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Abstract 

Regression techniques can be used not only for legitimate data analysis, but also to infer 
private information about individuals. In this paper, we demonstrate that regression 
trees, a popular data-mining technique, can be used to effectively reveal individuals’ 
sensitive data. This problem, which we call a “regression attack,” has been overlooked in 
the literature. Existing privacy-preserving techniques are not appropriate in coping 
with this problem. We propose a new approach to counter regression attacks. To protect 
against privacy disclosure, our approach adopts a novel measure which considers the 
tradeoff between disclosure risk and data utility in a regression tree pruning process. 
We also propose a dynamic value-concatenation method, which overcomes the 
limitation of requiring a user-defined generalization hierarchy in traditional k-
anonymity approaches. Our approach can be used for anonymizing both numeric and 
categorical data. An experimental study is conducted to demonstrate the effectiveness of 
the proposed approach. 
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Introduction 

Predictive data-mining techniques, such as regression and classification, have been widely used by 
organizations to build knowledge-discovery and business-intelligence solutions. They have been applied 
to a variety of domains that involve using personal data, including database marketing, healthcare study, 
and financial analysis. While these techniques are used by organizations to better understand and serve 
their customers, and thus gain competitive advantages, there are growing concerns about invasions to 
privacy by these techniques. In a widely-publicized incident, Netflix had recently awarded $1 million to a 
research team led by two AT&T employees for winning a contest to improve the predictive accuracy of the 
company’s movie recommendation system by over 10%. The contest, which lasted for three years, was 
considered by many to be a great research and business success. However, Netflix had to cancel plans for 
a sequel when it was discovered that the de-identified data released for the contest, which included movie 
recommendations and choices made by customers, could in fact be used to re-identify the customers 
(Lohr 2010). Concerns about privacy have also caused data quality and integrity to deteriorate. According 
to Teltzrow and Kobsa (2004), 82% of online users have refused to give personal information and 34% 
have lied when asked about their personal habits and preferences. 

From a privacy viewpoint, the attributes of data on individuals can be classified into three categories: (1) 
explicit identifiers, which can be used to directly identify an individual, including name, social security 
number, phone number, and driver’s license number; (2) sensitive attributes, which contain private 
information that an individual typically does not want revealed, such as income, medical test results, and 
sexual orientation; and (3) non-sensitive attributes, which are normally not considered as sensitive by 
individuals, such as age, gender, race, education, and occupation. However, the values of some of these 
attributes can often be used to identify individuals by matching data from different sources, resulting in 
identity disclosure. Such attributes are collectively called a quasi-identifier (QI) in the literature. For 
example, Sweeney (2002) found that 87% of the population in the United States can be uniquely 
identified with three attributes – gender, date of birth, and 5-digit zip code – which are accessible from 
voter registration records available to the public. In privacy-preserving data mining research, it is typically 
assumed that the explicit identifiers have already been removed from the data. Data masking is applied to 
QI attributes to prevent or limit the re-identification risk (and the sensitive attributes are typically 
released in their original values). We assume the same setting in this study. 

This research investigates a privacy disclosure problem that occurs when a k-anonymity based approach is 
used to mask data that is used for regression purposes. A k-anonymity approach aims at anonymizing the 
values of the QI attributes such that the values of these attributes for any individual matches those of at 
least k – 1 other individuals in the same dataset (Sweeney 2002). When the k-anonymized data is 
intended for regression analysis, a regression tree technique is often used (LeFevre et al. 2008; Fu et al. 
2010). Regression trees, introduced by Breiman et al. (1984), build prediction models based on recursive 
partitioning of data. In contrast to the classic linear regression model, regression trees are nonparametric 
in nature and thus very effective in dealing with nonlinear and non-monotonic relationships in data. They 
can easily handle both numeric and categorical predictor variables. As such, regression trees are widely 
used in predictive data mining. However, regression trees can be used as a tool to effectively reveal 
sensitive information about individuals. This can be accomplished by setting the sensitive attributes as the 
response attributes, and building a regression tree to help reveal the individuals’ sensitive values. We call 
this use of regression trees for “mining” personal information a regression attack. 

To illustrate the problem, consider an example dataset containing 14 individuals, as shown in Table 1. 
There are two numeric QI attributes (Age and YearsEdu), one categorical QI attribute (Occupation, with 
four categories), and two numeric sensitive attributes (Income and Asset). Given this dataset, a privacy 
intruder can set the two sensitive attribute as responses and build a regression tree based on the methods 
of Breiman et al. (1984) and De’ath (2002, for multiple responses). The resulting tree is shown in Figure 1, 
where a leaf node (rectangle) represents a partitioned subset (the records included in the subset are 
listed). A split criterion is specified along with the edge representing the split. With this tree, it is very easy 
for the intruder to infer an individual’s sensitive information from Table 1 even though the identity 
information is not included. For example, if the intruder knew that an individual who is a ‘professional’ is 
included in the dataset, then he can find the ranges of the Income and Asset values for the individual, 
which are very narrow. 
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Table 1. An Illustrative Example: Original Data 

No. Age YearsEdu Occupation 
Income 
($000) 

Asset 
($000) 

  1 27 12 unskilled 38   65 

  2 39 14 unskilled 42   70 

  3 46 14 unskilled 45   79 

  4 59 12 technical 50   84 

  5 64 13 unskilled 51   88 

  6 33 16 technical 59   94 

  7 35 16 unskilled 52   85 

  8 45 18 technical 66 116 

  9 48 16 technical 68 129 

10 62 16 unskilled 60 110 

11 30 18 managerial 69 124 

12 56 17 managerial 72 133 

13 42 18 professional 74 137 

14 51 20 professional 77 143 

 

 

Figure 1. A Regression Tree Built on Data in Table 1 

Similar results can be achieved using other methods as well. For example, if the intruder knew some 
attribute values of his target subjects, he can issue an ad-hoc query to directly search for these targets. A 
regression tree technique, however, can compromise data privacy in a systematic way. It is more effective 
than an ad-hoc query for disclosure in several aspects. First, for a numeric QI attribute, only a value 
range, instead of the exact value, is needed to determine the targets. Second, sensitive values can often be 
revealed with regression trees using only a small subset of the QI attributes (whereas an ad-hoc query 
often requires more attributes, depending on the sequence in which the attributes are considered). Third, 
a regression tree shows which targets are more vulnerable to attacks (i.e., sensitive values can be 
determined fairly accurately) and which QI attributes are the key attributes for disclosure. This can help 
an intruder identify new targets, or gather additional data for those targets whose QI attributes are 
partially available to the intruder. Finally, a regression attack can simultaneously identify a large number 
of target individuals. 
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Table 2. An Illustrative Example: k-Anonymized Data 

  k = 2   k = 4  

No. Age YearsEdu Occupation Age YearsEdu Occupation 

Income 
($000) 

Asset 
($000) 

  1 [27-39] [12-14] unskilled [27-64] [12-14] ∗ 38   65 

  2 [27-39] [12-14] unskilled [27-64] [12-14] ∗ 42   70 

  3 [46-64] [12-14] ∗ [27-64] [12-14] ∗ 45   79 

  4 [46-64] [12-14] ∗ [27-64] [12-14] ∗ 50   84 

  5 [46-64] [12-14] ∗ [27-64] [12-14] ∗ 51   88 

  6 [33-35] 16 ∗ [33-62] [16-18] ∗ 59   94 

  7 [33-35] 16 ∗ [33-62] [16-18] ∗ 52   85 

  8 [45-62] [16-18] ∗ [33-62] [16-18] ∗ 66 116 

  9 [45-62] [16-18] ∗ [33-62] [16-18] ∗ 68 129 

10 [45-62] [16-18] ∗ [33-62] [16-18] ∗ 60 110 

11 [30-56] [17-18] managerial [30-56] [17-20] skilled 69 124 

12 [30-56] [17-18] managerial [30-56] [17-20] skilled 72 133 

13 [42-51] [18-20] professional [30-56] [17-20] skilled 74 137 

14 [42-51] [18-20] professional [30-56] [17-20] skilled 77 143 
 

 

Figure 2. Generalization Hierarchy for Occupation Attribute 

 
Existing k-anonymity-based techniques cannot effectively deal with such a regression attack. The basic 
idea behind k-anonymity is to partition a dataset into groups with at least k records in each group, and 
then anonymize the QI attribute values with the same generalized value within a group, so that the 
records in a group are indistinguishable. For a numeric attribute, k-anonymity replaces the original values 
in a group with the group range. For a categorical attribute, it generalizes the values based on a user-
defined hierarchy. LeFevre et al. (2008) propose a k-anonymity-based method called Regression 
Mondrian for data to be used for regression analysis. Table 2 shows the anonymized data using 
Regression Mondrian on the example data. When k = 2, the dataset is partitioned into six groups 
(separated by both dash-lines and solid-lines); when k = 4, it is partitioned into three groups (separated 
by solid-lines only). The generalization hierarchy for the Occupation attribute is given in Figure 2 (where 

a symbol ∗ represents suppression of values). It can be observed from Table 2 that for many of the 2-
anonymized groups, the sensitive Income and Asset values are very close within the groups. So, the 
intruder can still obtain the sensitive information fairly accurately for the individuals in these groups, 
even though he cannot positively identify the individuals. For example, if he knew that an individual who 
is a ‘professional’ with ‘18-20’ years of education, he can find that the individual’s income is between 
$74,000 and $77,000. This kind of situation also occurs for some of the 4-anonymized groups (e.g., the 
group with record numbers 11, 12, 13 and 14). 

Another limitation of k-anonymity relates to its use of user-defined generalization hierarchies for 
categorical attributes. In this example, if the Occupation attribute in a group contains ‘unskilled’ and any 
other values, the values will have to be suppressed, based on the pre-defined hierarchy in Figure 2. For 
instance, the original Occupation values for records #6 and #7 are ‘technical’ and ‘unskilled’, respectively. 

unskilled managerial technical professional 

∗ 

skilled 
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When k = 2, they are grouped together (Node 7 in Figure 1). The generalized value for ‘technical’ and 

‘unskilled’ is the suppression symbol (∗) based on the hierarchy. These suppressed values cause the utility 
of the released data to deteriorate. 

In this study, we address the privacy disclosure and data utility problems discussed above. To protect 
against privacy disclosure from regression attacks, we propose a regression-tree-based approach, which 
adopts a novel measure that considers the tradeoff between disclosure risk and data utility in the 
regression-tree pruning process. To overcome the limitation due to pre-defined generalization 
hierarchies, we propose a dynamic value-concatenation method that merges categorical values based on 
the hierarchical structure of the regression trees. We call the proposed technique MART (for Multivariate 
Anonymization with Regression Trees). The main contributions of this research are summarized as 
follows. 

• The originality of the problem. The regression attack problem has not been formally studied in the 
literature. Existing privacy-preserving data-mining techniques are not appropriate in dealing with this 
problem. Particularly, we demonstrate that using a k-anonymity technique without caution can increase 
the disclosure risk for the sensitive data. 

• The novelty of the approach. We propose a novel measure that considers the tradeoff between 
disclosure risk and data utility for multiple numeric sensitive attributes, which is used in constructing 
regression trees for data partitioning. For data anonymization, we propose a dynamic value-
concatenation method that merges categorical values based on the hierarchy of the regression trees. The 
two components of the proposed approach are both new to the literature. 

• The practicality of the technique. The proposed MART technique can be used for anonymizing both 
numeric and categorical QI attributes. MART is computationally very efficient and is much faster than 
the traditional k-anonymity algorithms. It is therefore well-suited for large-scale data-mining 
applications. 

The rest of the paper is organized as follows. In the next section, we discuss prior research related to our 
problem. In the follow-up section, we develop the regression-tree-based data partitioning technique and 
the dynamic value-concatenation method. We then describe a set of experiments conducted on real-world 
datasets. The final section concludes the paper and provides directions for future research. 

Related Work 

There is a large body of research on privacy-preserving data publishing and mining (Aggarwal and Yu 
2008). A significant part of the literature is related to the k-anonymity framework, proposed by Sweeney 
(2002) and Samarati (2001). The k-anonymity approach uses generalization and suppression methods to 
alter the values of QI attributes such that the values of these attributes for any individual matches those of 
at least k – 1 other individuals in the same dataset. In this way, the identity of an individual is expected to 
be better protected. K-anonymity is a general-purpose technique for privacy-preserving data publishing. 
It may be ineffective when the anonymized data is used for data mining, because it is not designed 
specifically to preserve the relationships between the sensitive attributes and the QI attributes. 

In the data-mining area, privacy issues have been studied by Agrawal and Srikant (2000) and Lindell and 
Pinkas (2002), among others. A number of studies develop privacy-preserving data-mining approaches 
under the k-anonymity framework. Fung et al. (2007) propose a top-down refinement method for 
classification problem that satisfies the k-anonymity principle. Friedman et al. (2008) developed a set of 
k-anonymity-based algorithms for various data-mining tasks, including classification, clustering and 
association rules mining (but not regression). LeFevre et al. (2008) and Fu et al. (2010) propose k-
anonymity based approaches for classification and regression problems, both using classification and 
regression trees. Neither of these two studies, however, addresses the regression attack problem. Li and 
Sarkar (2009) investigate the problem of using classification trees for privacy disclosure and propose a 
method to protect against such a “classification attack.” The sensitive data considered in that study is 
categorical and the related approach is applicable to classification analysis. This study, however, considers 
sensitive numeric data and the approach we propose is intended for regression application. 
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The k-anonymity approach focuses on re-identification risk only and does not consider sensitive value 
disclosure. It generalizes different but similar QI attribute values into the same value within a group. The 
new values produced by the generalization operation are still correct with respect to the generalized 
categories. The sensitive attribute values (which can be numeric or categorical) remain unchanged in k-
anonymity. However, these values become more similar within a group. As a result, individuals in a 
group, who have the same generalized QI values, are subject to high disclosure risk. 

To address this issue, Machanavajjhala et al. (2006) propose a privacy principle called l-diversity that 
applies to categorical sensitive attributes. The l-diversity principle requires that a sensitive attribute 
should include at least l well-diversified values in the k-anonymized data. The notion of l-diversity, 
however, does not consider the overall distribution of the sensitive attribute. So, when the overall 
distribution is unbalanced, the l-diversity requirement may be either unnecessary or difficult to satisfy. 
Furthermore, since the overall distribution is usually public information, the sensitive value disclosure 
risk can be high when the distribution of the l-diversified data deviates significantly from the overall 
distribution. To overcome this problem, Li et al. (2007) propose another privacy principle called t-
closeness, which requires that, for each group, the distance between the distribution of the sensitive 
attribute in the group and the overall distribution cannot be larger than a threshold value t. 

The l-diversity and t-closeness approaches, however, focus on situations where sensitive attributes are 
categorical. The l-diversity measure is not appropriate for evaluating the disclosure risk of numeric values. 
For example, every record in the example dataset in Table 1 has a distinct Income or Asset value, so the 
anonymized data in Table 2 would satisfy an l-diversity requirement. The t-closeness measure is 
applicable to a single numeric attribute, but is not appropriate for correlated multiple numeric attributes. 
Furthermore, the t-closeness approach does not consider prediction errors because it is intended for 
general-purpose data publishing. As a result, the anonymized data might not be suitable for regression 
analysis. 

In summary, there is a lack of research in the data privacy literature that addresses the regression attack 
problem. Therefore, it is important to develop an approach to counter such an attack. 

MART: Multivariate Anonymization with Regression Trees 

The notion of regression trees was introduced by Breiman et al. (1984). Similar to classification trees (also 
known as decision trees), regression trees adopt a divide-and-conquer strategy to build prediction models. 
We call a regression tree with a single response (dependent) variable a univariate regression tree and one 
with multiple response variables a multivariate regression tree. Given the problem this study focuses on, 
it is natural to set the sensitive attributes as response variables and use the QI and other non-sensitive 
attributes as regression predictors. 

∆∆∆∆-Digression: A Disclosure Risk Measure 

A commonly used splitting criterion for growing regression trees is the sum of squared errors (SSE). 

Consider the single response attribute case. Let tn  be the number of records in node t. Let 

)...,,()( ti nity 1=  be the value of the response attribute in the ith record in node t, and )(ty  be the mean 

of the response attribute values in node t. The univariate SSE at node t is defined as 

     ∑
=

−=
tn

i
i tytyte

1

2)]()([)( .              (1) 

When a node is split, the combined SSE for the child nodes is always smaller than the SSE for the parent 

node. Suppose node t is split into m child nodes, mtt ...,,
1

. The reduction in SSE, )]()([)( mtetete +⋅⋅⋅+−
1

, 

serves as a criterion to select the splitting attribute and splitting value. The algorithm searches over all 
possible trial-splits for each non-response attribute, and the trial-split that maximizes the reduction in 
SSE is selected to split the data. The process continues until a stopping criterion (e.g., the minimum leaf 
size) is met. This produces a complete regression tree. 
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There are limited studies for multivariate regression trees in the literature. The splitting criteria proposed 
were some multivariate versions of the SSE. We use a measure, based on De’ath (2002) and LeFevre et al. 
(2008), that directly extends the univariate SSE to the multivariate case. For a problem with r response 

attributes, let ])(...,),([)( ′= tytyt irii 1
y  be the values of the response attributes in the ith record in node t, 

and )(ty  be the mean vector of the response attributes in node t. All response values are normalized to 

the range ][ 10,  to remove the impact of the varying scales in different response attributes. The 

multivariate SSE at node t is defined as 

    ∑
=

−′−=
tn

i
ii ttttte

1

)]()([])()([)( yyyy .            (2) 

With this measure, a multivariate regression tree can be built similarly to a univariate regression tree. 
Multivariate regression trees attempt to minimize prediction errors for the multiple responses. This 
explains why each subset partitioned by the multivariate regression tree in Figure 1 contains data points 
that are closer in the Income and Asset values. 

The method by LeFevre et al. (2008) first builds a regression tree with the minimum leaf size k, and then 
applies generalization and suppression schemes to satisfy the k-anonymity requirement. Fu et al. (2010) 
employ a similar idea (limited to univariate regression trees), but impose additional constraints in the 
tree-growing process to preserve the tree structure on the anonymized data. As mentioned earlier, neither 
method has considered sensitive value disclosure that is vulnerable to a regression attack. 

The approach we propose involves not only growing a regression tree but also pruning the tree. For a 
traditional regression tree, the purpose of pruning is to avoid over-fitting problem. Therefore, the usual 
pruning method in regression trees aim at minimizing prediction error. In our problem, however, both 
disclosure risk and prediction error should be considered in selection of nodes for pruning. Clearly, the 
sensitive value disclosure risk of a record at a node is high when the variation in the sensitive attribute 
values of the records at the node is low. Based on the t-closeness principle (Li et al. 2007), the risk is low 
when the conditional distributions (conditioned on the non-sensitive attributes) of the sensitive attributes 
at the node are close to the overall distributions of the sensitive attributes, since the overall distributions 
are usually public information. In other words, when anonymized data is released, the data recipient can 
expect the overall parameters, such as the means and covariances of the response attributes for the entire 
dataset, to be reasonably close to the original parameters. Indeed, in many cases, such original parameters 
are released with the data. 

To measure the disclosure risk for records at a node with the above property, we propose a measure, 
based on the scatter matrix of the response attributes. The scatter matrix, which is the covariance matrix 
multiplied by the sample size, includes sum of squared errors (or variance) and cross-product (or 
covariance) components. It is an important measure of variation in each attribute and of relationships 
between different attributes (we choose to use scatter matrix instead of covariance matrix merely for 
convenience, because regression trees use SSE instead of variance for measuring errors and the risk-
utility tradeoff measure we propose involves comparing SSE). A significant difference between the scatter 
matrix on the data at a node and the overall scatter matrix can reveal useful information about the data at 
the node. The measure below evaluates this “digression” of the scatter structure from the benchmark. 

Definition 1. Let S be the scatter matrix of the response attributes on the entire dataset and jkS  be the 

),( kj  element of S. Let )(tS  be the scatter matrix calculated on the subset data at node t and )(ts jk  be its 

),( kj  element. Let )(tD  be a scatter difference matrix with its ),( kj  element being )()( tsStd jkjkjk −= . 

The node digression in scatter is defined as the determinant of )(tD , i.e., 

     )()( tt D=∆ .              (3) 

The determinant of a scatter matrix is a single number that captures the characteristics of both variance 
and covariance information in a scatter matrix (Johnson and Wichern 2002, p.125). The node digression 
measures the amount of deviation between the variance-covariance structure on the subset at the node 
and that on the entire dataset (when there is only one attribute, the node digression simply measures the 
variance aspect of the deviation). A small digression indicates a small deviation from the overall 
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distribution, which implies a low disclosure risk and thus is desirable. The node digression has the 
following property: 

Lemma 1. If there is no linear dependence between response attributes, then, 

     ttt ∀>=∆ ,)()( 0D .             (4) 

The proofs of this lemma and all other mathematical properties are provided in the Appendix. When a 
node is split, the response values in its child nodes typically become closer to each other. Therefore, the 
parent node digression should be smaller than the weighted digression of the child nodes (and their 
descendants). To describe this property, we first define some terms. 

Definition 2. A branch tB  is a subsection of a tree that starts at an internal node, t, and includes all of 

its leaf or non-leaf descendant nodes. 

In Figure 1, for instance, branch 
5

B  consists of nodes 5 (the root of 
5

B ), 6, 7, 8, 9, 10, and 11. 

Definition 3. Let tB  be a branch having m leaves. The branch digression of tB  is defined as the sum of 

its leaf node digressions, i.e., 

     ∑
=

∆=∆
m

tB
1l

l)()( .              (5) 

We will use the term ∆-digression to generally refer to both the node digression and branch digression. 
The branch digression has the following property with respect to the node digression. 

Lemma 2. The node digression for a leaf llll is always greater than that for its branch root node t. Hence, 

the branch digression for tB  is always greater than the node digression for t; that is, 

    ttBtt t ∀∆>∆⇒∀∆>∆ ),()(,),()( ll .            (6) 

Lemma 2 states that a split of a node always increases digression. In other word, ∆-digression increases 
monotonically in the depth of the node (with respect to its ancestor nodes). So, pruning of a branch into a 

leaf always reduces digression. Next, we define the error for a node t and a branch tB . 

Definition 4. The node error e(t) is the SSE of node t defined in Equations (1) and (2). The branch error 

)( tBe  is defined as the sum of its leaf node errors: 

     ∑
=

=
m

t eBe
1l

l)()( ,              (7) 

It is well known that a split always reduces errors, i.e., )()( teBe t <  (Breiman et al. 1984). To assess the 

tradeoff between disclosure risk and regression error due to a split, we propose the following measure: 

Definition 5. The error-digression measure for an internal node t is defined as: 

     
)()(

)()(

tB

Bete
q

t

t
t ∆−∆

−
= .             (8) 

We describe next how this criterion is used in the proposed pruning algorithm. 

Error-Digression Pruning 

During the pruning process, we want the reduction in error as small as possible to preserve prediction 
accuracy; at the same time, we want the decrease in digression as large as possible (which implies that the 
scatter matrix at the node is as close to the overall scatter matrix as possible) to reduce disclosure risk. So, 

to achieve the best tradeoff between error and digression, the branch having the smallest tq  value should 

be pruned first. 
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The proposed pruning algorithm is recursive in nature. At each iteration, it calculates the value of tq ’s for 

each branch in the current tree. The branch that has the smallest value of tq  is pruned. The process 

continues until some pre-specified stopping criterion is satisfied. An obvious choice of stopping criterion 
is the minimum number of records in a leaf. As mentioned earlier, however, this parameter, like the k 
parameter in k-anonymity, only measures reidentification risk. To measure the probability of sensitive 
value disclosure risk, we propose using a measure for testing the equality of two covariance matrices, 
based on the likelihood ratio test statistic (Morrison 1990, p.292), as below: 

    ( )rnL tttt −+−= − )
~~

(trace
~

log
~

log 1ΣΣΣΣ .           (9) 

where Σ
~
 and tΣ

~
 are the sample covariance matrix for the entire dataset and node t subset respectively, 

and r is the number of the responses. The tL  statistic follows a chi-squared distribution with 21 /)( +rr  

degrees of freedom. As such, the disclosure risk of the records in node t can be evaluated based on the p-

value associated with tL . We also use an adjusted tL  for small node size (Morrison 1990, p.292). 

The proposed error-digression pruning (EDP) algorithm is provided in Figure 3. This algorithm, like 

usual decision tree algorithms, runs very fast. The time complexity is of )log( NNO  for tree growing and 

)(
2

TO  for tree pruning, where N is the number of records in the dataset and T  is the number of 

internal nodes in the unpruned tree. 

 

0. Let k be the minimum number of records in a leaf, and α be the significance level for the likelihood ratio test. 

1. For each internal node t, calculate the tq  value based on Equation (8) and Lt value based on Equation (9). 

2. Select the node t* having the smallest tq  value. If knt <*  and the p-value for Lt is smaller than α, then 

prune the corresponding branch into a leaf; other wise, go to Step 1. 

3. Repeat Steps 1 and 2 until all nodes satisfy the minimum size and significance level criteria. 

Figure 3. The Error-Digression Pruning (EDP) Algorithm 

 
We explain the EDP procedure using the example in Figure 1 and Table 1. We provide below for node 9 
the results of the node error and digression, the branch error and digression, the error-digression ratio 

and the p-value of the likelihood ratio test statistic (denoted 
9

p ). 
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Note that the response attribute values are normalized when calculating these measures. For the other 
internal nodes, we have 

 03922
2

.=q ,   94922
6

.=q ,   507812
5

.=q ;   and   03650
2

.=p ,   10650
6

.=p ,   13100
5

.=p . 

Suppose 2=k  and 050.=α . Then, node 9 will be pruned off first, followed by node 2. This will result in a 

pruned tree that includes nodes 1, 2, 5, 6, 7, 8 and 9, with leaf nodes 2, 7, 8 and 9. So, given the same 
minimum size value k, the results of the EDP procedure are often different from those of k-anonymity. 

For instance, with k-anonymity there are 6 groups when 2=k , while the EDP procedure partitions the 
data into 4 groups (leaves) as described above. This, however, does not imply that the proposed method 
will always produce groups of larger size than a k-anonymity approach. The user can set a small k 

parameter along with a reasonable α value. 

Categorical Value Concatenation 

After the data are partitioned into subsets, the QI attribute values are altered to protect reidentification. 
For numeric QI attributes, traditional k-anonymity approaches replace the original QI values in a subset 
with the range values of the attributes in the subset. LeFevre et al. (2008) also suggest alternative values 
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such as mean and median for replacement. Fu et al. (2010) propose a somewhat complex scheme to 
anonymize numeric QI values. In this study, we focus on anonymizing categorical QI attributes. Numeric 
QI attribute values are simply replaced by subset means. 

For categorical QI attributes, traditional k-anonymity approaches use generalization and suppression 
methods for anonymization. Typically, a user-defined generalization hierarchy is required. The use of pre-
defined hierarchies may be ineffective in preserving data utility. For example, with a pre-defined 
hierarchy shown in Figure 2, many categorical values in the anonymized data (Table 2) are suppressed. To 
overcome this problem, we propose a dynamic value-concatenation method that merges categorical values 
based on the hierarchical structure of regression trees. 

We adopt a binary split method used in Breiman et al. (1984) for splitting a categorical attribute. Many 
decision tree algorithms use a multi-way split method for categorical attributes, which divides each 
category into a branch. This method is not effective for our purpose. For the illustrative example, if such a 
multi-way split is made on the Occupation attribute, then a generalization of this attribute will force the 
suppression of its values. Binary splits, on the other hand, allow more flexibility for generalization. 

For an attribute with c categories, there are 12 −c  binary partitions of these categories (e.g., there are 15 
different ways to partition the four Occupation attribute values in our example into two groups). When c 
is large, it is computationally prohibitive to find the best partition. However, for regression trees (and 
classification trees with only two classes), Breiman et al. (1984) show that there is a way to order the 
categories in a certain sequence so that the best partition is one of the cuts of the sequence. As a result, 

there is only 1−c  (instead of 12 −c ) possible partitions. This method is implemented in our splitting 

algorithm. 

 

Table 3. An Illustrative Example: Anonymized Data Using Value-Concatenation 

  k = 2    k = 4 

No. Age YearsEdu Occupation Age YearsEdu Occupation 

Income 
($000) 

Asset 
($000) 

  1 [27-39] [12-14] unskilled [27-64] [12-14] unskilled+technical 38   65 

  2 [27-39] [12-14] unskilled [27-64] [12-14] unskilled+technical 42   70 

  3 [46-64] [12-14] unskilled+technical [27-64] [12-14] unskilled+technical 45   79 

  4 [46-64] [12-14] unskilled+technical [27-64] [12-14] unskilled+technical 50   84 

  5 [46-64] [12-14] unskilled+technical [27-64] [12-14] unskilled+technical 51   88 

  6 [33-35] 16 unskilled+technical [33-62] [16-18] unskilled+technical 59   94 

  7 [33-35] 16 unskilled+technical [33-62] [16-18] unskilled+technical 52   85 

  8 [45-62] [16-18] unskilled+technical [33-62] [16-18] unskilled+technical 66 116 

  9 [45-62] [16-18] unskilled+technical [33-62] [16-18] unskilled+technical 68 129 

10 [45-62] [16-18] unskilled+technical [33-62] [16-18] unskilled+technical 60 110 

11 [30-56] [17-18] managerial [30-56] [17-20] managerial+professional 69 124 

12 [30-56] [17-18] managerial [30-56] [17-20] managerial+professional 72 133 

13 [42-51] [18-20] professional [30-56] [17-20] managerial+professional 74 137 

14 [42-51] [18-20] professional [30-56] [17-20] managerial+professional 77 143 

 

The method of value-concatenation is very easy to implement. It simply concatenates all categorical 
values that appear at a leaf of the pruned tree and then treats the concatenated value as one category. If 
there is a single category in the leaf, then no concatenation is needed. The results of using the value-
concatenation method for the data in Table 1 are shown in Table 3. It is clear that data quality is better 
preserved with this method than with the pre-defined generalization hierarchy (see Figure 2 and Table 2; 

note that our proposed method may partition the data differently, depending on the α parameter). The 
semantics of the concatenated values are also clear. For example when k = 4, the occupation for the four 
records in the last group are ‘managerial’ or ‘professional’. It is not necessary to provide a generalized 
term for the category. 
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There can be some alternative schemes to the value-concatenation method. One way is to include 
proportion information into the concatenated categories. For example, for k = 4, the Occupation values 
for the five records in the first group can be coded as ‘unskilled4+technical1’ (based on the original count 
in Table 1). When the data is anonymized with this “weighted-value-concatenation” method, the 
frequency distributions of the categorical attributes can be completely preserved (it is easy to code a 
program that decomposes the concatenated values). This weighted concatenation may present a challenge 
to regression analysis because there will be significantly more concatenated categories than the original 
ones. Note that the value-concatenation method can be applied not only for data with regression trees, but 
also for data with classification trees. 

Experiments 

We conducted experiments on two real-world financial and healthcare datasets to evaluate the proposed 
method. We first describe the datasets below. 

Offer. The Association for Information Systems conducts annual surveys of MIS faculty salary offers 
(Galletta 2004). We selected the offer data from 1999 to 2002 (attributes are consistent for these four 
years and somewhat different for the other years). This dataset consists of 509 applicants who received 
offers during the period. There are 13 attributes, with three of them numeric and 10 categorical). They 
include salary offered, position, course load, number of years teaching, region, year indicator, etc. Salary 
offered and number of years teaching were considered as the sensitive attributes. 

Alcohol. This dataset was taken from Kenkel and Terza (2001), which study factors affecting individuals’ 
drinking behaviors. It includes data on 2,467 male individuals, each with 17 attributes (3 numeric and 14 
categorical). There are demographic attributes such as age, race, education, marital status, and 
employment type, as well as several health and health-insurance related attributes. The attributes income 
and drinking frequency (biweekly) were considered as the sensitive attributes. 

The experiment was conducted on regression analysis. We set the sensitive attributes as responses for 
regression. This is the most appropriate for assessing the tradeoff between protecting against regression 
attacks and preserving data quality for regression analysis. Suppose a non-sensitive attribute is set as the 
response. If the final regression model shows that the relationship between the sensitive attribute (which 
is a non-response variable) and the non-sensitive response is insignificant, then it will be easy for a data 
anonymization method to alter the sensitive attribute values while keeping the regression model 
practically unchanged. This situation is unlikely to occur when the sensitive attribute is set as the 
response. For simplicity, we assume all non-sensitive attributes are QI attributes and thus are 
anonymized. The values of sensitive attributes are not changed, following the k-anonymity protocol. 

We compare our proposed MART method with the Regression Mondrian (RM) method proposed by 
LeFevre et al. (2008), which is, to our knowledge, the only existing data anonymization method that uses 
multivariate regression trees. As discussed earlier, there are three key differences between MART and 
RM: (1) MART considers sensitive value disclosure while RM does not; (2) For categorical QI attributes, 
MART uses dynamic value-concatenation while RM uses generalization that requires a user-defined 
hierarchy; (3) MART uses binary split while RM uses multi-way split for categorical attributes. We 
defined a generalization hierarchy for each categorical attributes in a dataset, based on the ideas provided 
by LeFevre et al. (2008). For numeric QI attributes, we replace the original values by the group averages 
for both MART and RM. 

In the k-anonymity studies, reidentification risk is measured by minimum group size k. Our approach 
could allow a smaller group size as long as the sensitive value disclosure risks in the group is sufficiently 
low. Therefore, we use the average (instead of minimum) group size for measuring re-identification risk. 
To facilitate comparisons over multiple criteria, we adjusted group size parameters in RM and MART, as 

well as the α parameter in MART to produce regression trees with about the same average group size. The 
performances of the two techniques are then evaluated on the sensitive value disclosure risk and data 
utility measures, which are described next. 

To assess the sensitive value disclosure risk, we use a measure called relative squared distance (RSD), 

based on (Liew et al. 1985). The RSD for a sensitive attribute jY  is defined as: 
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where M is the total number of groups (leaves), tn  is the number of records in group t, t
ijy  is the value of 

jY  in the ith record in group t, t
jy  is the mean of the jY  values in group t, and jY  is the overall mean of 

the jY  values (all values are normalized). The rationale for this measure is that once an intruder has 

identified a target group t, he will most likely use the group average t
jy  to estimate t

ijy . So the numerator 

evaluates the closeness of the disclosure. The denominator represents the closeness when jY  is used, 

which can be assumed as public information. Clearly, a larger RSD value implies a smaller disclosure risk 
(i.e., more difficult for the intruder to determine the sensitive values after identifying the group). For 

multiple attributes, the RSD measure is calculated as the average of the individual jRSD . 

The classical linear regression model was used for the experiment. We applied a 10-fold cross-validation 
procedure, which used 90% of the data as the training set and the remaining 10% as the test set, and 
repeated the process 10 times, each using different training and test sets (LeFevre et al. 2008). Data utility 
is measured by the mean absolute percentage error (MAPE), defined for a response attribute Yj as 
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where H is the number of records in the test set, ijy  is the value of the jth response attribute for the ith 

record in the test set, and ijŷ  is the estimate of ijy  based on the regression model. For multiple responses, 

the MAPE measure is calculated as the average of the individual jMAPE . As MAPE measures the relative 

distance between the predictions of the model built from the anonymized data and the values in the test 
data, a smaller MAPE value is desirable. Since a 10-fold cross validation procedure was used, we report 
the average results over the 10 runs for MAPE. 

 

Table 4. Results of Experiments 

Data Method Average Group Size RSD (%) MAPE (%) 

Offer RM 10 29.31   5.68 

 MART 10 33.34   4.59 

 RM 20 31.36   7.61 

 MART 20 36.33   5.03 

Alcohol RM 25 78.97 14.85 

 MART 25 92.08   9.89 

 RM 40 86.98 15.29 

 MART 40 93.92 10.33 

 

The results of the experiments are shown in Table 4. For each dataset, we compared RM and MART with 
two different sets of group sizes. It is clear that, for the same re-identification risk (i.e., the same group 
size), the RSD values with MART is larger than those with RM for all group sizes in both datasets, which 
indicates lower disclosure risk for the sensitive attribute values. This, we believe, can be explained by the 

use of the ∆-digression measure in MART for reducing the risk. For regression analysis, MART 
outperforms RM in all cases. This is likely due to the use of dynamic value-concatenation method in 
generalizing categorical QI attribute values, which is better in preserving data quality than the pre-defined 
generalization hierarchies. 

Both algorithms ran very fast, completed procedures within a few seconds. They are much faster than the 
traditional k-anonymity algorithms (Sweeney 2002; and Samarati 2001). The runtimes for the two 
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algorithms were almost the same, which is expected because they use similar basic regression tree 
algorithms. The runtime results are thus not reported. 

Conclusion and Extensions 

Regression techniques have been widely used not only as a tool for analytics in business and public 
domains, but also as a research method in management, science and social science studies. Therefore, the 
regression attack problem we investigate is vitally important. We have presented a novel approach for 
protecting against sensitive value disclosure by such an attack. We have also proposed the value-

concatenation method to limit identity disclosure risk. We have shown analytically that the proposed ∆-
digression measure has some important properties that will serve to evaluate disclosure risk when 
multiple numeric sensitive attributes are targeted. Our experimental study demonstrates the effectiveness 
of the proposed approach. 

In the proposed approach, the disclosure risk is considered only at the tree-pruning stage. However, the 
error-digression measure may also be used for splitting the data so that the disclosure risk can be 
considered at the tree-growing stage. A possible outcome of this strategy is the reduced prediction power 
of the regression trees built based on the data anonymized in this way. It would be interesting to 
investigate the potential of this alternative approach and compare it with the present approach from a 
risk-utility tradeoff perspective. 

We plan to investigate alternative methods to mask the partitioned data in future. For example, we 
anonymize all QI attributes for simplicity. This may overly weaken the predictive power of the model built 
on the anonymized data. A better approach would be to apply more stringent anonymization for those QI 
attributes that do not appear in a regression tree (i.e., less useful in prediction) than those that appear. 

We also plan to explore the idea of weighted value-concatenation method mentioned earlier. The simple 
weighted coding method suggested earlier would work well for data released for simple publishing 
purposes such as reporting summary statistics. It will be difficult to use for more sophisticated data 
mining and analysis such as regression and classification. One possible approach is to break up a record 
with concatenated attribute values into multiple weighted-records and then assign a weight accordingly to 
each “fractional” record. Some decision tree techniques use weighting methods to deal with missing 
values, which could be adopted for weighted concatenation. 

The relative squared distance (RSD) defined in Equation (10), which is used to evaluate the sensitive-
value disclosure risk, is not very intuitive. We will explore more intuitive measures for evaluating the risk. 
A possible alternative is to quantify the risk based on the notion of sensitive-value matching, on lines 
similar to record linkage. 

Appendix 

Proof of Lemma 1. Let M be the total number of subsets partitioned by the tree, and )...,,( Mtnt 1=  be 

the number of records in node t. Consider any two responses jY  and kY . Let )...,,( t
t
ij niy 1=  be the value 

of jY  in the ith record in subset t, t
jy  be the mean of the jY  values in subset t, and jY  be the overall 

mean of the jY  values. Notation for kY  is denoted similarly. Consider 
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Summing over all the records (first within a subset and then over all subsets), and noting that the 
summations for the middle two terms in the right-hand side of (A1) equal zero, we get: 
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The term on the left is the scatter jkS  defined in Definition 1. The first term on the right is the between-

subset scatter while the second term on the right is the sum of within-subset scatters, which can be 

written as ∑ =

M

t jk ts
1

)(  (following notation in Definition 1). Let t′  be the node under consideration. Then, 
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In this case, the sum of within-subset scatters can still be written as ∑ =

M

t jk ts
1

)( , and )(td jk
′  in (A3) can be 

expressed in a form analogous to (A2). In other words, )(t ′D  is the scatter matrix when the response 

values in node t′  are replaced by the subset averages. Since the determinant of a scatter matrix is always 
positive, this completes the proof.                   � 

Proof of Lemma 2. Let tB  be a branch rooted at t with m leaves. Let ),...,( mn 1=l
l

 be the number of 

records in leaf llll. Let )...,,(
l

l niyij 1=  be the value of jY  in the ith record in leaf llll, l

jy  be the mean of the jY  

values in leaf llll, and jy  be the mean of the jY  values in tB ’s root node t. Denote these quantities similarly 

for another attribute kY . Following the same algebraic manipulation in the proof of Lemma 1, we have 
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The term on the left is )(ts jk  while the second term on the right can be written as ∑ =

m

jks
1l

l)( . Write the 

first term on the right (the between-leaf scatter) as jkb . Then, (A5) can be written as 
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Now, consider any leaf l′ . Rearrange the terms in (A6), we have 
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respectively. Then, 
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It follows from the same argument as in the proof of Lemma 1 that b is a form of scatter matrix and thus 

0>b . On the other side, )(l′D  and )(tD  are both scatter matrices, which can be diagonalized into 

XXΛ ′′l  and XXΛ ′
t , with determinant equal to 

l′Λ  and tΛ  respectively. Therefore, 

     )()( tDD >′l .                 � 
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