy actors returned €30 in only three rounds. Apart from their facial 
appearance, participants had no information regarding the trustees. 

In each round of the game, participants were asked whether they wanted to keep their initial endowment 
of €10 (≈ $13), or whether they wanted to give it to the trustee, whose face was presented to them. In the 
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case of giving the €10 to the trustee, the amount was multiplied by six (resulting in €60), which the 
trustee could then either keep, or split (i.e., return €30 to the participant). Participants played ten rounds 
of the game with each trustee, with three seconds in each round to make the investment decision (= 
DECISION PHASE, see Figure 1); note that decision times of one to three seconds are sufficient to make 
economic decisions in an fMRI environment (e.g., O’Doherty et al. 2004; Winston et al. 2002). After a 
variable time (varied based on a Poisson distribution) in which a blank screen with a fixation cross in the 
middle was presented, the trustee’s face and the decision was visually presented for two seconds (= 
OUTCOME PHASE, see Figure 1). Before the first round, after the fifth round, and after the tenth round, 
participants were asked to rate the trustworthiness of the trustee, which was operationalized as the 
probability that the trustee, in case of being given money, would behave in a trustworthy manner (i.e., 
returning €30). It is important to note that the fMRI (hemodynamic) response to an event (e.g., 
perception of the face of a trustee) begins after a delay of one to two seconds, peaks approximately five to 
six seconds following event onset, and returns to baseline after about fourteen to sixteen seconds (Payne 
and Venkatraman 2011). Because hemodynamic responses to multiple subsequent events typically sum in 
a linear manner (Huettel and McCarthy 2000), it is possible to investigate neural responses to multiple 
events that are presented in close temporal proximity. 
 

 
 

Note: The upper value in the square brackets indicates the payoff for the investor; 
the lower value indicates the payoff for the trustee. 
 

Figure 1. Structure and Payoff Matrix of the Trust Game 

 

We used the program Presentation (Neurobehavioral Systems, Albany, CA, USA) to present the stimuli in 
the MRI-scanner and to record the responses on a Notebook with Windows XP (Microsoft, Seattle, USA) 
as the operating system. Visual stimuli were presented using video goggles. 

Data Collection and Analysis 

MRI data were acquired using a 3T Siemens Tim Trio (Erlangen, Germany) MRI scanner. FMRI is a 
noninvasive neuroscientific technique with relatively good spatial and temporal resolution (Huettel et al. 
2009). It takes advantage of the blood oxygen level dependent (BOLD) effect for estimating the neural 
activity that corresponds with experimental conditions. We acquired 2 runs of 690 functional T2*-
weighted echoplanar images (EPI) [TR, 2 s; echo time (TE), 40 ms; flip angle, 90°; field of view, 256 mm; 
matrix, 64 x 64 mm; 26 axial slices approximately parallel to the bicommissural plane; slice thickness, 4 
mm]. In addition, for registration purposes, a high-resolution T1-weighted structural image (MPRAGE) 
was acquired from each participant [TR, 20 ms; TE, 5 ms; flip angle, 30°; 179 sagittal slices; voxel size, 1 × 
1 × 1 mm]. Initial analysis was performed using the FSL toolbox from the Oxford Centre for fMRI of the 
Brain (www.fmrib.ox.ac.uk/fsl). The image time-course was first realigned to compensate for small head 
movements (Jenkinson et al. 2002). Data were spatially smoothed using an 8 mm full-width-half-
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maximum Gaussian kernel and were temporally filtered using a high-pass temporal filter (with 
sigma=100s). Registration was conducted through a 2-step procedure, whereby EPI images were first 
registered to the MPRAGE structural image and then to standard MNI (Montreal Neurological Institute) 
space (MNI152_T1_2mm_brain), using 7 parameters for the first registration step and 12 parameters for 
the second (Jenkinson and Smith 2001). Statistical analyses were performed in native space, with the 
statistical maps normalized to standard space prior to higher-level analysis. 

Statistical analysis of functional data was performed using a multi-level approach implementing a mixed-
effects model treating participants as a random effect. This was initially performed separately for each 
participant’s concatenated runs. Regressors-of-interest were created by convolving a rectangular function 
representing stimulus duration times with a canonical (double-gamma) hemodynamic response function. 
Time-series statistical analysis was carried out using FILM (FMRIB's Improved Linear Model) with local 
autocorrelation correction (Woolrich et al. 2001). 

The functional analysis was based on two regressors-of-interest and four regressors-of-no-interest. Two 
binary regressors modeled the decision phase. The first regressor represents the decision in the human 
condition, whereas the second regressor models the decision in the avatar condition. The durations of the 
two regressors correspond to the decision time, which was three seconds in all cases. The final four 
regressors-of-no-interest modeled the trustworthiness ratings for humans and avatars, as well as the 
amount of stated trustworthiness for both conditions. On the group level (second level of analysis), we 
integrated the results from the single subject level (first level), again applying a general linear model. One 
binary regressor modeled a constant effect of all first-level parameter estimates on the group level. 

Results 

Behavioral Results 

Analyzing whether or not participants differ in their decisions to trust (i.e., to invest their initial 
endowment of €10) when playing against humans or avatars, we found that participants showed 
considerable trust behavior (see Table 2), independent of playing against humans or avatars (average 
trust in the human condition: in 52 of 80 games; average trust in the avatar condition: in 51.39 of 80 
games). There was no significant difference between the number of decisions to trust in the human and 
avatar conditions (t = 0.4455, df = 17, p = 0.66). This result supports H1a. 

To better understand participants’ trust behavior, we modeled the perceived trustworthiness of the 
trustees on a round-by-round basis. The underlying assumption of this approach is that perceived 
trustworthiness of a trustee is based on the facial appearance before the first round begins, and is adjusted 
based on its behavioral trustworthiness during the subsequent rounds of the game. 

We assume that perceived trustworthiness is reflected in the subjective probability that a trustee will be 
trustworthy (i.e., will return €30) when a participant invests the initial endowment of €10. Moreover, a 
participant typically selects the gaming strategy that offers a higher expected value. The expected value of 
keeping the initial endowment of €10 is €10, because the probability for this gain is 100% in our game 
(see Figure 1, left path). The expected value of investing the endowment of €10 is equal to the product of a 
trustee’s perceived trustworthiness and the possible payoff of €30. Hence, the trust decision only depends 
on the perceived trustworthiness (see Figure 1, right path). 

During the ten rounds of interaction with a specific trustee, trustworthiness is expected to be updated on 
the basis of that trustee’s behavior. In this article, we model the updating process with a reinforcement 
learning model (Behrens et al. 2008, 2009; Rescorla and Wagner 1972; Sutton and Barto 1998). Such a 
model generally assumes that after the decision has been made for one alternative, a received reward R(t) 
at time t is compared to an expected value EV(t), with the deviation d formalized as prediction error PE: 
d(t) = R(t) – EV(t). A reinforcement learning model assumes that learning is driven by these deviations; 
hence, a PE is used to update EV(t), allowing the optimization of reward predictions. The influence of a 
specific PE on EV(t) regarding the next trust decision is determined by the learning rate. 

Formally, a reinforcement learning model is defined as: 

EV (t ) = EV (t − 1) + α ⋅ d(t − 1)        (1). 
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From EV(t), it is possible to calculate the subjective probability of trustworthy behavior at time t by 
dividing EV(t) by €30. In our trust game, a model with a constant learning rate (see formula 1) would 
assume that the perceived trustworthiness is updated equally for trustworthy and untrustworthy 
behavior. 

We fitted the reinforcement learning model for the interaction with humans and avatars, and instructed 
each participant to rate the trustworthiness of each trustee before the first round of the trust game began 
(based solely on facial appearance). We used these initial ratings as the starting points of the 

reinforcement learning process. The free parameter α was fitted by minimizing the sum of squared 
differences between model predictions and a participant’s trustworthiness ratings after the fifth and tenth 
rounds. 
 

Table 2. Behavioral Results 

 Mean (SD) 

Decisions to Trust 

Decisions to Trust (Human)a 52.00 (11.55) 

Decisions to Trust (Avatar)a 51.39 (13.57) 

Trustworthiness Learning Rate 

Sum of Squared Differences (Constant Learning Rate, Human) 0.2343 (0.1322) 

Sum of Squared Differences (Constant Learning Rate, Avatar) 0.2773 (0.1950) 

Alpha (Human) 0.2139 (0.0825) 

Alpha (Avatar) 0.2122 (0.0916) 

Correct Model Predictions (Constant Learning Rate, Human) 73.61% (9.40%) 

Correct Model Predictions (Constant Learning Rate, Avatar) 71.51% (13.92%) 
 

Note: a Total number of rounds played = 160 (humans = 80 rounds, avatars = 80 rounds). 
 

 

We further investigated whether learning rates were significantly different between the human and avatar 
conditions (see Table 2 for descriptive statistics). As expected, we found no significant differences (t = 
0.1510, df = 17, p = 0.8820). This result supports H1b. 

Assuming a deterministic decision strategy stating that when two alternatives offer a higher-than-
expected value, people always choose the one that offers a higher expected value, the reinforcement 
learning model, on average, correctly predicts 73.61% (71.51 %) of the trust decisions in the human 
(avatar) condition. Importantly, the predictive power of this model is significantly higher than chance 
level (human: t = 10.6540, df = 17, p < 0.001; avatar: t = 6.870, df = 17, p < 0.001). 

In the two hypotheses that pertain to the behavioral level of analysis, we predicted that both trust 
decisions (H1a) and the learning of trustworthiness (H1b) do not differ based on whether people interact 
with humans, or with avatars. Thus, in order to find support for these two hypotheses, we had to test null 
hypotheses (i.e., H0: ConditionHuman = ConditionAvatar). Statistical power is defined as the probability of 
rejecting H0 when it is false; major factors that influence this power are (i) effect size, (ii) level of 
significance, and (iii) sample size (Desmond and Glover 2002). 

When compared to traditional behavioral research (both in the behavioral sciences and the IS discipline), 
sample size is relatively small in neuroscience studies. A recent review of papers, including studies in 
highly prestigious journals such as Neuron, Science, and Nature, found that, for example, the average 
sample size is N = 18 in neuroscience studies (Lieberman et al. 2009, p. 301). Moreover, we investigated 
the sample sizes of the fMRI studies published in IS outlets: N = 6 (Dimoka and Davis 2008), N = 15 
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(Dimoka 2010), N = 20 (Riedl et al. 2010a), and 
we conclude that our sample size is similar to those 
neuroscience disciplines (e.g., neuropsycholog
and IS research. 

Despite this fact, however, it is impossible to rule out the 
could affect the results. In particular, a larger sample size could lead to the identification of statistically 
significant differences in both trust decisions (H1a) and the learning of trustworthiness (H1b)
disproving our hypothesized similarity in trust behavior toward 

On the basis of additional statistical tests, we demonstrate the robustness of our results related to H1a and 
H1b. For H1a, the observed effect size 
negligible difference between the human and avatar conditions. 
when we assume that all decisions
subject received was based on the outcome of one randomly selected ro
during the experiment), this assumption is not 
further validates our findings, as
trust in the human and avatar conditions (
experiment: 8 human opponents × 10 rounds × 18 subjects], 
Importantly, this binomial test has the power to detect even small effects
of these additional statistical tests
the observed effect is even smaller than 
negligible difference between the learning of human and avatar trustworthiness.
our data strongly support H1b. 

Neuroimaging Results 

In the present study, we focus on the investigation of brain activation during the DECISION PHASE a
not during the OUTCOME PHASE (see Figure 1). In th
trustees’ faces, and had to decide whether
changes in other brain areas, w
higher in the human condition compared to the avatar condition (
Previous studies show these three brain regions to be associated with mentalizing (for reviews
Amodio and Frith 2006, as well as Singer 2009). This result supports H2.
 

 

Note: Contrast: Human―Avatar (sagittal view), MPFC = Medial Prefrontal Cortex, 
rACC = rostral Anterior Cingulate Cortex, VMPFC = Ventromedial
Cortex. The reverse contrast (Avatar―Human) did not result in significant 
activation differences.
 

Figure 2. 
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rACC = rostral Anterior Cingulate Cortex, VMPFC = Ventromedial Prefrontal 
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Figure 2. Brain Activation in the DECISION PHASE
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Discussion and Future Research 

In this study, we investigated human trust behavior and the underlying neurobiological mechanisms, 
measuring by means of fMRI in a multi-round trust game. Participants taking on the role of an investor 
played against humans and avatars (i.e., human-like virtual agents) playing in the role of the trustee. 
Participants exhibited similar trust behavior when they played against humans and against avatars. 
Moreover, participants’ learning rates regarding the trustworthiness of humans and avatars were also 
similar. At the neurobiological level, however, we observed significant differences in brain activation 
during the DECISION PHASE (in which the task was to invest the initial endowment of €10 or not) when 
contrasting the human versus avatar condition. Specifically, we found higher activation in a brain network 
associated with mentalizing, namely MPFC, rACC, and VMPFC. These three brain regions correspond 
approximately to BA 9, 10, 24, and 32, and they have been summarized under the label arMFC (anterior 
region of the rostral medial frontal cortex; Amodio and Frith 2006). In this regard, our brain imaging 
results are in line with two recent fMRI studies from the field of robotics. 

The first study (Krach et al. 2008) investigated whether an increase of human-likeness of the interaction 
partners (computer partner < functional robot < anthropomorphic robot < human partner) modulates 
people’s mentalizing activity. Using the prisoner’s dilemma game, the study was designed so that during 
the experiment participants were unaware that they always played against a random sequence. The brain 
imaging data revealed a linear increase in cortical activity in the MFC, in correspondence with the 
increase in human-likeness of the interaction partner. These results, together with the findings of the 
present study, strongly suggest that humans seem to have a propensity to build a model of another’s 
‘mind’ in accordance with its perceived human-likeness. 

In the second study (Kircher et al. 2009), the objective was to assess an interactive task involving social 
partner feedback that can be used to infer intent, in order to determine the degree to which the task would 
engage the MPFC. Participants’ brains were scanned as they played a special version of the prisoner’s 
dilemma game with partners outside the scanner, alleged to be human and computer partners. The MPFC 
was activated when participants played both human and computer partners. However, the direct contrast 
revealed significantly stronger activation during the human-human interaction. These findings suggest a 
link between activation in the MPFC and the interaction partner (human or computer) played in a 
mentalizing task. Hence, these findings provide further support for the brain activation patterns found in 
our study. 

Altogether, our behavioral results suggest that trust in human-like computers (avatars) resembles trust in 
humans (H1a and H1b). On a deeper neurobiological level, however, the human brain distinguishes 
between humans and avatars (H2). People seem to attribute the concept of a mind to humans, but not to 
the same extent for avatars. We conclude, therefore, that our brain imaging study sheds light on the 
differences in the mentalizing process in a trust situation. Because many cognitive processes underlying 
human behavior are not accessible to consciousness (Lieberman 2007), and thus not open to 
introspection and self-reporting (e.g., Dimoka et al. 2010), our investigation adds an expanded view to the 
existing IS trust literature. 

Research in the IS discipline is deeply rooted in the behavioral sciences (e.g., Frank et al. 2008). 
Consequently, the differences identified in the present study—differences in brain mechanisms, but not in 
a specific form of subsequent behavior—might be perceived as irrelevant, particularly due to the putative 
lack of behavioral implication. Specifically, in the present experiment we could not identify statistically 
significant differences in trust behavior toward humans and avatars. However, research indicates that a 
difference in brain activation can be expected to have some form of behavioral consequence (e.g., Kolb 
and Whishaw 2009, chapter 2; in evolutionary psychology, a similar concept has been proven to advance 
IS theorizing, Kock 2004, 2005, 2009). A lack of difference in one specific form of behavior (here, trust) 
implies that behavioral variance is likely influenced by multiple mental processes. Yoon et al. (2006, p. 
38, emphasis added) present findings from a consumer neuroscience study that confirm this view: 

A fair criticism of the sort of differences documented … is that each could well be, to invoke 
a line beloved of philosophy professors, “a distinction without a difference.” For example, 
can one brain region process a particular sort of stimulus (e.g., human traits) while a 
second, physically separate region processes a very different one (brands), yet with little 
discernible difference in substantive outcome measures? It is impossible to rule this out 
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entirely. Nonetheless, specialization of the cortex has long been recognized at the gross level 
of the cortical lobes as well as the cellular level, and recent findings of functional 
specialization in focal regions … further push the envelope on cortical specialization. As 
such, the likelihood that brand judgments lie in one area and human judgments in an 
entirely separate one, but that they are otherwise fundamentally alike, can only be viewed 
as remote. Rather, it would appear that the behavioral measures employed in prior studies 
have not, as of yet, been able to ferret out these distinctions, which seem to be separate 
processes subserved by different brain regions. 

Drawing upon this statement, as well as on similar views held by neuroeconomists (e.g., Clithero et al. 
2008), we argue that future research should seek to identify possible behavioral consequences that may 
result from the significant higher activation in the mentalizing brain areas in the human condition 
compared to the avatar condition. One promising strategy to identify relevant behavioral consequences is 
to proceed along the causal chain under investigation. We exemplify this based on an example (Figure 3). 
 

 

 

Figure 3. Causal Chain: Perception, Trust Behavior, 
Reputation, and Collaboration Efficiency 

 

Figure 3 illustrates the major focus of the present study (left), as well as possible directions for future 
research (right). In essence, once an investor perceives stimuli related to the trustee (e.g., facial 
appearance), he or she has information on which a trust decision can be based (move 1). Next, the trustee 
can either keep or split the amount (move 2), and this behavioral information, in turn, can be used by an 
investor to learn a trustee’s trustworthiness. 

In the present study, we found that differences in brain activation (notably, the significantly higher 
activation in mentalizing areas during interaction with humans rather than avatars) do not lead to 
differences in trust behavior (see the dashed arrow in Figure 3). Because differences in brain activation 
generally have behavioral consequences (e.g., Kolb and Whishaw 2009), future research could look for 
corresponding outcome variables by proceeding along the causal chain under investigation. Specifically, 
the causal chain illustrated in Figure 3 shows that trust is an antecedent of reputation (e.g., King-Cases et 
al. 2005), which in turn is an antecedent of collaboration efficiency (e.g., Nowak and Sigmund 2005; Raub 
and Weesie 1990). 
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Reputation among humans is a crucial phenomenon that plays a significant role in social interactions 
(Fehr 2004), and in particular, in trust situations (King-Cases et al. 2005). Research suggests that one 
force driving humans to trust and cooperate is the desire to build a good reputation (Frith and Frith 
2010). Most people strive to be perceived positively by other individuals, and humans typically care what 
others think of them. Hence, reputation building implies mentalizing (Frith and Frith 2010, see the arrow 
in Figure 3). 

Considering this link between reputation building and mentalizing, we hypothesize that the activation 
difference in the arMFC between the human and avatar condition could be caused by the participants’ 
stronger desire build a reputation with humans than with avatars. The participants in our experiment 
could have reflected more intently on their gaming partners’ thoughts about the trust decisions if the 
partner was a human rather than an avatar. Questions our participants might have considered could be, 
for example, “What does the gaming partner think when I do not trust him/her, and thus do not send the 
€10?” and “What does the gaming partner think when I trust, and thus send the €10?” Importantly, 
positive correlations between reputation and efficiency in social and economic interactions are reported in 
the literature (e.g., Nowak and Sigmund 2005; Raub and Weesie 1990). Consequently, considering the 
causal chain shown in Figure 3 (trust behavior → reputation → collaboration efficiency), together with 
our brain imaging findings, we hypothesize that interactions with avatars, in contrast to interactions with 
humans, could result in decreased levels of collaboration effectiveness (due to decreased levels of 
activation in mentalizing brain areas; see the arrow in Figure 3). Future research could test this 
hypothesis, with the possibility of identifying an important economic consequence of the brain activation 
findings from the present study. 

In addition to the avenue for extended research illustrated in Figure 3, another important question could 
be addressed by adding a further experimental condition. In the present study participants had no 
information about whether the avatars actually represent real humans or not. The subjects were told that 
the trustees would not be responsive to their playing strategy, but they were also told that each trustee has 
a specific character, which determines his or her trustworthiness. Thus, one further useful manipulation 
could be adding an experimental condition in which participants are told that the avatars represent real 
humans. Such a manipulation could affect both activation in mentalizing brain areas and trust behavior, 
which would have far-reaching practical implications. If this condition produced the same behavioral and 
neural results as our study, understanding the implications of such a finding would present intriguing 
issues that deserve consideration. 

The value of knowing that a human-avatar interaction would produce responses similar to those when the 
human interacts with another human relies, in one instance, on an application of media richness theory 
(Daft and Lengel 1986; Daft et al. 1987), which is a framework that describes a communication medium’s 
ability to reproduce the information sent over it. A video conference, for example, allows for a real-time 
visual and auditory experience in a way that e-mail does not. Hence, video conferencing is considered to 
be “richer” than e-mail, particularly because its degree of social presence is higher (Rice 1993). In essence, 
media richness theory states that a sender should use the richest possible medium to communicate a 
desired message, thereby increasing information richness—the ability of information to change 
understanding within a time interval. 

Real-world practicalities often require communication through media that are less rich than what might 
be available. For example, although it might be theoretically beneficial to collaborate with a colleague or a 
business partner in a face-to-face meeting, economic considerations (e.g., travel costs) might preclude this 
type of communication. Hence, less expensive but still acceptable media have to be selected. If the 
human-avatar communication produced results as we have described, use of avatars (which represent real 
humans rather than computer-controlled virtual assistants, just as in virtual worlds such as Second Life), 
as an alternative to video conferencing, could be effectively used in organizational contexts. 

Avatars have, in fact, been recently suggested as a new type of communication in business organizations, 
thereby complementing existing media such as face-to-face meetings, text chat, e-mail, telephone, or 
videoconferencing (Nowak and Rauh 2005). In this context, a recent study (Bente et al. 2008) 
investigated the influence of avatars on social presence, interpersonal trust, perceived communication 
quality, nonverbal behavior, and visual attention in network-based collaborations. A real-time 
communication window including an avatar-based interface was integrated into a shared collaborative 
workspace, and this medium was compared to text chat, audio, and audio-video. The results show that 
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differences exist between text chat and the other three modalities in perceived intimateness, co-presence, 
and emotionally-based trust. Moreover, a detailed analysis of nonverbal activity and visual attention 
revealed similarities between the video and avatar modalities, both demonstrating higher levels of 
exposure to the virtual other and visual attention. Altogether, these behavioral results suggest that avatar-
based communication can be as rich as video communication. 

However, bearing our research results in mind, it is likely that the behavioral outcome similarities 
between avatar-based and video communication are accompanied by differences on the neurobiological 
level. In particular, building a reputation in the communication process is more likely to happen during 
the interaction via video (because real humans are visible) when compared to interaction via avatars. This 
difference, in turn, may influence important outcome variables on the behavioral level, particularly 
efficiency in social and economic interactions (see Figure 3). Thus, our neuroscientific focus contributes to 
a more complete understanding of possible limitations of avatar-based communication in business 
organizations. 

Another variation in future research might be to vary the degree of human-likeness of the avatars. The 
avatars that we used in the present study (see Table 1) have a medium degree of human-likeness (i.e., they 
are not completely simplistic cartoon-like characters, but also are not photorealistic portrayals). It would 
be reasonable to assume that avatars with increasing human-likeness should trigger brain activation 
patterns monotonically more similar to that of real humans. Research suggests, however, that such an 
assumption would be too simplistic, because as avatars approach photorealistic perfection but do not fully 
accomplish it, they cause humans to feel negative emotions (e.g., Davidson 2003) that neurologically 
resemble distrust reactions (e.g., Dimoka 2010). This effect is referred to as the uncanny valley effect 
(e.g., Geller 2008; Mori 1970). Considering this, future research could test the behavioral and neural 
effects of avatars with varying degrees of human-likeness in trust game settings. One prediction based on 
the uncanny valley effect is that there is no linear relationship between human-likeness and (i) trust 
behavior and (ii) brain trust (MacDorman 2009). Specifically, we hypothesize that “uncanny valley 
avatars,” in contrast to the other avatars, lead to the strongest distrust perceptions, both on behavioral 
and neural levels. 

Contribution, Limitations, and a Concluding Note 

In the following, we summarize the contribution of the present article. Our review of the social 
neuroscience and neuroeconomics literature on game playing (e.g., the trust game) revealed that in most 
studies participants play against human opponents, thereby simulating economic interaction in 
traditional bricks-and-mortar business and non-computer-mediated environments. Due to the increasing 
importance of computer-mediated communication and transactions, human-computer interactions are 
becoming increasingly relevant. A few game studies, therefore, have also begun to investigate participants’ 
brain activation while playing against computer opponents (e.g., McCabe et al. 2001). Altogether, the 
results of these studies show that trust behavior and the underlying neural mentalizing processes differ 
depending on the interaction partner. 

However, a detailed look at the experimental tasks of these studies reveals that participants playing 
against computer opponents were typically informed that the computers would play a fixed probabilistic 
strategy, and participants in the fMRI scanner usually were shown a simple picture of a computer. When 
presented in this objectified format, computers were likely to be perceived as mindless. Obviously, such a 
clear differentiation between computers and humans may explain the observed differences in behavior 
and the underlying brain mechanisms. 

Recently, technological advancements have made possible the development of new human-like forms of 
computers, referred to as avatars. No published study, to the best of our knowledge, has investigated 
whether avatars are perceived and treated as mechanistic computers or as humans in a trust situation. To 
close this research gap, we addressed this open question on the basis of fMRI. We conducted a multi-
round trust game experiment in which participants played in the role of the investor against both humans 
and avatars, both playing in the role of the trustee. 

Our behavioral results show no differences between the human and avatar condition. Specifically, 
participants trusted avatars to a similar degree as they trusted humans; the learning of an interaction 
partner’s trustworthiness was similar, as well (see Table 2). However, our neurobiological findings show 



 Riedl et al. / Trusting Humans and Avatars: Behavioral and Neural Evidence 
  

 Thirty Second International Conference on Information Systems, Shanghai 2011 17 

significant differences in brain activation in a mentalizing network within the arMFC, spanning MPFC, 
rACC, and VMPFC (see Figure 2). Consequently, our study demonstrates that trust behavior in human-
computer interaction resembles that in human-human interaction, if a computer is presented as an avatar 
and not as a mechanistic artifact. However, on a more intensive neurobiological level, the human brain 
still distinguishes between humans and avatars. 

In the IS discipline, research is typically focused on the behavioral level. However, as the present study 
investigating trust in humans and avatars indicates, similar patterns of behavior may be associated with 
different underlying neurobiological processes. One general implication developed from our research is 
that IS research can substantially benefit from neuroscience (e.g., Benbasat et al. 2010; Dimoka et al. 
2007, 2010, 2011; Riedl et al. 2010b), because the use of brain imaging makes possible the identification 
of mental processes that may be difficult to capture based on behavioral data alone (e.g., mentalizing in a 
trust situation). Thus, neuroscientific approaches help understand human cognition and affect, as well as 
subsequent IT-related behavior. However, because differences in brain activation typically have 
behavioral consequences (e.g., Kolb and Whishaw 2009), we argued that future research could look for 
such important outcome variables by proceeding along the causal chain under investigation; we discussed 
possible candidates such as reputation and collaboration efficiency (see Figure 3), with both having trust 
as an important antecedent (e.g., King-Cases et al. 2005; Nowak and Sigmund 2005). 

As is common in scientific research, the present study has limitations that should be taken into account. 
First, the interpretation of our empirical findings is based on a simple game-playing task in a controlled 
laboratory environment. Second, during the experiment, participants were required to lie still and were 
restrained with pads to prevent motion during measurement sessions. Third, the present study 
investigates the potential of static pictures of humans and avatars in order to activate mentalizing brain 
mechanisms. Indeed, we found activation in a network spanning the arMFC. However, inferring another 
actor’s thoughts and intentions is not based solely on the processing of static information. Motion (e.g., 
gestures), as well, has been demonstrated to enable inferences regarding another actor’s mind (e.g., Frith 
and Frith 2010). Future investigations could replicate our study using non-static stimulus material. 
Considering recent findings regarding the positive effects of both visual and behavioral realism of avatars 
on outcome variables such as affect-based trustworthiness (e.g., Bente et al. 2008; Groom et al. 2009; Qiu 
and Benbasat 2005), we hypothesize that an increasing degree of an avatar’s human-likeness induced by 
non-static information could reduce the neurobiological differences between humans and avatars in 
mentalizing circuits (Morris et al. 2005). In this context, one study (Gazzola et al. 2007) already found 
that the mirror neuron system—which transforms observed actions into the neural representations of 
these actions—responds to both human and robotic actions, with no significant differences between these 
two agents. Despite these limitations, however, we believe that the present study contributes to a better 
understanding of trust and mentalizing in IS research. 

A recent paper by Lieberman and Eisenberger (2009) presents neuroscience evidence showing that 
“responses to [complex social] events rely on much of the same neural circuitry that underlies the 
simplest physical pains and pleasures” (p. 890), and “the brain may treat abstract social experiences and 
concrete physical experiences as more similar than is generally assumed” (p. 891). Trust is a remarkably 
complex social phenomenon (Gambetta 1988; Luhmann 1979). Given that physical needs (e.g., food and 
drink) and perilous threats (e.g., a dangerous animal) are more critical to survival than social phenomena 
(e.g., trust), the question arises as to why the brain would have evolved to treat them as motivationally 
similar. One popular explanation based on evolutionary theory (Lieberman and Eisenberger 2009) states 
that for a great part of human history, being part of a social group promoted survival. The division of basic 
human activities (e.g., one group member takes care of food acquisition, another provides protection from 
adversarial groups, and another cares for offspring) has resulted in a greater certainty of survival, while 
social groups without this structure have not achieved the same result. Most notably, the division of 
activities among group members implies cooperative behavior, which in turn is strongly based on trust 
and mentalizing. Bearing these explanations in mind, it becomes clear that trust and mentalizing, in 
particular, are intriguing social phenomena that have evolved in order to secure the survival of 
humankind during the past thousands of years. Though computer-mediated forms of communication and 
cooperation, particularly via avatars, have only recently begun to emerge, they promise to bring 
revolutionary changes in the organization and interaction of societies. It will be rewarding to see what 
insight future research in the IS discipline will reveal regarding the behavioral and neurobiological 
mechanisms underlying social and economic interaction in a computerized world.  
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